Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009 Synthesis of Telluroamino Acid Derivatives With Remarkable GPx Like Behavior

Antonio L. Braga,* Eduardo E. Alberto, Letiére C. Soares, João B. T. Rocha, Jéssie H. Sudati and Daniel H. Roos

Departamento de Química, Universidade Federal de Santa Maria, 97.105-900, Santa Maria, RS, Brazil.

SUPPORTING INFORMATION

General. ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz respectively with tetramethylsilane as internal standard. High resolution mass spectra were recorded on a Brucker BioApex 70e FT-ICR (Bruker Daltonics, Billerica, USA) instrument in ESI-mode. GPx reaction was monitored by a Hitachi U-2001 UV Spectrophotometer. GC runs were made on a Shimadzu GC, QP 2010 model, with Rtx-5MS 30m x 0.25mm ID, 0.25um column, injector temperature (260 °C), initial oven temperature (200 °C) and heating rates of 5 °C / min, until 280 °C. Column chromatography was performed using Merck Silica Gel (230-400 mesh) following the methods described by Still.¹ Thin layer chromatography (TLC) was performed using Merck Silica Gel GF₂₅₄, 0.25 mm thickness. For visualization, TLC plates were either placed under ultraviolet light, or stained with iodine vapor, or acidic vanillin. THF was dried over sodium benzophenone ketyl and distilled prior to use. Chloroform was distilled from phosphorus pentoxide. All other solvents were used as purchased unless otherwise noted.

General procedure for the synthesis of 6. Under argon atmosphere, N-methylmorpholine (50 mg, 0.5 mmol) was added to a solution of bromocarboxylic acid (0.5 mmol) in chloroform (5 mL) at 0 °C. After stirring for 15 minutes at this temperature, ethyl chloroformate (54 mg, 0.5 mmol) was added and stirring was prolonged for additional 45 minutes at 0 °C before addition of **5a-e** (0.5 mmol) and N-methylmorpholine (50 mg, 0.5 mmol). The resulting reaction mixture was stirred at 0 °C for 1 h and then at room temperature for 16 h. After this time it was diluted with chloroform and washed with 1M NaOH (2 x 10 mL), brine (1 x 10 mL), 1M HCl (2 x 10 mL) and brine (1 x 10 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated. The crude product was purified by flash chromatography, when required, eluting with a mixture of hexanes/ethyl acetate (80:20).

(S)-methyl 2-(3-bromopropanamido)-3-methylbutanoate 6a. Yield 83%; α_D^{20} = +5 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 6.24 (br, 1H), 4.64-4.61 (m, 1H), 3.76 (s, 3H), 3.72-3.59 (m, 2H), 2.92-2.76 (m, 2H), 2.23-2.15 (m, 1H), 0.98-0.91 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.40, 169.73, 57.03, 52.03, 39.31, 31.10, 27.20, 18.78, 17.63; HRMS *m*/*z* calcd. for C₉H₁₆BrNO₃ + Na⁺ 288.0211, found 288.0205.

(8)-methyl 2-(4-bromobutanamido)-3-methylbutanoate 6b. Yield: 76%; α_D^{20} = +1 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.08 (d, *J* = 8.8 Hz, 1H), 4.55-4.51 (m, 1H), 3.74 (s, 3H), 3.63-3.47 (m, 2H), 2.50-2.46 (m, 2H), 2.21-2.10 (m, 3H), 0.96-0.92 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.09, 171.72, 56.73, 51.47, 43.85, 32.31, 30.30, 27.76, 18.40, 17.37; HRMS *m*/*z* calcd. for C₁₀H₁₈BrNO₃ + Na⁺ 302.0368, found 302.0374.

