Thio-arylglycosides with Various Aglycon Para-Substituents, a Probe for Studying Chemical Glycosylation Reactions

Xiaoning Li,^a Lijun Huang,^a Xiche Hu,^a Xuefei Huang^{a,b}*

^aDepartment of Chemistry, The University of Toledo, 2801 W. Bancroft Street, MS 602, Toledo, OH 43606 ^bDepartment of Chemistry, Michigan State University, East Lansing, MI 48824 xuefei@chemistry.msu.edu

Supporting Information

Table of content

Procedure for Synthesis	S4
Procedure for Large Scale Competitive Glycosylation	S 4
Procedure for HPLC Competitive Assay	S 7
HPLC Chromatograms for 1a~1e Series Measurement	S 11
HPLC Chromatograms for 2a~2e Series Measurement	S14

HPLC Chromatograms for 3a~3e Series Measurement	S17
¹ H-NMR of compound 2c (400MHz, CDCl ₃)	S20
¹³ C-NMR of compound 2c (100 MHz, CDCl ₃)	S21
¹ H-NMR of compound 2d (400 MHz, $CDCl_3$)	S22
¹³ C-NMR of compound 2d (100 MHz, CDCl ₃)	S23
¹ H-NMR of compound 3a (600 MHz, CDCl ₃)	S24
¹³ C-NMR of compound 3a (150 MHz, CDCl ₃)	S25
¹ H-NMR of compound 3b (600 MHz, CDCl ₃)	S26
¹³ C-NMR of compound 3b (150 MHz, CDCl ₃)	S27
¹ H-NMR of compound 3c (600 MHz, $CDCl_3$)	S28
¹³ C-NMR of compound 3c (150 MHz, $CDCl_3$)	S29
¹ H-NMR of compound 3d (600 MHz, CDCl ₃)	S 30
¹³ C-NMR of compound 3d (150 MHz, CDCl ₃)	S31
¹ H-NMR of compound 3e (600 MHz, CDCl ₃)	S32
¹³ C-NMR of compound 3e (150 MHz, CDCl ₃)	S33
¹ H-NMR of compound 5 (600 MHz, CDCl ₃)	S34

¹³ C-NMR of compound 5 (150 MHz, CDCl ₃)	S35
¹ H-NMR of compound 6 (600 MHz, $CDCl_3$)	S36
¹³ C-NMR of compound 6 (150 MHz, $CDCl_3$)	S37
¹ H-NMR of compound 9 (600 MHz, CDCl ₃)	S38
¹³ C-NMR of compound 9 (150 MHz, CDCl ₃)	S39
¹ H-NMR of compound 8 (600 MHz, CDCl ₃)	S40
¹ H-NMR of compound 17 (400 MHz, CDCl ₃)	S41
¹³ C-NMR of compound 17 (100 MHz, CDCl ₃)	S42

General Experimental Procedures. All reactions were carried out under nitrogen with anhydrous solvents in flame-dried glassware, unless otherwise noted. All glycosylation reactions were performed in the presence of molecular sieves, which were flame-dried right before the reaction under high vacuum. Glycosylation solvents were dried using a solvent purification system and used directly without further drying. When methanol was used as acceptor in glycosylation, it is pre-dried by molecular sieve 3A. Donors and acceptors 16 and 17 were azeotropically evaporated with toluene to remove residue moisture just before glycosylation. Chemicals used were reagent grade as supplied except where noted. HPLC solvents were all HPLC grade as supplied. Analytical thin-layer chromatography was performed using silica gel 60 F254 glass plates. Flash column chromatography was performed on silica gel 60 (230-400 Mesh, EM Science). Compound spots were visualized by UV light (254 nm) and by staining with a yellow solution containing Ce(NH₄)₂(NO₃)₆ (0.5 g) and (NH₄)₆Mo₇O₂₄ 4H₂O (24.0 g) in 6% H₂SO₄ (500 mL). Flash column chromatography was performed on silica gel 60 (230–400 Mesh). NMR spectra were referenced using Me₄Si (0 ppm), residual CHCl₃ (δ ¹H-NMR 7.26 ppm, ¹³C-NMR 77.0 ppm). Peak assignments are based on ¹H-NMR, ¹H-¹H gCOSY and (or) ¹H-¹³C gHMQC and ¹H-¹³C gHMBC experiments.

