Synthesis and electronic communication in diphenothiazine dumbbells bridged by heterocycles

Adam W. Franz,^{*a*} Larisa N. Popa,^{*a,b*} Frank Rominger,^{*c,§*} and Thomas J. J. Müller^{*a*}*

^{*a*} Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. Fax: +4902118114324; E-mail: ThomasJJ.Mueller@uni-duesseldorf.de

^b Babes-Bolyai University Cluj-Napoca, Faculty of Chemistry and Chemical Engineering, Arany Janos Str. no.11, Cluj-Napoca, 400428 Romania

^c Organisch-chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.

§ X-ray structure analysis.

Electronic Supplementary Information (ESI)

a) General experimental considerations	2
b) Cyclovoltammograms of 8-13	3
Cyclovoltammogram of 8	3
Cyclovoltammogram of 9	3
Cyclovoltammogram of 10	3
Cyclovoltammogram of 11	4
Cyclovoltammogram of 12	4
Cyclovoltammogram of 13	4
c) ¹ H and ¹³ C NMR spectra of 8-13	5
¹ H NMR spectra of 8	5
¹³ C NMR spectra of 8	5
DEPT NMR spectra of 8	6
¹ H NMR spectra of 9	6
¹³ C NMR spectra of 9	7
DEPT NMR spectra of 9	7
¹ H NMR spectra of 10	8
¹³ C NMR spectra of 10	8
DEPT NMR spectra of 10	9

¹ H NMR spectra of 11	9
¹³ C NMR spectra of 11	10
DEPT NMR spectra of 11	10
¹ H NMR spectra of 12	11
¹³ C NMR spectra of 12	11
DEPT NMR spectra of 12	12
¹ H NMR spectra of 13	12
¹³ C NMR spectra of 13	13
DEPT NMR spectra of 13	13
d) Molecular modelling coordinates of 11 and 13	14
Molecular modelling coordinates (B3LYP/6-31+G(d,p)) of 11	14
Molecular modelling coordinates (B3LYP/6-31+G(d,p)) of 13	16
e) UV/Vis-NIR spectra of 9 and 9-H ⁺	18

a) General considerations

Reagents, catalysts and ligands were purchased reagent grade and used without further purification. The used solvents were dried and distilled according to standard procedures. 2,5-Dibromofurane (6) and 9,9'-dihexyl-2,7-dibromofluorene (2) were prepared according to literature. Column chromatography: silica gel 60, mesh 70-230. TLC: silica gel plates. ¹H and ¹³C NMR spectra: CD₂Cl₂, (locked to Me₄Si). The assignments of quaternary C, CH, CH₂ and CH₃ have been made by using DEPT spectra. Elemental analyses were carried out in the Microanalytical Laboratories, Institut für Pharmazeutische Chemie, Heinrich-Heine University, Düsseldorf, Germany.

Fluorescence measurements (Perkin-Elmer LS-55) were performed in dry and degassed CH_2Cl_2 at room temperature. To avoid re-absorption and re-emission effects the concentrations were strictly kept below 1 μM . The solutions were irradiated at approximately 10 nm less in energy than the longest wave length absorption maximum.

Electrochemistry: Cyclic voltammetry experiments (EG & G potentiostatic instrumentation) were performed under argon in dry and degassed CH_2Cl_2 at room temperature and at scan rates of 100, 250, 500, and 1000 mVs⁻¹. The electrolyte was Bu_4NPF_6 (0.025 M). The working electrode was a 1 mm platinum disk, the counter-electrode was a platinum wire, and the reference electrode was a Ag/AgCl electrode. The potentials were corrected to the internal standard of Fc/Fc⁺ in CH_2Cl_2 ($E_0^{0/+1}$ = 450 mV).²⁵

b) Cyclovoltammograms of 8-13

Cyclovoltammogram of $\mathbf{8}$ in CH_2Cl_2

Cyclovoltammogram of 9 in CH₂Cl₂

Cyclovoltammogram of 10 in CH₂Cl₂

Cyclovoltammogram of 11 in CH₂Cl₂

Cyclovoltammogram of 12 in CH_2Cl_2

Cyclovoltammogram of 13 in CH_2Cl_2

u [v]

c) ¹H and ¹³C NMR spectra of 8-13

¹H NMR spectra of **8** recorded in CD₂Cl₂ (298K, 500 MHz)

