Asymmetric reduction of ketimines with trichlorosilane employing an imidazole derived organocatalyst

François-Moana Gautier, Simon Jones and Stephen J. Martin

Ethyl 1-methylimidazole-2-carboxylate ${ }^{1}$

A solution of 1-methylimidazole ($100 \mathrm{mmol}, 8.21 \mathrm{~g}$) and triethylamine ($30 \mathrm{~cm}^{3}$) in acetonitrile $\left(50 \mathrm{~cm}^{3}\right)$ was cooled to $0^{\circ} \mathrm{C}$ with an ice bath. Ethyl chloroformate (150 $\mathrm{mmol}, 14 \mathrm{~cm}^{3}$) was added dropwise. The mixture was warmed up to room temperature slowly and stirred overnight. The yellow solution was filtered and the residue was dissolved in water $\left(250 \mathrm{~cm}^{3}\right)$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 100 \mathrm{~cm}^{3}\right)$ and the combined organic phases were evaporated under reduced pressure. The resulting yellow oil was purified by dry flash chromatography on silica gel (AcOEt), yielding a pale yellow oil ($6.22 \mathrm{~g}, 40 \%$ yield) which crystallised almost immediately upon exposure to air. m.p. $43-45^{\circ} \mathrm{C}$ (lit. ${ }^{2} 44^{\circ} \mathrm{C}$ from $\mathrm{Et}_{2} \mathrm{O} /$ hexane $) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.41\left(\mathrm{t}, 3 \mathrm{H}, J 7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.39(\mathrm{q}, 2 \mathrm{H}, J 7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}), 7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.1$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 35.6\left(\mathrm{NCH}_{3}\right), 61.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 126.2(\mathrm{ArCH}), 129.1(\mathrm{ArCH}), 136.5$ $(\operatorname{ArC}), 159.0(C=O)$; Data was in accordance with literature.

2-Hydroxymethyl-1-methylimidazole ${ }^{3}$

Paraformaldehyde ($330 \mathrm{mmol}, 9.95 \mathrm{~g}$) and 1-methylimidazole ($120 \mathrm{mmol}, 9.6 \mathrm{~cm}^{3}$) were introduced into a round-bottom flask and heated at $160^{\circ} \mathrm{C}$ for 1 hr . The hot plate was removed, $\mathrm{MeOH}\left(12 \mathrm{~cm}^{3}\right)$ was immediately added and the mixture stirred until it had cooled to RT, filtered, and cooled to $0{ }^{\circ} \mathrm{C}$, causing the formation of crystals, which were isolated and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound (1.99 g, 14\%). m.p. $86-90^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, lit. $^{3}{ }^{3} 110^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.69$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 6.77$ (d, 1H, J $\left.1.7 \mathrm{~Hz}, \mathrm{ArCH}\right)$, $6.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 1.7 \mathrm{~Hz}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 32.7\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 121.4$

2-Chloromethyl-1-methylimidazole hydrochloride ${ }^{3}$

Thionyl chloride ($83 \mathrm{mmol}, 6.0 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ were introduced into a round-bottom flask and cooled to $0{ }^{\circ} \mathrm{C}$. 2-Hydroxymethyl-1-methylimidazole (24 $\mathrm{mmol}, 2.66 \mathrm{~g})$ was added dropwise as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and the mixture was heated to reflux and stirred for 15 min . The solvent was evaporated, the concentrate was dissolved in ethanol and heated at reflux for 15 min . Solvent was evaporated, and the resulting was recrystallised from to afford the title compound as beige crystals ($2.17 \mathrm{~g}, 55 \%$). m.p. $153-157{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, lit. ${ }^{3} 174{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(250$ MHz, d ${ }^{6}$-DMSO) $3.88\left(\mathrm{NCH}_{3}\right), 5.20\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 7.72(\mathrm{~d}, 1 \mathrm{H}, J 1.9 \mathrm{~Hz}, \mathrm{ArCH}), 7.79(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J} 1.9 \mathrm{~Hz}, \mathrm{ArCH})$; $\delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{d}^{6}\right.$-DMSO) $31.5\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{3}\right), 119.1(\mathrm{ArCH})$, $124.7(\mathrm{ArCH}), 141.4(\mathrm{ArC})$. Data was in accordance with literature.

$N-\left[(S)\right.$-1-Hydroxymethyl-2-methyl]propyl 1-methylimidazole-2-carboxamide ${ }^{4}$

Sodium hydride (60% dispersion in mineral oil, $8.5 \mathrm{mmol}, 339 \mathrm{mg}$) was introduced into a two-necked flask and washed twice with petroleum ether $40-60^{\circ} \mathrm{C}$. (S)-Valinol ($7.8 \mathrm{mmol}, 805 \mathrm{mg}$) and toluene $\left(20 \mathrm{~cm}^{3}\right.$) were introduced and the mixture was stirred for 1 hr , then cooled to $0^{\circ} \mathrm{C}$. Ethyl 1-methylimidazole-2-carboxylate ($7.8 \mathrm{mmol}, 1.20$ g) was added as a solution in toluene $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was warmed to room temperature and stirred for 48 hr . Water $\left(10 \mathrm{~cm}^{3}\right)$ was added, the mixture was stirred for 10 min , and phases were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 50 \mathrm{~cm}^{3}\right)$, the combined organic phases were dried over magnesium sulfate, filtered on an alumina plug, evaporated and dried under vacuum to afford the title compound as yellow crystals ($709 \mathrm{mg}, 43 \%$). m.p. $100-110{ }^{\circ} \mathrm{C}$ (from AcOEt); $[\alpha]_{\mathrm{D}}$ 52.0 (c 1.0 in CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1} 3475,3202,1643,1565,1473,1412$ and $1282 ; \delta_{\mathrm{H}}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.99\left(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$, $1.98\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 3.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.67-3.89\left[3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\right.$, $\left.\mathrm{HOCH}_{2}\right], 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 6.96(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 7.50(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 7.6 \mathrm{~Hz}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.7\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $19.6\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $29.2\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]$,
$35.6\left(\mathrm{CH}_{3} \mathrm{~N}\right), 56.9(\mathrm{CHN}), 63.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 125.4(\mathrm{ArCH}), 127.4(\mathrm{ArCH}), 139.0(\mathrm{ArC})$, $159.6(C O) ; m / z(E S) 212.1396\left(100 \%, \mathrm{MH}^{+} \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\right.$ requires 212.1399).
(S)-4, 5-Dihydro-4-(1-methylethyl)-2-(1-methyl-1H-imidazol-2-yl) oxazole ${ }^{4}$