(S)-methyl 2-(3-bromopropanamido)-3-phenylpropanoate 6c. Yield: 81%; $\alpha_D^{20} = +70$ (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.32-7.25$ (m, 3H), 7.12-7.10 (m, 2H), 6.07 (br, 1H), 4.95-4.90 (m, 1H), 3.74 (s, 3H), 3.66-3.55 (m, 2H), 3.18 (dd, $J^1 = 14.0$ Hz, $J^2 = 6.0$ Hz, 1H), 3.12 (dd, $J^1 = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), 2.84-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.0$ Hz, $J^2 = 5.6$ Hz, 1H), $\delta = 14.0$ Hz, $\delta = 14.0$ Hz

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009 171.78, 169.17, 135.60, 129.18, 128.44, 127.03, 53.12, 52.25, 39.22, 37.72, 26.87; HRMS m/z calcd. for C₁₃H₁₆BrNO₃ + Na⁺ 336.0211, found 336.0205.

(S)-methyl 2-(4-bromobutanamido)-3-phenylpropanoate 6d. Yield: 85%; α_D^{20} = +26 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.34-7.25 (m, 3H), 7.11-7.09 (m, 2H), 5.98 (br, 1H), 4.92-4.87 (m, 1H), 3.74 (s, 3H), 3.58-3.34 (m, 2H), 3,17 (dd, J^1 = 14.0 Hz, J^2 = 5.6 Hz, 1H), 3.06 (dd, J^1 = 14.0 Hz, J^2 = 6.0 Hz, 1H), 2.36 (t, J = 5.8 Hz, 2H), 2.16-2.06 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ = 171.72, 171.12, 135.70, 128.71, 128.02, 126.52, 52.77, 51.82, 37.26, 33.53, 32.76, 27.78; HRMS *m/z* calcd. for C₁₄H₁₈BrNO₃ + Na⁺ 350.0368, found 350.0380.

(S)-methyl 2-(3-bromopropanamido)propanoate 6e. Yield 59%; $\alpha_D^{20} = -5$ (c = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): $\delta = 6.57-6.56$ (m, 1H), 4.67-4.60 (m, 1H), 3.76 (s, 3H), 3.69-3.59 (m, 2H), 2.85-2.80 (m, 2H), 1.43 (d, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 173.26$, 169.21, 52.39, 48.01, 39.22, 26.99, 18.22; HRMS *m*/*z* calcd. for C₇H₁₂BrNO₃ + Na⁺ 259.9898, found 259.988.

(S)-methyl 2-(3-bromopropanamido)-4-methylpentanoate 6f. Yield 88%; α_D^{20} = -7 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 6.60-6.59 (m, 1H), 4.70-4.65 (m, 1H), 3.74 (s, 3H), 3.69-3.59 (m, 2H), 2.90-2.77 (m, 2H), 1.72-1.62 (m, 2H), 1.60-1.54 (m, 1H), 0.96-0.93 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 173.35, 169.51, 52.15, 50.61, 41.29, 39.21, 27.06, 24.63, 22.61, 21.69; HRMS *m*/*z* calcd. for C₁₀H₁₈BrNO₃ + Na⁺ 302.0368, found 302.0354.

(S)-dimethyl 2-(3-bromopropanamido)succinate 6g. Yield 77%; α_D^{20} = +25 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 6.99 (d, *J* = 8.0 Hz, 1H), 4.93-4.88 (m, 1H), 3.77 (s, 3H), 3.69 (s, 3H), 3.66-3.62 (m, 2H), 3.03 (dd, *J*¹ = 17.6 Hz, *J*² = 4.8 Hz, 1H), 2.93-2.81 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 171.22, 170.82, 169.49, 52.60, 51.84, 48.37, 38.95, 35.80, 26.90; HRMS *m*/*z* calcd. for C₉H₁₄BrNO₅ + Na⁺ 317.9953, found 317.9942.

General procedure for the synthesis of 7. Under argon atmosphere, sodium borohydride was added to a solution of the diaryl ditelluride (0.55 mmol) in THF (4 mL). Ethanol (2 mL) was then dropwise added and the clear solution formed was stirred at room temperature for 10 minutes. After this time a THF (1mL) solution of **6a-g** (1 mmol) was added dropwise. After stirring for 24 h at room temperature, the reaction mixture was quenched with aqueous saturated NH₄Cl (10 mL) and extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated. The crude product was purified by flash chromatography first eluting with hexanes and then with a mixture of hexanes/ethyl acetate (80:20).