¹³C NMR spectra of **8** recorded in CD₂Cl₂ (298K, 125 MHz)

¹H NMR spectra of **9** recorded in CD₂Cl₂ (298K, 500 MHz)

DEPT NMR spectra of 9 recorded in CD₂Cl₂ (298K, 125 MHz)

¹³C NMR spectra of **10** recorded in CD₂Cl₂ (298K, 125 MHz)

¹H NMR spectra of **11** recorded in CD₂Cl₂ (298K, 500 MHz)

DEPT NMR spectra of 11 recorded in CD₂Cl₂ (298K, 125 MHz)

¹H NMR spectra of **12** recorded in CD₂Cl₂ (298K, 500 MHz)

 ^{13}C NMR spectra of 12 recorded in CD₂Cl₂ (298K, 125 MHz)

¹H NMR spectra of **13** recorded in CD₂Cl₂ (298K, 500 MHz)

^{13}C NMR spectra of 13 recorded in CD₂Cl₂ (298K, 125 MHz)

DEPT NMR spectra of 13 recorded in CD₂Cl₂ (298K, 125 MHz)

d) Molecular modelling coordinates of **11** and **13**

Molecular modelling coordinates (B3LYP/6-31+G(d,p)) of 11

Center	enter Atomic A		tomic	Coordinates (Angstroms)		
Number	Numb	er	Туре	X Y	Z	
1	6	0	3.231496	-2.222135	-1.198757	
2	6	0	3.509430	-1.188972	-0.292436	
3	6	0	4.568311	-1.340471	0.617500	
4	6	0	5.320101	-2.520731	0.633397	
5	6	0	5.003648	-3.563556	-0.238399	
6	6	0	3.960901	-3.410480	-1.158099	
7	1	0	2.436920	-2.088913	-1.926328	
8	1	0	6.146735	-2.617256	1.330772	
9	1	0	5.581713	-4.482157	-0.212998	
10	1	0	3.726554	-4.207943	-1.856660	
11	6	0	3.490660	1.251034	-0.259260	
12	6	0	3.221076	2.332489	-1.109333	
13	6	0	4.552564	1.352832	0.659449	
14	6	0	3.965242	3.509700	-1.001644	
15	1	0	2.411661	2.253378	-1.820668	
16	6	0	5.314560	2.521953	0.738558	
17	1	0	3.730008	4.345730	-1.653327	
18	1	0	6.139864	2.574235	1.442185	
19	7	0	2.756465	0.021385	-0.301849	
20	16	0	4.911031	-0.013130	1.755253	
21	6	0	1.349382	-0.042203	-0.306586	
22	6	0	0.684709	-1.107889	0.354611	
23	1	0	1.245430	-1.870345	0.882607	
24	6	0	5.008457	3.610585	-0.079455	
25	1	0	5.592713	4.522786	-0.005364	
26	6	0	-0.684743	-1.107900	0.354571	
27	1	0	-1.245482	-1.870363	0.882536	

