Recognition and discrimination of DNA quadruplexes by acridine-peptide conjugates

James E. Redman,^a J.M. Granadino-Roldán,^b James A. Schouten,^a Sylvain Ladame,^a Anthony P. Reszka,^b Stephen Neidle^b and Shankar Balasubramanian^{*a}

University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK, Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK

sb10031@cam.ac.uk

^{*a*}University of Cambridge

^bUniversity of London

Page 2 – Table S1. Amino acid analysis and mass spectrometry of peptides 7 – 21. Page 3 – Figure S1. CD spectrum and UV thermal melt of *N*-ras DNA quadruplex. Page 4 – Table S2. $T_{\rm m}$ of *N*-ras as a function of cation type and K⁺ concentration.

Compound	Observed m/z	r.t./min	Amino acid analysis mol.mol ⁻¹ (std
	///////////////////////////////////////		devn)
7	912.4 $[M+2H]^{2}$	22.7^{a}	F 2.04 (0.02), H 2.06 (0.00), R 3.90
	$608.7 [M+3H]^{3+}$		(0.02)
8	$843.0 [M+2H]^{2+}$	17.7 ^{<i>a</i>}	S 1.92 (0.02), K 2.16 (0.00), R 3.94
	$562.3 [M+3H]^{3+}$		(0.02)
9	827.0 [M+2H] ²⁺	19.2^{a}	V 1.98, K 4.00 (0.02), R 2.02 (0.02)
	552.0 [M+3H] ³⁺		
10	1190.6 [M+H] ⁺	19.6 ^b	F 1.03 (0.01), H 1.02 (0.01), R 1.94
	596.2 [M+2H] ²⁺		(0.02)
11	1190.6 [M+H] ⁺	19.0^{b}	F 1.05 (0.00), H 1.04 (0.00), R 1.91
	596.0 [M+2H] ²⁺		(0.00)
12	1190.7 [M+H] ⁺	19.5 ^{<i>b</i>}	F 1.00 (0.00), H 0.98 (0.01), R 2.02
	596.2 [M+2H] ²⁺		(0.02)
13	562.0 [M+2H] ²⁺	16.4^{b}	S 0.96 (0.12), K 0.98 (0.09), R 2.07
	375.3 [M+3H] ³⁺		(0.21)
14	1121.6 [M+H] ⁺	15.3^{b}	S 1.06 (0.00), K 1.05 (0.00), R 1.89
	561.5 [M+2H] ²⁺		(0.00)
15	1122.1 [M+H] ⁺	12.3^{b}	S 0.98 (0.00), K 1.05 (0.01), R 1.97
	562.0 [M+2H] ²⁺		(0.01)
16	596.7 [M+2H] ²⁺	20.2^{b}	F 1.04 (0.03), H 0.98 (0.03), R 1.97
			(0.06)
17	1192.6 [M+H] ⁺	19.2^{b}	F 1.05 (0.00), H 1.03 (0.01), R 1.92
	596.6 [M+2H] ²⁺		(0.01)
18	1191.6 [M+H] ⁺	19.5 ^{<i>b</i>}	F 1.00 (0.01), H 1.02 (0.01), R 1.98
	596.7 [M+2H] ²⁺		(0.02)
19	562.1 [M+2H] ²⁺	16.5^{b}	S 0.89 (0.01), K 1.19 (0.03), R 1.93
			(0.02)
20	1122.7 [M+H] ⁺	15.6 ^b	S 1.01 (0.00), K 1.06 (0.00), R 1.93
	562.0 [M+2H] ²⁺		(0.00)
21	1123.1 [M+H] ⁺	14.2^{b}	S 0.98 (0.00), K 1.04 (0.00), R 1.98
	562.4 [M+2H] ²⁺		(0.00)

HPLC methods: Solvent A = H₂O, 0.1% TFA, solvent B = MeCN, 0.1% TFA. Phenomenex C18 Luna 5 μ M, 250 × 4.6 mm column, flow rate 1 mL min⁻¹. UV detection at 220 nm. Gradient ^aO – 2.5 min 5% B, 32.5 min 40% B. ^bO – 2.5 min 10% B, 32.5 min 40% B.

Table S1. Amino acid analysis and mass spectrometry of peptides 7 - 21.

Figure S1. UV thermal melt and circular dichroism spectrum of *N*-*ras*. a) UV thermal melt at 295 nm of the *N*-*ras* (4 μ M unbiotinylated oligonucleotide) in 100 mM KCl, 10 mM Tris-HCl, pH 7.4. Melting temperature, $T_m = 61$ °C, calculated as the point where the second derivative of the curve is zero. T_m was found to be independent of oligonucleotide concentration over the range 2 – 10 μ M. b) Circular dichroism spectrum of *N*-*ras* (4 μ M unbiotinylated oligonucleotide in 10 mM Tris-HCl, 100 mM KCl, pH 7.4, 4 °C).

a)	
$[K^+] mM$	$T_m ^{\circ}\mathrm{C}$
0	a
10	43
50	60
100	65
200	72

^{*a*} No melting transition observed.

b)

/	
Cation	$T_m ^{\circ}\mathrm{C}$
K^+	66
Na^+	34.2
Li ⁺	а
$\mathrm{NH_4}^+$	а

^{*a*} No melting transition observed.

Table S2. a) T_m of *N*-ras (4 μ M in 10 mM Tris-HCl, pH 7.4) as a function of KCl concentration. b) T_m of *N*-ras (4 μ M in 10 mM Tris-HCl, pH 7.4) as a function of monovalent cation, supplied as 100 mM chloride salt.