Thio-arylglycosides with Various Aglycon Para-Substituents, a Probe for Studying Chemical Glycosylation Reactions

Xiaoning Li, ${ }^{\text {a }}$ Lijun Huang, ${ }^{\text {a }}$ Xiche Hu, ${ }^{\text {a }}$ Xuefei Huang ${ }^{\text {a,b }}$ *
${ }^{\text {a }}$ Department of Chemistry, The University of Toledo, 2801 W. Bancroft Street, MS 602, Toledo, OH 43606
${ }^{\text {b }}$ Department of Chemistry, Michigan State University, East Lansing, MI 48824
xuefei@chemistry.msu.edu

Supporting Information

Table of content
Procedure for Synthesis S4
Procedure for Large Scale Competitive Glycosylation S4
Procedure for HPLC Competitive Assay S7
HPLC Chromatograms for $\mathbf{1 a} \sim \mathbf{1 e}$ Series Measurement S11
HPLC Chromatograms for 2a~2e Series Measurement S14
HPLC Chromatograms for 3a~3e Series Measurement S17
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{2 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S20
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $2 \mathrm{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S21
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{2 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S22
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $\mathbf{2 d}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S23
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) S24
${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{3 a}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S25
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S26
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $\mathbf{3 b}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S27
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $3 \mathrm{c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S28
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $\mathbf{3 c}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S29
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $\mathbf{3 d}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S30
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound $\mathbf{3 d}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S31
${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{3 e}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S32
${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{3 e}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S33
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $5\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S34
${ }^{13} \mathrm{C}$-NMR of compound $5\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S35
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound $6\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S36
${ }^{13} \mathrm{C}$-NMR of compound $\mathbf{6}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S37
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 9 ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S38
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of compound 9 ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S39
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 8 ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) S40
${ }^{1} \mathrm{H}$-NMR of compound $17\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ S41
${ }^{13} \mathrm{C}$-NMR of compound 17 (100 MHz, CDCl_{3}) S42

General Experimental Procedures. All reactions were carried out under nitrogen with anhydrous solvents in flame-dried glassware, unless otherwise noted. All glycosylation reactions were performed in the presence of molecular sieves, which were flame-dried right before the reaction under high vacuum. Glycosylation solvents were dried using a solvent purification system and used directly without further drying. When methanol was used as acceptor in glycosylation, it is pre-dried by molecular sieve 3A. Donors and acceptors 16 and 17 were azeotropically evaporated with toluene to remove residue moisture just before glycosylation. Chemicals used were reagent grade as supplied except where noted. HPLC solvents were all HPLC grade as supplied. Analytical thin-layer chromatography was performed using silica gel 60 F254 glass plates. Flash column chromatography was performed on silica gel 60 (230-400 Mesh, EM Science). Compound spots were visualized by UV light (254 nm) and by staining with a yellow solution containing $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}(0.5 \mathrm{~g})$ and $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} 4 \mathrm{H}_{2} \mathrm{O}(24.0 \mathrm{~g})$ in $6 \% \mathrm{H}_{2} \mathrm{SO}_{4}(500 \mathrm{~mL})$. Flash column chromatography was performed on silica gel 60 (230-400 Mesh). NMR spectra were referenced using $\mathrm{Me}_{4} \mathrm{Si}$ (0 ppm), residual $\mathrm{CHCl}_{3}\left({ }^{1}{ }^{1} \mathrm{H}\right.$-NMR 7.26 ppm, ${ }^{13} \mathrm{C}$-NMR 77.0 ppm). Peak assignments are based on ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY and (or) ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMQC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC experiments.

Procedure for large scale competitive glycosylation for yield determination:

