Bismuth triflate-catalyzed Wagner-Meerwein rearrangements in terpenes. Application to the synthesis of the 18a-oleanane core and A-neo-18a-oleanene compounds from lupanes .

Jorge A. R. Salvador,*^{*a,b*} Rui M. A. Pinto,^{*a*} Rita C. Santos,^{*a*} Christophe Le Roux,^{*c*} Ana Matos Beja^d and José A. Paixão^d

^aLaboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295 Coimbra, Portugal. Fax: +351 239 827126; Tel: +351 239 859950 ^bInstituto Pedro Nunes-Labpharm, Rua Pedro Nunes, 3030-199 Coimbra, Portugal ^cLaboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9,

France ^dCEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra, Portugal

;E-mail: salvador@ci.uc.pt

Supplementary Data

Single crystal X-ray diffraction data for compound 5	2
Single crystal X-ray diffraction data for compound 17	3
NMR data for compound 7	4
NMR data for compound 11	11
NMR data for compound 14	17
NMR data for compound 16	24

Single crystal X-ray diffraction data for compound 5

ORTEP diagram of compound 5 (50% probability level, H atoms of arbitrary sizes)

Crystal data for compound 5. $C_{32}H_{52}O_3$, M = 484.76, monoclinic, a = 13.3520(2), b = 6.54000(10), c = 32.4439(5) Å, V = 2798.13(7) Å³, T = 293(2) K, space group C2, Z = 4, 26879 reflections measured, 3074 unique ($R_{int} = 0.027$) which were used in all calculations. Final *R* indices: R1 = 0.036 for 2759 reflections with $I > 2\sigma(I)$, $wR(F^2)$ was 0.099 (all data).

Single crystal X-ray diffraction data for compound 17

ORTEP diagram of compound 17 (50% probability level, H atoms of arbitrary sizes)

Crystal data for compound 17. $C_{30}H_{46}O_2$, M = 438.67, monoclinic, a = 13.2214(4), b = 6.4962(2), c = 29.8420(9) Å, V = 2558.00(13) Å³, T = 293(2) K, space group C2, Z = 4, 22819 reflections measured, 2655 unique ($R_{int} = 0.061$) which were used in all calculations. Final R indices: R1 = 0.046 for 1677 reflections with $I > 2\sigma(I)$, $wR(F^2)$ was 0.116 (all data).

Fig. S1. ¹H NMR of compound 7 in CDCl₃.

Fig. S2. ¹H NMR of compound 7 in CDCl₃/THF-*d*8.

Fig. S3. ¹³C NMR/J-MOD of compound 7 in CDCl₃/THF-*d*8.

Fig. S4. ¹H-¹H COSY of compound **7** in CDCl₃/THF-*d*8.

Fig. S5. HSQC of compound 7 in CDCl₃/THF-*d*8.

Fig. S6. HMBC of compound 7 in CDCl₃/THF-*d*8.

Fig. S7. NOESY of compound 7 in CDCl₃/THF-*d*8.

Fig. S8. ¹H NMR of compound **11** in CDCl₃.

Fig. S9. ¹³C NMR/J-MOD of compound 11 in CDCl₃.

Fig. S10. ¹H-¹H COSY of compound 11 in CDCl₃.

Fig. S11. HSQC of compound 11 in CDCl₃.

Fig. S12. HMBC of compound 11 in CDCl₃.

Fig. S13. NOESY of compound 7 in CDCl₃.

Fig. S14. 1 H NMR of compound 14 in CDCl₃.

Fig. S15. 13 C NMR of compound 14 in CDCl₃.

Fig. S16. DEPT 135 of compound 14 in CDCl₃.

Fig. S17. ¹H-¹H COSY of compound **14** in CDCl₃.

Fig. S18. HMQC of compound 14 in CDCl₃.

Fig. S19. HMBC of compound 14 in CDCl₃.

Fig. S20. NOESY of compound 14 in CDCl₃.

Fig. S21. ¹H NMR of compound 16 in CDCl₃.

Fig. S22. ¹³C NMR of compound 16 in CDCl₃.

Fig. S23. DEPT 135 of compound 16 in CDCl₃.

Fig. S24. ¹H-¹H COSY of compound 16 in CDCl₃.

Fig. S25. HMQC of compound 16 in CDCl₃.

Fig. S26. HMBC of compound 16 in CDCl₃.

Fig. S27. NOESY of compound 16 in CDCl₃.