THF (25 $\left.\mathrm{cm}^{3}\right), \quad N-[(S)$-1-hydroxymethyl-2-methyl]propyl 1-methylimidazole-2carboxamide ($4.7 \mathrm{mmol}, 1.0 \mathrm{~g}$), titanium tert-butoxide ($0.24 \mathrm{mmol}, 0.1 \mathrm{~cm}^{3}$) and triethylamine ($7.1 \mathrm{mmol}, 1 \mathrm{~cm}^{3}$) were introduced into a round-bottom flask, followed by diphenylphosphoryl chloride ($4.7 \mathrm{mmol}, 0.98 \mathrm{~cm}^{3}$). The mixture was stirred for 2 hr , while disappearance of starting material was checked by TLC. The mixture was cooled to $0^{\circ} \mathrm{C}$, potassium tert-butoxide ($23.7 \mathrm{mmol}, 2.65 \mathrm{~g}$) was added progressively and the mixture was stirred for 1 hr at $0^{\circ} \mathrm{C}$ then 1 hr at RT. The mixture was filtered through a plug of silica gel, and the plug was washed with $\operatorname{AcOEt}\left(100 \mathrm{~cm}^{3}\right)$. The combined organic phases were evaporated and dried to yield the title compound as pale yellow crystals ($0.70 \mathrm{~g}, 77 \%$). mp $100-102{ }^{\circ} \mathrm{C}$ (from AcOEt); $[\alpha]_{\mathrm{D}}-46.0$ (c 1.0 in CHCl_{3}); (Found; C, 62.2; H, 7.9; N, 21.5. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 62.2 ; \mathrm{H}, 7.8 ; \mathrm{N}$, 21.7); $v_{\text {max }} / \mathrm{cm}^{-1} 1655,1478,1437,1288$ and $1245 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{d}$, J 6.7, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 0.96\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{CH}_{3} \mathrm{CH}\right), 1.65-1.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.96(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 4.03-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CHCH}, \mathrm{OCH}_{2}\right), 4.24-4.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 6.92$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}), 7.04(1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.9\left(\mathrm{CH}_{3} \mathrm{CH}\right), 18.3$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right), 32.4\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 35.0\left(\mathrm{CH}_{3} \mathrm{~N}\right)$, $69.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 72.7(\mathrm{CHN}), 124.2$ (ArCH), $128.5(\mathrm{ArCH}), 135.6(\mathrm{ArC}), 155.0(\mathrm{C}=\mathrm{N}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 387\left[8 \%,(\mathrm{M})_{2} \mathrm{H}^{+}\right], 216$ (40, MNa^{+}), 194.1294 (100, $\mathrm{MH}^{+} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires 194.1293).

(S)- N -Ethoxycarbonylproline methyl ester ${ }^{5}$

To a solution of L-proline ($100 \mathrm{mmol}, 11.58 \mathrm{~g}$) in methanol ($200 \mathrm{~cm}^{3}$) was added potassium carbonate ($100 \mathrm{mmol}, 13.82 \mathrm{~g}$). The solution was cooled down to $0^{\circ} \mathrm{C}$ and ethyl chloroformate ($220 \mathrm{mmol}, 21 \mathrm{~cm}^{3}$) was added dropwise. The mixture was allowed to warm to room temperature and was stirred overnight. Methanol was
evaporated under reduced pressure, and the residual oil was dissolved in water. This solution was extracted with chloroform $\left(3 \times 100 \mathrm{~cm}^{3}\right)$, the combined organic phases washed with brine ($100 \mathrm{~cm}^{3}$), dried over magnesium sulfate and filtered. Subsequent concentration under reduced pressure and drying on Schlenk line yielded the product as a thick, pale yellow oil (20.17 g , quantitative). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers) $1.21\left(\mathrm{t}, 3 \mathrm{H}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.28\left(\mathrm{t}, 3 \mathrm{H}, J 7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.85-2.30$ ($\mathrm{m}, 8 \mathrm{H}$, pyrrolidine ring), $3.41-3.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75$ (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$), $4.04-4.26\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 4.31 (dd, $1 \mathrm{H}, \mathrm{J} 3.6,8.7 \mathrm{~Hz}, \mathrm{CHN}$), 4.38 (dd, $1 \mathrm{H}, \mathrm{J} 3.6,8.7 \mathrm{~Hz}, \mathrm{CHN}$); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers) 14.6 $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 46.3$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 46.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.1\left(\mathrm{OCH}_{3}\right), 52.2\left(\mathrm{OCH}_{3}\right), 58.8(\mathrm{CHN}), 59.0(\mathrm{CHN}), 61.2$ $\left(\mathrm{OCH}_{2}\right), 61.4\left(\mathrm{OCH}_{2}\right), 154.6[\mathrm{NC}(\mathrm{O})], 155.2[\mathrm{NC}(\mathrm{O})], 173.3[\mathrm{OC}(\mathrm{O})], 173.4$ [$\mathrm{OC}(\mathrm{O})$]. Data was in accordance with literature.

(S)-N-Ethoxycarbonyl- α, α-diphenylprolinol ${ }^{6}$

Magnesium turnings $(9.84 \mathrm{~g}, 0.4 \mathrm{~mol})$ were introduced into a $250 \mathrm{~cm}^{3}$ two-necked flask fitted with a dropping funnel and stirred for 5 min . Bromobenzene ($0.2 \mathrm{~mol}, 21$ cm^{3}) and THF ($100 \mathrm{~cm}^{3}$) were introduced into the dropping funnel and added dropwise over 1 hr . The mixture was stirred for 30 min afterwards. (S)- N Ethoxycarbonylproline methyl ester ($0.05 \mathrm{~mol}, 10.8 \mathrm{~g}$) was introduced into a $500 \mathrm{~cm}^{3}$ 3-necked round bottomed flask fitted with a dropping funnel, followed by THF (100 cm^{3}). The mixture was cooled down to $0^{\circ} \mathrm{C}$ and the solution of phenylmagnesium bromide was transferred via cannula to the dropping funnel, then added dropwise over 2 hr . After addition was completed, the reaction mixture was warmed to room temperature and stirred overnight. Saturated aqueous ammonium chloride ($50 \mathrm{~cm}^{3}$) was added dropwise (vigorous gas evolution occured), and a white precipitate formed. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 200 \mathrm{~cm}^{3}\right)$, the combined organic phases washed with brine $\left(100 \mathrm{~cm}^{3}\right)$ and concentrated under reduced pressure. Dry flash chromatography yielded the title compound as a yellow solid ($6.61 \mathrm{~g}, 40 \%$). m.p. 112 $-113{ }^{\circ} \mathrm{C}$ (from petroleum ether $60-80^{\circ} \mathrm{C}$, lit. ${ }^{6} 115-116.5^{\circ} \mathrm{C}$ from hexane); $[\alpha]_{\mathrm{D}}-$ 144.7 (c 1.03 in CHCl_{3}, lit. ${ }^{6}-146$, c 1.04 in CHCl_{3}); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81$ (bs,

1 H , ring), $1.26\left(\mathrm{t}, 3 \mathrm{H}, J 6.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.46-1.56(\mathrm{~m}, 1 \mathrm{H}$, ring), $1.93-2.00(\mathrm{~m}$, 1 H , ring), $2.08-2.17$ ($\mathrm{m}, 1 \mathrm{H}$, ring), 2.97 (bs, 1 H , ring), 3.43 ($\mathrm{q}, 1 \mathrm{H}, J 9.1 \mathrm{~Hz}$, ring), $4.02-4.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.95(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J} 3.4,8.8 \mathrm{~Hz}, \mathrm{CHN}), 6.11$ (bs, 1 H , $\mathrm{OH}), 7.28-7.44(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.0$ $\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{NCH}_{2}\right), 61.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 65.9(\mathrm{CHN}), 81.6\left(\mathrm{Ph}_{2} \mathrm{COH}\right)$, $127.1(\mathrm{ArCH}), 127.2(\mathrm{ArCH}), 127.5(\mathrm{ArCH}), 127.6(\mathrm{ArCH}), 127.9(\mathrm{ArCH}), 128.2$ $(\mathrm{ArCH}), 143.7(\mathrm{ArC}), 146.4(\mathrm{CO})$. Data was in accordance with the literature.