(S)-methyl 3-methyl-2-(3-(phenyltellanyl)propanamido)butanoate 7a. Yield: 82%; α_D^{20} = -7 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.75-7.73 (m, 2H), 7.31-7.19 (m, 3H), 6.04 (br, 1H), 4.59-4.56 (m, 1H), 3.73 (s, 3H), 3.06 (t, *J* = 7.1 Hz, 2H), 2.89-2.79 (m, 2H), 2.19-2.12 (m, 1H), 0.97-0.89 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.45, 172.08, 138.42, 129.14, 127.64, 112.04, 56.94, 52.06, 38.30, 31.24, 18.85, 17.79, 1.22; HRMS *m/z* calcd. for C₁₅H₂₁NO₃Te + OMe 424.0768, found 424.0767.

(S)-methyl 3-methyl-2-(4-(phenyltellanyl)butanamido)butanoate 7b. Yield: 87%; α_D^{20} +1 (c = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.73-7.71 (m, 2H), 7.29-7.18 (m, 3H), 5.94 (br, 1H), 4.57-4.53 (m, 1H), 3.73 (s, 3H), 2.92 (t, J = 7.2 Hz, 2H), 2.35 (t, J = 7.6 Hz, 2H), 2.17-2.07 (m, 3H), 0.94-0.88 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.28, 171.72, 137.99, 128.86, 127.29, 111.06, 56.67, 51.72, 37.69, 30.74, 27.18, 18.65, 17.60, 7.36; HRMS *m/z* calcd. for C₁₆H₂₃NO₃Te + OMe 438.0924, found 438.0924.

(S)-methyl 3-phenyl-2-(3-(phenyltellanyl)propanamido)propanoate 7c. Yield: 86%; α_D^{20} = +50 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.72-7.69 (m, 2H), 7.29-7.18 (m, 6H), 7.10-7.08 (m, 2H), 6.03 (br, 1H), 4.90-4.85 (m, 1H), 3.71 (s, 3H), 3.14 (dd, *J*¹ = 14.0 Hz, *J*² = 6.0 Hz, 1H), 3.07 (dd, *J*¹ = 14.0 Hz, *J*² = 5.6 Hz, 1H), 3.01 (t, *J* = 7.2 Hz, 2H), 2.81-2.69 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ = 171.80, 171.72, 138.14, 135.61, 129.05, 128.99, 128.31, 127.46, 126.87, 111.99, 52.91, 52.10, 37.92, 37.56, 0.99; HRMS *m*/*z* calcd. for C₁₉H₂₁NO₃Te + OMe 472.0768, found 472.0767.

(S)-methyl 3-phenyl-2-(4-(phenyltellanyl)butanamido)propanoate 7d. Yield: 86%; α_D^{20} = +24 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.71-7.69 (m, 2H), 7.29-7.18 (m, 6H), 7.08-7.06 (m, 2H), 5.90 (d, *J* = 7.6 Hz, 1H), 4.90-4.85 (m, 1H), 3.71 (s, 3H), 3.14 (dd, *J*¹ = 14.0 Hz, *J*² = 5.6 Hz, 1H), 3.04 (dd, *J*¹ = 14.0 Hz, *J*² = 6.4 Hz, 1H), 2.83-2.80 (m, 2H), 2.26 (t, *J* = 6.9 Hz, 2H), 2.07-2.02 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.01, 171.43, 138.35, 135.75, 129.13, 128.50, 127.60, 127.05, 111.20, 52.86, 52.24, 37.88, 37.78, 27.16, 7.47; HRMS *m/z* calcd. for C₂₀H₂₃NO₃Te + OMe 486.0924, found 486.0924.

(S)-methyl 2-(3-(phenyltellanyl)propanamido)propanoate 7e. Yield: 86%; α_D^{20} = +7 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.73-7.70 (m, 2H), 7.32-7.14 (m, 3H), 6.52 (d, *J* = 7.2 Hz, 1H), 4.59-4.52 (m, 1H), 3.71 (s, 3H), 3.06-3.01 (m, 2H), 2.82-2.75 (m, 2H), 1.37 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 173.19, 171.73, 138.14, 128.93, 127.41, 111.99, 52.15, 47.75, 37.89, 18.01, 1.02; HRMS *m*/*z* calcd. for C₁₃H₁₇NO₃Te + OMe 396.0455, found 396.0458.