Procedure for large scale competitive glycosylation for yield determination:

Methanol was pre-dried by molecular sieves 3Å overnight. Donors 10 and 1b were dried under high vacuum overnight and azeotropically evaporated with toluene to remove any residue moisture. To a solution of donors 10 (80.5 mg, 0.177 mmol) and 1b (160 mg, 0.177 mmol), methanol (36 µL, 0.885 mmol) in CH₂Cl₂ (17 mL), a solution of AgOTf (91 mg, 0.354 mmol) in acetonitrile (0.05 mL) was added under N₂. The mixture was stirred for 15 minutes and cooled down to -40°C followed by addition of *p*-TolSCI (28 mg, 25 µL, 0.177 mmol). The reaction was stirred for 30 minutes from -40°C to room temperature and guenched with several drops of triethylamine. CH₂Cl₂ (20 mL) was added and all insoluble material was filtered off. The filtrate was washed with saturated aqueous NaHCO₃ and dried over Na₂SO₄. Purification by flash chromatography gave unreacted donor **10** (23.1 mg), unreacted donor **1b** (103.4 mg), methyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (41.6 mg, 0.115 mmol, 92% yield based on the amount of donor **10** consumed) and methyl-2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsilyl-β-D-galactopyranoside (45.4 mg, 0.060 mmol, 94% yield based on the amount of donor 1b consumed). Methyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside ¹H NMR (400 MHz, CDCl₃) δ 2.00-2.10 (m, 12H, 12 X COCH₃), 3.40 (s, 3H, OCH₃), 3.95-3.98 (m, 1H, H₅), 4.19-4.26 (m, 2H, H₆), 4.89 (t, 1H, J = 9.6 Hz, H₂), 4.95 (d, 1H, J = 9.6 Hz, H₁), 5.06 (t, H, J = 9.6 Hz, H₄), 5.47 (t, 1H, J = 9.6 Hz, H₃); ¹³C NMR (100 MHz, CDCl₃) δ 20.8-21.0 (4 X $COCH_3$), 55.7 (OCH₃), 62.1 (C₆), 67.3, 68.7, 70.3, 71.0, 97.0 (C₁), 169.4-171.0 (COCH₃); MS (ESI) m/z. calcd. for C₁₅H₂₂NaO₁₀ [M + Na]⁺ 385.1; found 385.2; HRMS m/z. calcd. for C₁₅H₂₂NaO₁₀ [M + Na]⁺ 385.1111; found 385.1123. Methyl 2,3,4-tri-O-benzoyl-6-O*tert*-butyldiphenylsilyl-1-β-D-galactopyranoside ¹H NMR (600 MHz, CDCl₃) δ 0.99 (s, 9H, (CH₃)₃), 3.52 (s, 3H, OCH₃), 3.82-3.84 (m, 2H, 2 X H₆), 4.06 (t, 1H, J = 7.0Hz, H₅), 4.66 (d, 1H, J = 7.0 Hz, H₁), 5.60-5.62 (dd, 1H, J = 10.8 Hz, 3.6 Hz, H₃), 5.67-5.70 (dd, 1H, J = 10.8, 7.0 Hz, H₂), 6.02 (d, 1H, J = 3.6 Hz, H₄), 7.09-7.11 (m, 2H), 7.22-7.25 (m, 2H), 7.35-7.49 (m, 12H), 7.64-7.66 (m, 2H), 7.77-7.79 (m, 2H), 7.93-7.95 (m, 2H), 8.00-8.01 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 19.2, 26.8, 29.9, 57.4, 61.5, 68.1, 70.2, 72.1, 74.0, 102.6, 127.8-130.2, 132.8-133.5, 135.7-135.8, 165.6-165.9; MS (ESI) *m*/*z* calcd. for C₄₄H₄₄NaO₉Si [M + Na]⁺767.2652; found 767.2670.