(S)- α, α-Diphenylprolinol ${ }^{7}$

(S)-N-Ethoxycarbonyl- α, α-diphenylprolinol ($5.12 \mathrm{~g}, 17 \mathrm{mmol}$) was introduced into a round-bottom flask fitted with a condenser, methanol ($70 \mathrm{~cm}^{3}$) and potassium hydroxide ($205 \mathrm{mmol}, 11.5 \mathrm{~g}$) were added and the mixture was refluxed for 36 hr . Methanol was evaporated under reduced pressure, water ($100 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added and the phases were separated. The remaining oil was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 $\left.\times 50 \mathrm{~cm}^{3}\right)$, the combined organic phases washed with brine ($100 \mathrm{~cm}^{3}$) and concentrated under reduced pressure to yield (S)- α, α-diphenylprolinol as brown crystals ($3.36 \mathrm{~g}, 78 \%$ yield). m.p. $63-65^{\circ} \mathrm{C}$ (from petroleum $40-60{ }^{\circ} \mathrm{C}$, lit. ${ }^{7} 79-$ $79.5{ }^{\circ} \mathrm{C}$ from hexane); $[\alpha]_{\mathrm{D}}-68.8$ (c 0.305 in MeOH , lit. ${ }^{7}-54.3$, c 0.261 in MeOH); δ_{H} ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.55-1.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.91-3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.28(\mathrm{t}, 1 \mathrm{H}$, $J 7.5 \mathrm{~Hz}, \mathrm{CHN}$), $7.16-7.35(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArCH}), 7.50-7.61(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}(63 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 25.5\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 64.5(\mathrm{CHN}), 77.1\left(\mathrm{CPh}_{2} \mathrm{OH}\right) 125.6$ (ArCH), 125.9 (ArCH), 126.3 (ArCH), 126.4 (ArCH), $128.0(\mathrm{ArCH}), 128.2$ (ArCH), $145.4(\mathrm{ArC}), 148.2(\mathrm{ArC})$. Data was in accordance with literature.
(S)-N-Ethoxycarbonyl- α, α-dinaphth-2-ylprolinol ${ }^{8}$

Magnesium turnings ($2.9 \mathrm{~g}, 0.12 \mathrm{~mol}$) were introduced into a $250 \mathrm{~cm}^{3}$ two-necked flask fitted with a dropping funnel and stirred for 10 min . 2-Bromonaphthalene (0.06 mol, 12.52 g) and THF ($100 \mathrm{~cm}^{3}$) were introduced into the dropping funnel and added dropwise over 1 hr . The mixture was heated to reflux and stirred for 20 min afterwards. (S)-N-Ethoxycarbonylproline methyl ester ($0.03 \mathrm{~mol}, 5.45 \mathrm{~g}$) was introduced into a $500 \mathrm{~cm}^{3} 3$-necked round bottomed flask fitted with a dropping funnel, followed by THF ($50 \mathrm{~cm}^{3}$). The mixture was cooled to $0^{\circ} \mathrm{C}$ and the solution of 2-naphthylmagnesium bromide was transferred via cannula to the dropping funnel, then added dropwise over 1 hr . After addition was completed, the reaction mixture was stirred for 3 hr at $0^{\circ} \mathrm{C}$, then warmed to room temperature and stirred overnight. Saturated aqueous ammonium chloride ($50 \mathrm{~cm}^{3}$) was added dropwise (vigorous gas evolution occured), and a white precipitate formed. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with brine (100 cm^{3}) and concentrated under reduced pressure. Dry flash chromatography (petroleum ether $\left.40-60^{\circ} \mathrm{C} / \mathrm{AcOEt}\right)$ yielded the title compound as a glassy yellow solid $(2.54 \mathrm{~g}$, 20\%). m.p. $103-104{ }^{\circ} \mathrm{C}$ (lit. ${ }^{8} 105-106{ }^{\circ} \mathrm{C}$); [$\left.\alpha\right]_{\mathrm{D}}-187.0$ (c 1.05 in CHCl_{3}, lit. ${ }^{8}$ 222.0, c 1.0 in CHCl_{3}); v (thin film, cm^{-1}) $3370,2981,1664,1423,1381,1335,1197$, 1127; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78$ (bs, $1 \mathrm{H}, \mathrm{CH}_{2}$), $1.24-1.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.48$ - $1.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12$ - $2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.44-3.47(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.12-4.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 5.18$ (dd, 1H, J 3.5, 8.8 Hz, CHN), 7.48 7.59 (m, $6 \mathrm{H}, \mathrm{ArCH}), 7.79$ - $7.91(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.6$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 23.2\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 47.8\left(\mathrm{CH}_{2}\right), 62.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 66.2(\mathrm{CHN}), 81.9$ $\left(\mathrm{CAr}_{2} \mathrm{OH}\right), 125.2(\mathrm{ArCH}), 125.9(\mathrm{ArCH}), 126.1(\mathrm{ArCH}), 126.2(\mathrm{ArCH}), 126.5$ $(\mathrm{ArCH}), 127.0(\mathrm{ArCH}), 127.2(\mathrm{ArCH}), 127.3(\mathrm{ArCH}), 127.5(\mathrm{ArCH}), 127.9(\mathrm{ArCH})$, $128.4(\mathrm{ArCH}), 132.7$ (ArC), 132.8 (ArC), 141.1 (ArC), 143.7 (CO). Data was in accordance with literature.