(S)-methyl 4-methyl-2-(3-(phenyltellanyl)propanamido)pentanoate 7f. Yield: 89%; α_D^{20} = -10 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.74-7.71, (m, 2H), 7.29-7.16 (m, 3H), 6.19-6.12 (m, 1H), 4.66-4.60 (m, 1H), 3.71 (s, 3H), 3.07-3.02 (m, 2H), 2.86-2.74 (m, 2H), 1.69-1.59 (m, 2H), 1.57-1.48 (m, 1H), 0.96-0.92 (m 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 173.45, 171.98, 138.32, 129.11, 127.56, 112.00, 52.12, 50.54, 41.47, 38.12, 24.68, 22.62, 21.82, 1.09; HRMS *m/z* calcd. for C₁₆H₂₃NO₃Te + H⁺ 408.0818, found 408.0803.

(8)-dimethyl 2-(3-(phenyltellanyl)propanamido)succinate 7g. Yield: 78%; $\alpha_D^{20} = +17$ ($c = 1.0, CH_2Cl_2$); ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.80-7.72$ (m, 2H), 7.30-7.15 (m, 3H), 6.60 (d, J = 8.0 Hz, 1H), 4.87-4.83 (m, 1H), 3.75 (s, 3H), 3.68 (s, 3H), 3.09-2.97 (m, 3H), 2.89-2.73 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 171.98$, 171.41, 170.97, 138.51, 129.12, 127.67, 111.86, 52.69, 51.93, 48.37, 38.03, 35.93, 1.01; HRMS *m/z* calcd. for C₁₅H₁₉NO₅Te + H⁺ 424.0404, found 424.0390.

(S)-dimethyl 2-(3-(p-tolyltellanyl)propanamido)succinate 7i. Yield: 67%; α_D^{20} = +23 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.64 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 7.6 Hz, 2H), 6.55 (d, *J* = 8.0 Hz, 1H), 4.86-4.82 (m, 1H), 3.75 (s, 3H), 3.69 (s, 3H), 3.05-2.99 (m, 3H), 2.88-2.71 (m, 3H), 2.34 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.07, 171.48, 171.01, 139.07, 137.87, 130.11, 107.46, 52.73, 51.96, 48.38, 38.12, 35.97, 21.12, 0.95; HRMS *m/z* calcd. for C₁₆H₂₁NO₅Te + OMe, found 468.0686.

(S)-dimethyl 2-(3-(o-tolyltellanyl)propanamido)succinate 7j. Yield: 70%; α_D^{20} = +19 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.67 (d, *J* = 7.6 Hz, 1H), 7.27-7.14 (m, 3H), 6.05 (d, *J* = 8.0 Hz, 1H), 4.86-4.84 (m, 1H), 3.75 (s, 3H), 3.68 (s, 3H), 3.11-3.01 (m, 3H), 2.90-2.73, (m, 3H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.01, 171.48, 171.01, 142.56, 137.47, 129.07, 127.95, 126.51, 116.31, 52.76, 51.97, 48.41, 38.00, 35.98, 26.51, 0.13; HRMS *m/z* calcd. for C₁₆H₂₁NO₅Te + OMe 468.0666, found 468.0682.

(S)-dimethyl 2-(3-(4-methoxyphenyltellanyl)propanamido)succinate 7k. Yield: 62%; α_D^{20} = +24 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.72-7.67 (m, 2H), 6.78-6.73 (m, 2H), 6.50 (d, *J* = 7.6 Hz, 1H), 4.86-4.82 (m, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.69 (s, 3H), 3.11-2.66 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.09, 171.56, 171.06, 141.06, 141.32, 140.27, 115.22, 100.60, 55.16, 52.84, 52.00, 48.42, 38.14, 36.02, 1.20; HRMS *m/z* calcd. for C₁₆H₂₁NO₆Te 453.0431, found 453.0431.

