HPLC traces of authentic samples from the AstraZeneca compound collection (i) the chlorohydrin (2) (ii) the epoxide (3) overlayed traces of the chlorohydrin (2) and the epoxide (3).

Stacked HPLC traces showing the conversion of the chlorohydrin (2) to the epoxide (3) over time at pH 9 and 55 °C.

Data table showing the dependence of rate of formation of epoxide (3) on reaction pH at 30 °C.

рΗ	Temperature	Method	Log(k.s)	Half-life
9.0	30 ºC	Real-time	-4.56	420.4 min
9.5	30 ºC	Real-time	-4.31	235.5 min
10.0	30 ºC	Real-time	-3.45	32.6 min
10.5	30 ºC	Quenching	-3.03	12.3 min
11.0	30 ºC	Quenching	-2.54	4.0 min

Data table showing the dependence of rate of formation of epoxide (3) on reaction temperature at pH 9.

рΗ	Temperature	Method	Log(k.s)	Half-life
9.0	35 ⁰C	Real-time	-4.14	160.2 min
9.0	40 ºC	Real-time	-3.77	68.6 min
9.0	45 ºC	Real-time	-3.44	32.0 min
9.0	50 ºC	Quenching	-3.13	15.5 min
9.0	55 ºC	Quenching	-2.84	7.9 min

Data table showing the rate of formation of the diol (9) from the epoxide (3), starting from either the chlorohydrin (2) or the epoxide (3).

pH,T	method	t(0.5) / min	log(k/s-1)
11,30	real time diol formation from chlorohydrin start	280.40	-4.39
11,30	real time diol formation from epoxide start	279.49	-4.38

HPLC Traces showing reaction of the chlorohydrin (2) at pH 11 and 30 °C to form the epoxide (3) and subsequently the diol (7) along with a reference spectrum of the starting material.

Reference chromatogram of chlorohydrin (2) at pH 8.5 showing a trace of the epoxide (3)

Chromatogram of chlorohydrin (2) at pH 11 and 30 $^{\circ}$ C at t = 83 min showing complete conversion of chlorohydrin (II) into Product A and beginning of slow conversion of the epoxide (3) into the diol (7).

Chromatogram of chlorohydrin (2) at pH 11 and 30 $^{\circ}$ C at t = 331 min showing further conversion of the epoxide (3) into the diol (7).

Chromatogram of chlorohydrin (2) at pH 11 and 30 $^{\circ}$ C at t = 579 min showing further conversion of the epoxide (3) into the diol (7).

<u>Overlaid HPLC Traces showing reaction of the epoxide (3) with</u> <u>4-flurorbenzenethiol (4).</u>

[Please disregard numbering in figure].

Traces: black (t=0), red (t=16 min), magenta (t=32 min), yellow (t=48 min), green (t=64 min), cyan (t=80 min).

Overlaid HPLC Traces showing reaction of the epoxide (3) with 4-flurorbenzenesulfinate (5).

[Please disregard numbering in figure].

Traces: red (t=0), magenta (t=62 min), yellow (t=124 min), green (t=216 min), cyan (t=308 min).

[Please disregard numbering in figure].

<u>Graph showing integrals of the three species in the above HPLC traces of the simultaneous reaction of Epoxide (3) (blue line) with 4-fluorobenzenethiolate (4) to give thioether (6) (green line) and with 4-fluorobenzenesulfinate (5) to give Bicalutamide (1) (red line).</u>

[Data-points are experimental values, lines are exponential fits].

Initial attempts at fitting sequential reaction kinetics.

Satisfactory fitting of the kinetics was only achieved when the parallel competing dimerisation reaction of the thiolate nucleophile (4) and the different LC-response of the final product (6) were taken into account.

<u>Results of mass balance calculation used to determine the relative extinction</u> <u>co-efficient of the thioether product (6).</u>

[Concentrations are molar].

time / s	[4]	[2]	[3]	[6]	[2]+[3]+[6]
966	1.34E-04	1.25E-05	6.02E-06	9.908E-07	2.0E-05
1932	1.24E-04	8.18E-06	8.60E-06	2.497E-06	1.9E-05
2898	1.17E-04	5.34E-06	9.28E-06	4.21E-06	1.9E-05
4764	1.07E-04	2.50E-06	8.64E-06	1.009E-05	2.1E-05
6630	9.62E-05	1.22E-06	6.96E-06	1.244E-05	2.1E-05
9396	8.35E-05	5.81E-07	4.93E-06	1.475E-05	2.0E-05
13962	6.77E-05	3.44E-07	2.92E-06	1.692E-05	2.0E-05
20328	4.99E-05	3.33E-07	1.65E-06	1.82E-05	2.0E-05

<u>HPLC peak area integral-time profile showing consumption of the thiolate (4, magenta) in parallel to the desired reaction of the chlorohydrin (2, cyan) to the epoxide (3, orange) and thioether product (6, green).</u>

[The thioether product trace (**6**, green) has been scaled to the same HPLC response as the chlorohydrin (**2**, cyan) and epoxide (**3**, orange). The thiolate (**4**, magenta) at time zero is 7.8-fold more concentrated than the sum of the other three species and therefore is not shown on the same scale].

HPLC peak area integral-time profile showing the reaction of the chlorohydrin (2, cyan) via the epoxide (3, orange) with 4-flurorbenzensulfinate (5) to give Bicalutamide (1, green).

Synthetic Reaction Scheme.

LC-MS Trace for O-Methyl Chlorohydrin (8)

High Resolution MS for O-Methyl Chlorohydrin (8): [M-H] 319.04666

MS Fragmentation for β -Lactam (9)

High Resolution MS for β -Lactam (9): $[M^{\bullet}]^+$ 284.0776

284.0776

284.0773

0.3

1.1

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 100.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron lons 10 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-13 H: 0-80 N: 0-2 O: 0-2 F: 3-3 SN0181907193 S,Fillery 04-Nov-2008 SN1081907193_Conc 827 (12.329) Cm (827) TOF MS EI+ 1.39e+003 284.0776 100-%-285.0872 284.6561 284.3405 285.2777285.4082 286.0826 282.6967 283.0721 283.5169 286.5986 287.1644 0-- m/z 285.00 282.50 283.00 283.50 284.00 284.50 285.50 286.00 286.50 287.00 Minimum: -1.5 100.0 50.0 30.0 Maximum: Calc. Mass mDa PPM DBE i-FIT Formula Mass C13 H11 N2 O2 F3 M'+ Acc Mass

8.0

7.9