[(S)-2-(Hydroxydiphenylmethyl)-pyrrolidin-1-yl]-(1-methyl-1H-imidazol-2-yl)methanone

Sodium hydride (60% dispersion in mineral oil, $12 \mathrm{mmol}, 0.48 \mathrm{~g}$) was introduced into a two-necked flask and washed twice with petroleum ether. Toluene ($5 \mathrm{~cm}^{3}$) and (S)α, α-diphenylprolinol ($2.33 \mathrm{~g}, 9.2 \mathrm{mmol}$) were introduced and the solution was stirred at room temperature for 30 min . Ethyl 1-methylimidazole-2-carboxylate ($1.53 \mathrm{~g}, 11$ mmol) was added and the mixture was heated at $70^{\circ} \mathrm{C}$, stirred for 40 hr and cooled to RT. Water $\left(5 \mathrm{~cm}^{3}\right)$ was added, the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 20 \mathrm{~cm}^{3}\right.$, the combined organic phases were washed with brine $\left(20 \mathrm{~cm}^{3}\right)$, dried over sodium sulfate and evaporated. The remaining oil was purified by flash chromatography (AcOEt, silica gel) to yield the product as white crystals that were recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and petroleum ether $40-60^{\circ} \mathrm{C}\left(1.29 \mathrm{~g}, 39 \%\right.$ yield); m.p. $143-145^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-88(\mathrm{c} 0.5$ in CHCl_{3}); (Found: C 72.78; H 6.60; $\mathrm{N} 11.66 ; \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C 73.11; H 6.41; N 11.63); v (thin film, cm^{-1}) 3387, 1613, 1458; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{d}^{6}-\mathrm{DMSO}, 101.3^{\circ} \mathrm{C}\right)$ $1.64-1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.94-2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.07-2.15(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 3.49 (ddd, $1 \mathrm{H}, \mathrm{J} 6.7,9.1,11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), 3.93 (ddd, $1 \mathrm{H}, J 5.1,9.1,11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), $5.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}), 6.16(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 6.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $1.1 \mathrm{~Hz}, \mathrm{ArCH}), 6.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}), 7.04-7.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArCH}), 7.14$ (bd, 2H, J 6.4 $\mathrm{Hz}, \mathrm{ArCH}) .7 .21-7.25$ (m, 1H, ArCH), $7.30-7.34$ (m, 2H, ArCH), $7.45-7.47$ (m, $2 \mathrm{H}, \mathrm{ArCH})$; $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{d}^{6}\right.$-DMSO, $\left.101.3^{\circ} \mathrm{C}\right) 22.2\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right)$, $47.5(\mathrm{CH}), 63.5\left(\mathrm{CH}_{3}\right), 80.8\left(\mathrm{Ph}_{2} \mathrm{COH}\right), 123.2(\mathrm{ArCH}), 125.4(\mathrm{ArCH}), 125.5(\mathrm{ArCH})$, 126.03 (ArCH), 126.06 (ArCH), 126.1 (ArCH), 126.5 (ArCH), 127.1 (ArCH$), 140.2$ (ArC), 145.3 (ArC), 145.4 (ArC), 159.0 (CO); m/z (ES) 344 (37\%), 356 (73), 362 (30), 370 (36), 384 (5), 452 (100), $362.1872\left(\mathrm{MH}^{+} \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}\right.$ requires 362.1869).
[(S)-2-(Hydroxymethyl)-pyrrolidin-1-yl]-(1-methyl-1H-imidazol-2-yl)-methanone

Procedure was the same as above, except starting material was commercial (S)prolinol ($1.01 \mathrm{~g}, 10 \mathrm{mmol}$). Title compound was isolated by flash chromatography ($95 / 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$, silica gel) as a yellow oil ($690 \mathrm{mg}, 33 \%$). [$\left.\alpha\right]_{\mathrm{D}}-12.6$ (c 3.49 , CHCl_{3}); v (thin film, cm^{-1}) $3415,1616,1461 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{d}^{6}-\mathrm{DMSO}\right.$, mixture of rotamers) $1.75-1.95(\mathrm{~m}, 8 \mathrm{H}$, prolinol ring), 3.21 [dd, $2 \mathrm{H}, J 6.8,10.4 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHN}\right], 3.40-3.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.57-3.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.79-3.85$
(m, 6H, NCH $)_{3}$), 4.17 (heptet, $1 \mathrm{H}, \mathrm{J} 3.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), 4.74 (bs, $1 \mathrm{H}, \mathrm{OH}$), $4.81(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ $5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), $5.16(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}), 6.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}), 7.29(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{ArCH})$; $\delta_{\mathrm{C}}\left(126 \mathrm{MHz}, \mathrm{d}^{6}\right.$-DMSO, mixture of rotamers) $21.0\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{NCH}_{2}\right), 34.9\left(\mathrm{NCH}_{2}\right), 45.9(\mathrm{CHN}), 49.4(\mathrm{CHN}), 59.2$ $\left(\mathrm{NCH}_{3}\right), 59.3\left(\mathrm{NCH}_{3}\right), 60.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 62.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 124.2(\mathrm{ArCH}), 124.5(\mathrm{ArCH})$, 126.4 (ArCH), 126.7 (ArCH), 140.2 (ArC), 140.4 (ArC), 158.7 (CO), 158.8 (CO); m/z (ES) 210 (40\%), $232.1069\left(\mathrm{MNa}^{+} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\right.$ requires 232.1062).
(S)-1-(1-Methyl-1H-imidazol-2-ylmethyl)-pyrrolidine-2-carboxylic acid methyl ester

L-Proline ($29 \mathrm{mmol}, 3.32 \mathrm{~g}$) was dissolved in methanol ($50 \mathrm{~cm}^{3}$), and thionyl chloride ($43 \mathrm{mmol}, 3.20 \mathrm{~cm}^{3}$) was added dropwise. The mixture was stirred for 3.5 hr at RT and concentrated under reduced pressure. The resulting yellow was dissolved in DMF $\left(20 \mathrm{~cm}^{3}\right)$, potassium carbonate (15 g) was added, followed by 2-chloromethyl-1methylimidazole hydrochloride ($9 \mathrm{mmol}, 1.51 \mathrm{~g}$). The mixture was stirred at RT for 24 hr , dissolved in water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The organic phases were combined, dried over sodium sulfate, concentrated under reduced pressure and co-evaporated with toluene. The desired compound was obtained as a yellow oil ($1.23 \mathrm{~g}, 61 \%$). $[\alpha]_{\mathrm{D}}-71.7$ (c $0.6, \mathrm{CHCl}_{3}$); v (thin film, cm^{-1}) 2818, 1734, $1651,1503,1439,1284,1203,1175 ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 1.73-1.97(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{2}$), $2.10-2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.43$ (app. q, 1H, J $8.5 \mathrm{~Hz}, \mathrm{NCH}_{2}$), $2.89-2.97$ (m, 1H, NCH_{2}), 3.23 (dd, 1H, J 6.4, $9.2 \mathrm{~Hz}, \mathrm{MeOOCCHN}$), 3.63 (d, 1H, J 13.1 Hz , $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~d}, 1 \mathrm{H}, J 13.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, 6.81 (d, 1H, J 1.2 Hz, ArCH), 6.88 (d, 1H, J $1.2 \mathrm{~Hz}, \mathrm{ArCH}) ; \delta_{\mathrm{C}} 23.1\left(\mathrm{CH}_{2}\right), 29.4$ $\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{NCH}_{3}\right), 50.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 51.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 53.6\left(\mathrm{ArCH}_{2} \mathrm{~N}\right), 65.1(\mathrm{CHN}), 121.4$ $(\mathrm{ArCH}), 126.9(\mathrm{ArCH}), 145.2(\mathrm{ArC}), 174.3(\mathrm{CO}) ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 224.1396\left(\mathrm{MH}^{+}\right.$ $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 224.1399).