(S)-dimethyl 2-(3-(4-chlorophenyltellanyl)propanamido)succinate 7l. Yield: 77%; α_D^{20} = +13 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.67-7.65 (m, 2H), 7.19-7.16 (m, 2H), 6.54 (d, *J* = 8.0 Hz, 1H), 4.86-4.82 (m, 1H), 3.76 (s, 3H), 3.69 (s, 3H), 3.56-3.00 (m, 3H), 2.87-2.78 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 171.84, 170.96, 140.04, 134.31, 129.41, 109.68, 52.79, 52.01, 48.43, 37.92, 35.97, 1.54; HRMS *m/z* calcd. for C₁₅H₁₈NO₅Te + OMe 488.0114, found 488.0136.

(S)-dimethyl 2-(3-(2-chlorophenyltellanyl)propanamido)succinate 7m. Yield: 60%; α_D^{20} = +17 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 7.54-7.51 (m, 1H), 7.35-7.33 (m, 1H), 7.20-7.09 (m, 2H), 6.60 (d, *J* = 8.0 Hz, 1H), 4.88-4.84 (m, 1H), 3.76 (s, 3H), 3.69 (s, 3H), 3.12-2.83 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ = 171.98, 171.50, 170.97, 138.71, 135.84, 128.76, 128.42, 127.26, 116.94, 52.81, 52.03, 48.48, 37.53, 35.97, 0.97; HRMS *m/z* calcd. for C₁₅H₁₈NO₅Te + OMe 488.0114, found 488.0097.

(S)-dimethyl 2-(3-(naphthalen-2-yltellanyl)propanamido)succinate 7n. Yield: 75%; α_D^{20} = +16 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 8.25 (s, 1H), 7.80-7.74 (m, 3H), 7.67-7.65 (m, 1H), 7.50-7.43 (m, 2H), 6.55 (d, *J* = 7.6 Hz, 1H), 4.86-4.79 (m, 1H), 3.73 (s, 3H), 3.66 (s, 3H), 3.13-2.97 (m 3H), 2.90-2.74 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 171.96, 171.44, 170.95, 138.18, 135.17, 134.02, 128.28, 127.64, 127.18, 126.27, 109.26, 52.71, 51.95, 48.39, 38.07, 35.95, 1.15; HRMS *m/z* calcd. for C₁₉H₂₂₁NO₅Te + OMe 504.0660, found 504.0681.

(S)-dimethyl 2-(3-(naphthalen-1-yltellanyl)propanamido)succinate 7o. Yield: 46%; α_D^{20} = +12 (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ = 8.27 (d, *J* = 8.0 Hz, 1H), 8.13-8.10 (m, 1H), 7.84-7.78 (m, 2H), 7.57-7.48 (m, 2H), 7.33-7.29 (m, 1H), 6.46 (d, *J* = 8.0 Hz, 1H), 4.86-4.82 (m, 1H), 3.75 (s, 3H), 3.67 (s, 3H), 3.11-3.00 (m 3H), 2.88-2.69 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ = 172.12, 171.54, 171.02, 139.42, 139.42, 132.41, 130.16, 129.49, 128.85, 126.24, 111.17, 52.81, 52.03, 48.44, 38.08, 36.02, 1.18; HRMS *m/z* calcd. for C₁₉H₂₁NO₅Te + OMe 504.0660, found 504.0648.

Determination of GPX-like activity. Catalytic GPX model reaction $(H_2O_2 + 2PhSH \rightarrow 2H_2O + PhSSPh)$ was initiated by the addition of H_2O_2 (40 µL of a 125 mM solution, final concentration = 5 mmol/L) to a methanol solution of PhSH (200 µL of a 25 mM solution, final concentration = 5 mmol/L) containing the catalyst (50 µL of a 2 mM solution, final concentration = 0.1 mmol/L) at 30 °C. The reaction was monitored by UV spectroscopy at 305 nm, (6 min), at least more than three times under the same conditions.

NMR Spectra of New Compounds

Supplementary Material (ESI) for Organic & Biomolecular Chemistry

GC run of compound $\mathbf{7g}$

GC run of PhSSPh

¹ Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* **1978**, *43*, 2923.