Methanol was pre-dried by molecular sieves $3 \AA$ overnight. Donors $\mathbf{1 0}$ and $\mathbf{1 b}$ were dried under high vacuum overnight and azeotropically evaporated with toluene to remove any residue moisture. To a solution of donors $\mathbf{1 0}(80.5 \mathrm{mg}, \mathbf{0 . 1 7 7} \mathrm{mmol})$ and $\mathbf{1 b}$ ($160 \mathrm{mg}, 0.177 \mathrm{mmol}$), methanol ($36 \mu \mathrm{~L}, 0.885 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL}$), a solution of AgOTf ($91 \mathrm{mg}, 0.354 \mathrm{mmol}$) in acetonitrile $(0.05 \mathrm{~mL})$ was added under N_{2}. The mixture was stirred for 15 minutes and cooled down to $-40^{\circ} \mathrm{C}$ followed by addition of p-TolSCl ($28 \mathrm{mg}, 25 \mu \mathrm{~L}, 0.177 \mathrm{mmol}$). The reaction was stirred for 30 minutes from $-40^{\circ} \mathrm{C}$ to room temperature and quenched with several drops of triethylamine. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added and all insoluble material was filtered off. The filtrate was washed with saturated aqueous NaHCO_{3} and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification by flash chromatography gave unreacted donor $\mathbf{1 0}$ (23.1 mg), unreacted donor $\mathbf{1 b}(103.4 \mathrm{mg})$, methyl $2,3,4,6$-tetra-O-acetyl- β-D-glucopyranoside ($41.6 \mathrm{mg}, 0.115 \mathrm{mmol}, 92 \%$ yield based on the amount of donor $\mathbf{1 0}$ consumed) and methyl-2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsilyl- β-D-galactopyranoside ($45.4 \mathrm{mg}, 0.060 \mathrm{mmol}$, 94% yield based on the amount of donor $\mathbf{1 b}$ consumed). Methyl 2,3,4,6-tetra-O-acetyl- $\boldsymbol{\beta}$-d-glucopyranoside ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.00-2.10 (m, 12H, $12 \mathrm{X} \mathrm{COCH}_{3}$), $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95-3.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.19-4.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 4.89\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}_{2}\right)$, $4.95\left(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.06\left(\mathrm{t}, \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 5.47\left(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, \mathrm{H}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8-21.0(4 \mathrm{X}$ $\left.\mathrm{COCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 62.1\left(\mathrm{C}_{6}\right), 67.3,68.7,70.3,71.0,97.0\left(\mathrm{C}_{1}\right), 169.4-171.0\left(\mathrm{COCH}_{3}\right)$; MS (ESI) m/z. calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{10}[\mathrm{M}+$ Na^{+}385.1; found 385.2; HRMS m/z. calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}$385.1111; found 385.1123. Methyl 2,3,4-tri-O-benzoyl-6-O-tert-butyldiphenylsilyl-1- $\boldsymbol{\beta}-\mathrm{D}-\mathrm{galactopyranoside}{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82-3.84$
(m, 2H, $2 \mathrm{X} \mathrm{H}_{6}$), $4.06\left(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}_{1}\right), 5.60-5.62\left(\mathrm{dd}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, \mathrm{H}_{3}\right), 5.67-5.70(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{J}=10.8,7.0 \mathrm{~Hz}, \mathrm{H}_{2}\right), 6.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 7.09-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.49(\mathrm{~m}, 12 \mathrm{H}), 7.64-7.66(\mathrm{~m}, 2 \mathrm{H})$, 7.77-7.79 (m, 2H), 7.93-7.95 (m, 2H), 8.00-8.01 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 19.2,26.8,29.9,57.4,61.5,68.1,70.2$, 72.1, 74.0, 102.6, 127.8-130.2, 132.8-133.5, 135.7-135.8, 165.6-165.9; MS (ESI) m / z calcd. for $\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{NaO}_{9} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 767.3$; found 767.5; HRMS m/z calcd. for $\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{NaO}_{9} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 767.2652$; found 767.2670.

General procedure for competitive glycosylation and HPLC measurements:

Two donors of interest (0.05 mmol each) were dried together with a reference compound (50 mg) under high vacuum overnight. They were then dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Aliquots of this solution (1 mL each) were transferred to three pre-dried vials. The exact ratio of two donors in each vial was determined by HPLC analysis of an aliquot ($10 \mu \mathrm{~L}$) of the solution. Each vial was measured at least three times. Anhydrous $\mathrm{MeOH}(2.04 \mu \mathrm{~L}, 5 \mathrm{eq})$, acceptor 16 or acceptor $\mathbf{1 7}$ was then added to each vial followed by 0.5 M NIS solution in acetonitrile ($20 \mu \mathrm{~L}$) and 0.1 M TfOH in $\mathrm{Et}_{2} \mathrm{O}(10 \mu \mathrm{~L})$. The reactions were left at room temperature for 2 hours and quenched by triethylamine ($20 \mu \mathrm{~L}$). The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, washed with saturated aqueous sodium thiosulfate solution containing 10% sodium hydrogen bicarbonate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The solid obtained was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The concentration of remaining donors in each vial were determined by HPLC (~ 10 $\mu \mathrm{L}$ each injection; 3 injections for each vial). RRVs are calculated according to equation 1 as the average of all measurements. All HPLC analyses were performed using a HP 1050 series HPLC system with a SUPELCO normal phase analytical HPLC column (25 cm * 4.6 mm ID) with hexanes and ethyl acetate elution system and UV detection at 270 nm .

For glycosylations using the p-TolSCl/AgOTf promoter system, all procedures are the same as above except that 0.5 M AgOTf solution in acetonitrile ($40 \mu \mathrm{~L}$) and $p-\mathrm{TolSCl}(1.5 \mu \mathrm{~L})$ were added to each vial instead of NIS and TfOH.

The absorbance increases in baselines of some chromatograms are due to change of solvent gradient. The peak areas were calculated with baseline correction. Therefore, the increases of baseline absorbance do not interfere with peak integrations.

Figure S1. Gal-Series 1a-1e with Methanol as the Acceptor in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (The RRV of building block $\mathbf{1 1}$ was set as 1).

Figure S2. GIcN-series 2a-2e with Methanol as the Acceptor in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (The RRV of building block $\mathbf{1 1}$ was set as 1).

Figure S3. GIcBn-Series 3a-3e with Methanol as the Acceptor in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (The RRV of building block $\mathbf{1 1}$ was set as 1).

Donors 1a-1e

Before Reaction
After Reaction

Before Reaction
After Reaction

Before Reaction
After Reaction

Before Reaction
After Reaction

Donors 2a-2e

Before Reaction
After Reaction

Before Reaction
After Reaction

Donors 3a-3e

Before Reaction
After Reaction

Before Reaction
After Reaction

Before Reaction

Before Reaction

After Reaction

Before Reaction
After Reaction

Before Reaction
After Reaction
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2c

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 2c

${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2d

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 d}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a}$

Chemical Shift (ppm)
${ }^{13} \mathrm{C}$-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3a

${ }^{1} \mathrm{H}$-NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 b}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3b

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 c}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$-NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3d

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 d}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 e}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 e}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 5

${ }^{13} \mathrm{C}$-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 6

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8}$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 9

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 9

${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 7}$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 7}$