[(S)-1-(1-Methyl-1H-imidazol-2-ylmethyl)-pyrrolidin-2-yl]-diphenyl-methanol

Magnesium turnings ($441 \mathrm{mg}, 18 \mathrm{mmol}$) were introduced into a $100 \mathrm{~cm}^{3}$ two-necked flask fitted with a nitrogen inlet, a condenser and a dropping funnel. After stirring for 5 min , and a solution of bromobenzene ($1.75 \mathrm{~cm}^{3}, 16.5 \mathrm{mmol}$) in diethyl ether (20 cm^{3}) was added progressively. After addition was completed, diethyl ether ($10 \mathrm{~cm}^{3}$) was added, and the mixture was stirred for 30 min , then cooled to $0^{\circ} \mathrm{C}$. (S)-1-(1-Methyl-1H-imidazol-2-ylmethyl)-pyrrolidine-2-carboxylic acid methyl ester (1.07 g , $4.8 \mathrm{mmol})$ was added dropwise as a solution in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$. After addition was completed, diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture was stirred at RT for 48 hr . It was then cooled down to $0^{\circ} \mathrm{C}$ and saturated aqueous ammonium chloride ($50 \mathrm{~cm}^{3}$) was added. The phases were separated and aqueous phase was extracted with ether $\left(2 \times 50 \mathrm{~cm}^{3}\right)$ and ethyl acetate $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with brine $\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude product was dried on a Schlenk line, and the desired compound was isolated by flash chromatography ($95 / 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol) as pale yellow crystals ($1.03 \mathrm{~g}, 54 \%$ yield). m.p. $139-140^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-9.5$ (c 1.48, CHCl_{3}); (Found: C 76.01; H 7.32; N 11.65; $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ requires C 76.05; H 7.25; N 12.09); v (thin film, cm^{-1}) 3419,$1644 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{d}^{6}-\mathrm{DMSO}\right) 1.60-1.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $1.87-1.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.67-2.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.35$ (d, $1 \mathrm{H}, \mathrm{AB}, J 13.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ar}$), 3.42 (d, 1H, AB, J $13.2 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ar}$), 4.08 (dd, 1 H , $J 4.8,9.0 \mathrm{~Hz}, \mathrm{HOPh}_{2} \mathrm{CCHN}$), $6.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}), 6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}), 7.11-7.15$ (m, 2H, ArCH), 7.25 - 7.28 (m, 4H, ArCH), 7.55 (dd, 2H, J 1.2, 8.2 Hz, ArCH), 7.74 (dd, 2H, J 1.2, 8.2 Hz, ArCH); $\delta_{\mathrm{C}}\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 32.6$ $\left(\mathrm{NCH}_{3}\right), 52.3\left(\mathrm{NCH}_{2}\right), 55.4\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 70.8(\mathrm{CHN}), 77.8\left(\mathrm{Ar}_{2} \mathrm{COH}\right), 121.2(\mathrm{ArCH})$, 125.1 (ArCH), 125.7 (ArCH), 126.2 (ArCH), 126.6 (ArCH), 127.0 (ArCH), 128.1 (ArCH), 128.2 (ArCH), 145.5 (ArC), 146.6 (ArC), 148.1 (ArC); m/z (ES) 330 (28\%), $348.2085\left(\mathrm{MH}^{+} \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}\right.$ requires 348.2076$)$.
[(S)-2-(Hydroxydinaphth-2-ylmethyl)-pyrrolidin-1-yl]-(1-methyl-1H-imidazol-2-yl)-methanone

(S)-N-Ethoxycarbonyl- α, α-dinaphth-2-ylprolinol ($2.54 \mathrm{~g}, 6 \mathrm{mmol}$) was introduced in a round-bottom flask fitted with a condenser (the reaction was carried out under open atmosphere), $\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}\right)$, potassium hydroxide ($205 \mathrm{mmol}, 11.5 \mathrm{~g}$) were added and the mixture was refluxed for 6 hr . The solvent was evaporated under reduced pressure, and the remaining oil was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 70 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with brine $\left(50 \mathrm{~cm}^{3}\right)$, dried over magnesium sulfhate, concentrated under reduced pressure and dried on Schlenk line, to yield (S)α, α-dinaphth-2-ylprolinol as brown crystals ($523 \mathrm{mg}, 28 \%$ yield), which were used in the next step without further purification. Sodium hydride (60% dispersion in mineral oil, $3 \mathrm{mmol}, 120 \mathrm{mg}$) was introduced into a two-necked flask and washed twice with petroleum ether. Toluene ($5 \mathrm{~cm}^{3}$) and (S)- α, α-dinaphth-2-ylprolinol were introduced and the solution was stirred at room temperature for 30 min . Ethyl 1-methylimidazole-2-carboxylate ($347 \mathrm{mg}, 2.25 \mathrm{mmol}$) was added and the mixture was stirred at RT for 40 hr . Water ($25 \mathrm{~cm}^{3}$) was added, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The combined organic phases were washed with brine $\left(20 \mathrm{~cm}^{3}\right)$, dried over sodium sulfate, filtered and evaporated. The remaining oil was purified by flash chromatography (ethyl acetate) to yield the product as white crystals that were recrystallised from petroleum ether $40-60^{\circ} \mathrm{C}$ ($169 \mathrm{mg}, 24 \%$ yield). m.p. $140-145$ ${ }^{\circ} \mathrm{C}\left(\mathrm{AcOEt} /\right.$ petroleum ether $\left.40-60^{\circ} \mathrm{C}\right)$; $[\alpha]_{\mathrm{D}}-102.1$ (c $0.48, \mathrm{CHCl}_{3}$); (Found: C 77.68 ; H 5.84; $\mathrm{N} 9.02 ; \mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C 78.07; H 5.90; N 9.10); v (thin film, cm^{-1}) $3421,3056,2980,1614,1506,1458,1359,1281,1203,1148,1123 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{d}^{6}-\right.$ DMSO, $101.4^{\circ} \mathrm{C}$) $1.72-1.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85-1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12-2.18$ (m, 1H, CH2), 2.23 - 2.31 (m, 1H, CH2), $2.96\left(\mathrm{~d}, 3 \mathrm{H}, J 1.6 \mathrm{~Hz}, \mathrm{NCH}_{3}\right), 3.60$ (ddd, 1 H , J 6.8, 9.2, $11.6 \mathrm{~Hz}, \mathrm{NCH}_{2}$), 3.96 (ddd, 1H, J 5.0, $9.0,11.6 \mathrm{~Hz}, \mathrm{NCH}_{2}$), 6.13 (d, 1H, J $0.7 \mathrm{~Hz}, \mathrm{NCH}$), 6.43 (br s, 1H, OH), 6.77 (s, 1H, ArCH), 6.84 (d, 1H, J 1.1 Hz, ArCH),
7.17 (d, 1H, J $8.4 \mathrm{~Hz}, \mathrm{ArCH}), 7.38$ - 7.44 (m, 2H, ArCH), 7.47 - 7.52 (m, 3H, $\mathrm{ArCH}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J 1.9,8.7 \mathrm{~Hz}, \mathrm{ArCH}), 7.71-7.75$ (m, 2H, ArCH), $7.82-7.87$ (m, 3H, ArCH), $7.91-7.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}), 8.06(\mathrm{~d}, 1 \mathrm{H}, J 1.3 \mathrm{~Hz}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz}, \mathrm{d}^{6}$-DMSO, $\left.101.4^{\circ} \mathrm{C}\right) 23.3\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{3}\right), 48.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 63.3$ $(\mathrm{CHN}), 81.3\left(\mathrm{Ar}_{2} \mathrm{COH}\right), 123.2(\mathrm{ArCH}), 124.3(\mathrm{ArCH}), 124.9(\mathrm{ArCH}), 125.0(\mathrm{ArCH})$, $125.1(\mathrm{ArCH}), 125.2(\mathrm{ArCH}), 125.4(\mathrm{ArCH}), 125.5(\mathrm{ArCH}), 126.4(\mathrm{ArCH}), 126.6$ (ArCH), 126.7 (ArCH), 127.6 (ArCH), 127.7 (ArCH), 131.3 (ArC$)$, 131.5 (ArC), 131.7 (ArC), 132.1 (ArC), 139.0 (ArC), 142.8 (ArC), 142.9 (ArC), 158.0 (CO); m/z (ES) 444 (18\%), $462.2166\left(\mathrm{MH}^{+} \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}\right.$ requires 462.2182).