General procedure for competitive glycosylation and HPLC measurements:

Two donors of interest (0.05 mmol each) were dried together with a reference compound (50 mg) under high vacuum overnight. They were then dissolved in anhydrous CH_2Cl_2 (5 mL). Aliquots of this solution (1 mL each) were transferred to three pre-dried vials. The exact ratio of two donors in each vial was determined by HPLC analysis of an aliquot (10 µL) of the solution. Each vial was measured at least three times. Anhydrous MeOH (2.04 µL, 5 eq), acceptor **16** or acceptor **17** was then added to each vial followed by 0.5 M NIS solution in acetonitrile (20 µL) and 0.1 M TfOH in Et₂O (10 µL). The reactions were left at room temperature for 2 hours and quenched by triethylamine (20 µL). The reaction mixture was diluted with CH_2Cl_2 (2 mL), washed with saturated aqueous sodium thiosulfate solution containing 10% sodium hydrogen bicarbonate, dried over Na₂SO₄ and evaporated to dryness. The solid obtained was then dissolved in CH_2Cl_2 (1 mL). The concentration of remaining donors in each vial were determined by HPLC (~10 µL each injection; 3 injections for each vial). RRVs are calculated according to equation 1 as the average of all measurements. All HPLC analyses were performed using a HP 1050 series HPLC system with a SUPELCO normal phase analytical HPLC column (25 cm * 4.6 mm ID) with hexanes and ethyl acetate elution system and UV detection at 270 nm.

For glycosylations using the *p*-TolSCl/AgOTf promoter system, all procedures are the same as above except that 0.5 M AgOTf solution in acetonitrile (40 μ L) and *p*-TolSCl (1.5 μ L) were added to each vial instead of NIS and TfOH.

The absorbance increases in baselines of some chromatograms are due to change of solvent gradient. The peak areas were calculated with baseline correction. Therefore, the increases of baseline absorbance do not interfere with peak integrations.

Figure S1. Gal-Series 1a-1e with Methanol as the Acceptor in CH₂Cl₂ (The RRV of building block 11 was set as 1).

Figure S3. GlcBn-Series 3a-3e with Methanol as the Acceptor in CH₂Cl₂ (The RRV of building block 11 was set as 1).

Before Reaction

After Reaction

Before Reaction

After Reaction

Before Reaction

After Reaction

Before Reaction

After Reaction

¹H-NMR (400 MHz, CDCl₃) of 2c

S20

¹³C-NMR (100 MHz, CDCl₃) of **2c**

¹H-NMR (400 MHz, CDCl₃) of 2d

¹³C-NMR (100 MHz, CDCl₃) of **2d**

¹H-NMR (600 MHz, CDCl₃) of **3a**

¹³C-NMR (150 MHz, CDCl₃) of **3a**

¹H-NMR (600 MHz, CDCl₃) of **3b**

¹³C-NMR (150 MHz, CDCl₃) of **3b**

¹H-NMR (600 MHz, CDCl₃) of 3c

¹³C-NMR (150 MHz, CDCl₃) of **3c**

¹H-NMR (600 MHz, CDCl₃) of 3d

¹³C-NMR (150 MHz, CDCl₃) of **3d**

¹H-NMR (600 MHz, CDCl₃) of **3e**

¹³C-NMR (150 MHz, CDCl₃) of **3e**

¹H-NMR (600 MHz, CDCl₃) of **5**

¹H-NMR (600 MHz, CDCl₃) of $\mathbf{6}$

¹³C-NMR (150 MHz, CDCl₃) of **6**

¹H-NMR (400 MHz, CDCl₃) of **8**

¹H-NMR (600 MHz, CDCl₃) of **9**

¹³C-NMR (150 MHz, CDCl₃) of **9**

¹H-NMR (400 MHz, CDCl₃) of **17**

HO-BnC

¹³C-NMR (100 MHz, CDCl₃) of **17**