28	6	0	-1.349407	-0.042234	-0.306671
29	7	0	0.670194	0.934206	-0.901229
30	7	0	-0.670212	0.934189	-0.901268
31	7	0	-2.756498	0.021326	-0.302005
32	6	0	-3.490710	1.250960	-0.259531
33	6	0	-3.509445	-1.189047	-0.292334
34	6	0	-4.568216	-1.340422	0.617749
35	6	0	-3.231633	-2.222322	-1.198570
36	1	0	-2.437145	-2.089183	-1.926252
37	6	0	-3.961034	-3.410656	-1.157663
38	1	0	-3.726785	-4.208214	-1.856147
39	6	0	-5.003665	-3.563613	-0.237807
40	1	0	-5.581729	-4.482210	-0.212225
41	6	0	-3.221277	2.332277	-1.109825
42	1	0	-2.412043	2.253076	-1.821360
43	6	0	-3.965418	3.509507	-1.002183
44	1	0	-3.730292	4.345439	-1.654031
45	6	0	-4.552474	1.352890	0.659318
46	16	0	-4.910797	-0.012918	1.755352
47	6	0	-5.320010	-2.520680	0.633896
48	1	0	-6.146560	-2.617110	1.331383
49	6	0	-5.008477	3.610541	-0.079828
50	1	0	-5.592707	4.522763	-0.005774
51	6	0	-5.314460	2.522027	0.738382
52	1	0	-6.139655	2.574404	1.442130

Energy (HF) = - 2093.2382134 Hartrees

Molecular modelling coordinates (B3LYP/6-31+G(d,p)) of **13**

Center	Atomic	А	tomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-2.892591	-2.366803	0.923209
2	6	0	-3.310071	-1.240221	0.199425
3	6	0	-4.443967	-1.354301	-0.626224
4	6	0	-5.153455	-2.556872	-0.692416
5	6	0	-4.718996	-3.676881	0.018492
6	6	0	-3.581552	-3.576835	0.820366
7	1	0	-2.016588	-2.299601	1.556728
8	1	0	-6.037143	-2.613654	-1.321122
9	1	0	-5.264845	-4.612167	-0.054946
10	1	0	-3.228003	-4.437268	1.380444
11	6	0	-3.310068	1.240023	0.199705
12	6	0	-2.892600	2.366431	0.923765
13	6	0	-4.443960	1.354300	-0.625924
14	6	0	-3.581557	3.576490	0.821197
15	1	0	-2.016611	2.299075	1.557287
16	6	0	-5.153441	2.556887	-0.691846
17	1	0	-3.228015	4.436786	1.381492
18	1	0	-6.037123	2.613819	-1.320547
19	7	0	-2.610208	-0.000107	0.284612
20	16	0	-4.921056	0.000116	-1.679574
21	6	0	-4.718987	3.676730	0.019329
22	1	0	-5.264832	4.612034	-0.053898
23	6	0	-1.254267	-0.000146	0.671234
24	6	0	-0.712850	-0.000267	1.933793
25	16	0	0.000073	-0.000024	-0.555262
26	6	0	0.712777	-0.000231	1.933855
27	1	0	-1.320944	-0.000350	2.831742
28	6	0	1.254307	-0.000106	0.671354

29	1	0	1.320751	-0.000274	2.831890
30	7	0	2.610270	-0.000016	0.284807
31	6	0	3.309971	1.240168	0.199576
32	6	0	3.310254	-1.240061	0.199788
33	6	0	2.892507	2.366644	0.923538
34	6	0	4.443703	1.354432	-0.626261
35	6	0	2.893047	-2.366532	0.923911
36	6	0	4.444020	-1.354190	-0.626025
37	6	0	3.581272	3.576774	0.820623
38	1	0	2.016653	2.299256	1.557249
39	6	0	5.153004	2.557113	-0.692550
40	16	0	4.920895	0.000086	-1.679659
41	6	0	3.582098	-3.576515	0.821186
42	1	0	2.017167	-2.299266	1.557594
43	6	0	5.153606	-2.556713	-0.692119
44	6	0	4.718527	3.677024	0.018495
45	1	0	3.227736	4.437121	1.380843
46	1	0	6.036566	2.614050	-1.321420
47	1	0	3.228757	-4.436862	1.381529
48	6	0	4.719390	-3.676618	0.019092
49	1	0	6.037186	-2.613539	-1.320974
50	1	0	5.264219	4.612395	-0.055027
51	1	0	5.265305	-4.611870	-0.054279

Energy (HF) = - 2381.937506 Hartree

e) UV/Vis-NIR spectra of 9 and 9-H⁺