General procedure A for the preparation of imines from their ketone precursor Activated $4 \AA$ molecular sieve (40 g), toluene $\left(80 \mathrm{~cm}^{3}\right)$, ketone (100 mmol) and aniline or p-anisidine (130 mmol) were introduced into a $250 \mathrm{~cm}^{3}$ two-necked flask. The mixture was stirred at RT for 20 hr and filtered. The title compound was afforded by distillation or crystallisation from petroleum ether $40-60^{\circ} \mathrm{C}$.

General procedure B for the preparation of imines from their ketone precursor

Ketone (20 mmol), amine (aniline or p-anisidine, 22 mmol) and activated $4 \AA$ molecular sieves (4 g) were introduced in a Smith Process Vial ${ }^{\text {TM }}$ containing a small stirrer bar. The vial was sealed and heated with a microwave reactor. The desired imine was isolated by crystallisation (and further purified by recrystallisation from petroleum ether) or by Kugelrohr distillation.

General procedure \mathbf{C} for the preparation of imines from their ketone precursor

Ketone (1 eq .), p-anisidine (1.1 eq .), p-toluene sulfonic acid (0.01 eq .) and toluene ($100 \mathrm{~cm}^{3}$) were introduced in a round-bottom flask and heated overnight under DeanStark conditions. The imine crystallised after partial evaporation of toluene and was isolated by filtration. Recrystallisation from toluene was performed when necessary.

[1-Phenylethylidene]-phenylamine ${ }^{9}$

Prepared according to general procedure A from acetophenone and aniline, purified by distillation under reduced pressure. Pale yellow crystals (64\%). m.p. $42-43{ }^{\circ} \mathrm{C}$ (from petroleum ether $40-60^{\circ} \mathrm{C}$, lit. $\left.{ }^{9} 39-40^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.23(3 \mathrm{H}, \mathrm{s}$, CH_{3}), 6.80 (app. dd, 2H, J 1.2, $7.3 \mathrm{~Hz}, \mathrm{ArCH}$), 7.09 (app. t, 1H, J 7.3 Hz, ArCH), 7.35 (app. t, 2H, J $7.8 \mathrm{~Hz}, \mathrm{ArCH}), 7.42-7.48$ (m, 3H, ArCH), $7.95-8.00$ (m, 2H, ArCH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.4\left(\mathrm{CH}_{3}\right), 119.4(\mathrm{ArCH}), 123.3(\mathrm{ArCH}), 127.2(\mathrm{ArCH})$, 128.4 (ArCH), $129.0(\mathrm{ArCH}), 130.5(\mathrm{ArCH}), 139.5(\mathrm{ArC}), 151.7(\mathrm{ArC}), 165.5(\mathrm{C}=\mathrm{N})$. Data was in accordance with the literature.

[1-(4-Chlorophenyl)ethylidene]-phenylamine

Prepared according to general procedure A from 4-chloroacetophenone and aniline, purified by crystallisation from petroleum ether $40-60{ }^{\circ} \mathrm{C}$ (yellow needles, 79%). m.p. $93-94{ }^{\circ} \mathrm{C}$ (from petroleum ether $40-60^{\circ} \mathrm{C}$); (Found C, 73.04; H, 5.10; N, 6.05; $\mathrm{Cl}, 15.49 ; \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NCl}$ requires $\mathrm{C}, 73.20 ; \mathrm{H} 5.27 ; \mathrm{N} 6.10 ; \mathrm{Cl} 15.43$); v (thin film, cm^{-1}) $3425,1634,1592 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.75-6.80(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArCH}), 7.06-7.13$ (m, 1H, ArCH), 7.31 - 7.43 (m, 4H, ArCH), 7.89 - 7.94 (m, 2H, $\mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.2\left(\mathrm{CH}_{3}\right), 119.3$ (ArCH), 123.4 (ArCH), 128.6 (ArCH), 129.0 (ArCH), 136.6 (ArC), 137.9 (ArC), 151.4 (ArC), 164.2 ($C=\mathrm{N}$); m/z (EI) 77 (78\%), 118 (22), 214 (100), 216 (46), 229 (70), $229.0668\left(\mathrm{M}^{+} \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NCl}\right.$ requires 229.0658).

[1-Phenylpropylidene]-phenylamine ${ }^{11}$

Prepared using general procedure B from propiophenone, isolated by crystallisation from petroleum ether. Yellow crystals (12%); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, isomer ratio 91/9) 1.08 (t, $3 \mathrm{H}, \mathrm{J} 7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$, major), $1.23\left(\mathrm{t}, 3 \mathrm{H}, J 7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, minor), 2.66
(q, 2H, J 7.6 Hz, CH2 CH_{3}, major), 2.80 (q, 2H, J $7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$, minor), 6.63 (app. d, 2H, J 8.5 Hz , ArH, minor), 6.80 (app. dd, $2 \mathrm{H}, J 1.1,8.4 \mathrm{~Hz}$, ArH, major), 6.88 (app. t, 1H, J $7.3 \mathrm{~Hz}, \mathrm{ArH}$, minor), 7.08 (app. tt, $1 \mathrm{H}, J 1.1,7.3 \mathrm{~Hz}, \mathrm{ArH}$, major), 7.18 7.23 (m, 3H, ArH, minor), 7.35 (app. tt, 2H, J 1.9, $7.9 \mathrm{~Hz}, \mathrm{ArH}$), 7.43 - 7.48 (m, 3H, $\mathrm{ArH}), 7.91-7.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.9\left(\mathrm{CH}_{3}\right.$, minor), 12.9 $\left(\mathrm{CH}_{3}\right.$, major), $23.5\left(\mathrm{CH}_{2}\right.$, major), $34.4\left(\mathrm{CH}_{2}\right.$, minor), $119.1(\mathrm{ArCH})$, $120.9(\mathrm{ArCH})$, $123.0(\mathrm{ArCH}), 127.6(\mathrm{ArCH}), 127.8(\mathrm{ArCH}), 128.0(\mathrm{ArCH}), 128.3(\mathrm{ArCH}), 128.5$ (ArCH), $129.0(\mathrm{ArCH}), 130.3(\mathrm{ArCH}), 138.1(\mathrm{ArC})$, $151.6(\mathrm{ArC}), 170.7(\mathrm{C}=\mathrm{N})$. Data was in accordance with literature.

[3,4-Dihydro-2H-naphthalenylidene]-phenylamine ${ }^{10}$

Prepared using general procedure B from α-tetralone and aniline, isolated by flash chromatography ($90 / 10$ petroleum ether $60-80^{\circ} \mathrm{C} / \mathrm{AcOEt}$). Orange crystals (52%). m.p. $73{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{10} 74-75{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.91(\mathrm{p}, 2 \mathrm{H}, J 6.2 \mathrm{~Hz}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $2.51\left(\mathrm{t}, 2 \mathrm{H}, J 6.2 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}\right.$), $2.90\left(\mathrm{t}, 2 \mathrm{H}, J 6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 6.79$ (d, 2H, J $8.2 \mathrm{~Hz}, \mathrm{ArCH}$), 7.06 (t, 1H, J 7.3 Hz, ArCH), 7.18 - 7.39 (m, 5H, ArH), 8.30 (d, 1H, J 7.6 Hz, ArH); $\delta_{\mathrm{C}}\left(62.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.1\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right)$, $119.6(\mathrm{ArCH}), 123.1(\mathrm{ArCH}), 126.4(\mathrm{ArCH}), 126.5(\mathrm{ArCH}), 128.8(\mathrm{ArCH}), 129.0$ $(\mathrm{ArCH}), 129.1(\mathrm{ArCH}), 130.7(\mathrm{ArCH}), 130.8(\mathrm{ArCH}), 134.0(\mathrm{ArC}), 141.4(\mathrm{ArC})$, $151.8(\mathrm{ArC}), 165.6(\mathrm{C}=\mathrm{N})$. Data was in accordance with literature.

[1-Phenylethylidene]-(4-methoxyphenyl)-amine ${ }^{11}$

Prepared according to general procedure A from acetophenone and p-anisidine, purified by crystallisation from petroleum ether $60-80^{\circ} \mathrm{C}$ (yellow crystals, 52%). m.p. $86{ }^{\circ} \mathrm{C}$ (lit. $\left.{ }^{12} 84-85^{\circ} \mathrm{C}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 3.81$ (s,
$\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.75\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.90\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.40-7.47(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{ArCH}), 7.93-7.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.3\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 55.5$ $\left(\mathrm{CH}_{3} \mathrm{O}\right), 114.2(\mathrm{ArCH}), 120.7(\mathrm{ArCH}), 127.1(\mathrm{ArCH}), 128.3(\mathrm{ArCH}), 130.3(\mathrm{ArCH})$, $139.8(\mathrm{ArC}), 144.8(\mathrm{ArC}), 155.9(\mathrm{ArC}), 165.7(\mathrm{C}=\mathrm{N})$. Data was in accordance with literature.

[1-Phenylpropylidene]-(4-methoxyphenyl)-amine ${ }^{13}$

Prepared according to general procedure B from propiophenone, purified by recrystallisation from petroleum ether $40-60^{\circ} \mathrm{C}$ (Brown crystals, 33\%). m.p. $102-$ $103{ }^{\circ} \mathrm{C}$ (lit. ${ }^{13} 101-103{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, isomer ratio 88/12) $1.08(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$, major), $1.20\left(\mathrm{t}, 3 \mathrm{H}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, minor), 2.68 (q, 2H, J 7.6 $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$, major), $2.79\left(\mathrm{q}, 2 \mathrm{H}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, minor), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$, minor), 3.81 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$, major), $6.52-6.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}\right.$, minor), $6.74\left[(\mathrm{AX})_{2}\right.$, $2 \mathrm{H}, \mathrm{ArCH}$ major], $6.91\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right.$, major], $7.05-7.08$ (m, $2 \mathrm{H}, \mathrm{ArCH}$, minor), 7.19 - 7.23 (m, 3H, ArCH, minor), 7.41 - 7.49 (m, 3H, ArCH, major), 7.88 7.96 (m, 2H, ArCH, major); $\delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, minor), 12.9 $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, major), $23.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, major), $34.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, minor), $55.3\left(\mathrm{OCH}_{3}\right.$, minor), $55.5\left(\mathrm{OCH}_{3}\right.$, major), 113.8 (ArCH , minor), 114.3 (ArCH , major), 120.3 (ArCH , major), 122.3 (ArCH , minor), 127.6 (ArCH , major), 127.8 (ArCH , minor), 128.1 (ArCH, minor), 128.2 (ArCH, minor), 128.5 (ArCH , major), 130.2 (ArCH , major), $138.3(\operatorname{ArC}) 144.8(\mathrm{ArC}), 155.8(\mathrm{ArC}), 171.4(C=\mathrm{N})$. Data was in accordance with literature.

[3,4-Dihydro-2H-naphthalenylidene]-(4-methoxyphenyl)-amine ${ }^{14}$

Prepared according to general procedure A from α-tetralone and p-anisidine. Purified by recrystallisation from petroleum ether $60-80^{\circ} \mathrm{C}$. Dark brown crystals (67%). m.p. $115-116{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{14} 109-112{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.91(\mathrm{p}, 2 \mathrm{H}, J 6.5 \mathrm{~Hz}$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), $2.56\left(\mathrm{t}, 2 \mathrm{H}, J 6.5 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 2.90\left(\mathrm{t}, 2 \mathrm{H}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 3.81(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.76\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.91\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 8.9 \mathrm{~Hz}$, ArCH), $7.23-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}), 8.31(\mathrm{dd}, 1 \mathrm{H}, J 1.5,7.6 \mathrm{~Hz}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}(63 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 23.1\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{OCH}_{3}\right), 114.3(\mathrm{ArCH}), 120.9$ $(\mathrm{ArCH}), 126.3(\mathrm{ArCH}), 126.4(\mathrm{ArCH}), 128.7(\mathrm{ArCH}), 130.5(\mathrm{ArCH}), 134.1(\mathrm{ArC})$, $141.2(\mathrm{ArC}), 144.7(\mathrm{ArC}), 155.8(\mathrm{ArC}), 165.9(\mathrm{C}=\mathrm{N})$. Data was in accordance with literature.

[1-Cyclohexylethylidene]- (4-methoxyphenyl)-amine ${ }^{15}$

Prepared using general procedure B from cyclohexyl methyl ketone, isolated by Kugelrohr distillation. Yellow oil (43\%). $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, isomer ratio 80/20) 1.25 - 1.47 (m, 6 H , cyclohexyl ring), 1.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}$, minor), 1.73 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}$, major), 1.79 - 1.92 (m, 4 H , cyclohexyl ring), $2.22-2.33$ (m, 1 H , CHCNCH_{3}), $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$, major), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$, minor), $6.60\left[(\mathrm{AX})_{2}, 2 \mathrm{H}\right.$, $\mathrm{ArCH}], 6.82\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right] ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.5\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, major), 22.4 $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, minor), $25.5\left(\mathrm{CH}_{2}\right.$, minor), $26.2\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 42.3(\mathrm{CH}$, minor), 49.5 $\left(\mathrm{CH}\right.$, major), $55.4\left(\mathrm{OCH}_{3}\right), 114.1(\mathrm{ArCH}$, major), $115.9(\mathrm{ArCH}$, minor $), 120.3(\mathrm{ArCH}$, major), 120.5 (ArCH , minor), $144.9(\mathrm{ArC}), 155.6(\mathrm{ArC}), 176.1(\mathrm{C}=\mathrm{N})$; Data was in accordance with literature.
(4-Methoxy-phenyl)-[1-naphthalen-1-yl-ethylidene]-amine ${ }^{16}$

Prepared using general procedure C. Yellow solid, m.p. $72-75{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether $40-60^{\circ} \mathrm{C}$, not reported previously); v (thin film, cm^{-1}) 3055 , 2999, 2951, 2833, 1640, 1503, 1464, 1440, 1363, 1292, 1242, 1208, 1180, 1104, 1035; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, isomer ratio $60 / 40$) 2.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}$, major), 2.60 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}$, minor), 3.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$, minor), 3.84 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$, major), 6.47 - 6.52 (m, ArCH), 6.58 - 6.63 (m, ArCH), 6.89 - 7.01 (m, ArCH), 7.13 - 7.18 (m, $\mathrm{ArCH}), 7.31$ - 7.37 (m, ArCH), 7.41 - 7.62 (m, ArCH$), 7.70-7.80$ (m, ArCH), 7.86 - $7.90(\mathrm{~m}, \mathrm{ArCH}), 8.32-8.36(\mathrm{~m}, \mathrm{ArCH})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.0\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right)$, $29.9\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 55.1\left(\mathrm{OCH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right), 113.6(\mathrm{ArCH}), 114.5(\mathrm{ArCH}), 120.9$ $(\mathrm{ArCH}), 121.8(\mathrm{ArCH}), 124.7(\mathrm{ArCH}), 125.1(\mathrm{ArCH}), 125.2(\mathrm{ArCH}), 125.4(\mathrm{ArCH})$, 126.1 (ArCH), 126.2 (ArCH), 126.6 (ArCH), 126.8 (ArCH), 128.4 (ArCH), 128.6 (ArCH), 129.2 (ArC), 129.4 (ArCH), 130.3 (ArC), 133.3 ($\mathrm{ArC)}$,134.1 (ArC), 137.9 (ArC), 139.6 (ArC), 143.5 (ArC), 144.3 (ArC), 156.0 (ArC), 156.3 (ArC), 169.7 ($C=\mathrm{N}$), 170.2 ($C=\mathrm{N}$); m/z (EI) 69 (26\%), 77 (15), 92 (12), 127 (16), 152 (11), 153 (14), 217 (15), 260 (98), 261 (26), 274 (83), 275 (100), $275.1301\left(\mathrm{M}^{+} \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}\right.$ requires 275.1310). Data was in accordance with literature.

(4-Methoxy-phenyl)-[1-naphthalen-2-yl-ethylidene]-amine ${ }^{16}$

Prepared using general procedure C (63%), but crystallised directly out of solution. Yellow crystals, m. p. $148-150{ }^{\circ} \mathrm{C}$ (from petroleum ether $40-60^{\circ} \mathrm{C}$, none reported in literature); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 6.83$ [(AX) $\left.)_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.96\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.53-7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}), 7.89-7.97$ (m, 3H, ArCH), 8.25 (dd, J 1.6, $8.6 \mathrm{~Hz}, \mathrm{ArCH}), 8.33$ (s, 1H, ArCH); δ_{C} (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) 17.3\left(\mathrm{H}_{3} \mathrm{CC}=\mathrm{N}\right), 55.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 114.3(\mathrm{ArCH}), 120.8(\mathrm{ArCH}), 124.3(\mathrm{ArCH})$, $126.3(\mathrm{ArCH}), 127.1(\mathrm{ArCH}), 127.5(\mathrm{ArCH}), 127.7(\mathrm{ArCH}), 128.0(\mathrm{ArCH}), 128.9$ (ArCH), 133.0 (ArC), 134.4 (ArC), 137.1 (ArC), 144.9 (ArC), 156.0 (ArC), 165.5 $(C=N)$. Data was in accordance with literature.

[1-(4-Methoxyphenyl)ethylidene]-(4-methoxyphenyl)-amine ${ }^{17}$

Prepared using general procedure C (79\%). Purified by crystallisation from toluene. Yellow crystals, m.p. $132-134{ }^{\circ} \mathrm{C}$ (from petroleum ether $40-60{ }^{\circ} \mathrm{C}$, lit. ${ }^{17} 126^{\circ} \mathrm{C}$); δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right.$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.74\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.92\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.97\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.93$ $\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right] ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.1\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 55.4\left(\mathrm{OCH}_{3}\right), 55.5$ $\left(\mathrm{OCH}_{3}\right), 113.6(\mathrm{ArCH}), 114.2(\mathrm{ArCH}), 120.9(\mathrm{ArCH}), 128.7(\mathrm{ArCH}), 132.5(\mathrm{ArC})$, $145.1(\mathrm{ArC}), 155.8(\mathrm{ArC}), 161.4(\mathrm{ArC}), 164.8(\mathrm{C}=\mathrm{N})$. Data were in accordance with literature.

[1-(4-Trifluoromethylphenyl)ethylidene]-(4-methoxyphenyl)-amine

Prepared using general procedure C (44\%). Purified by crystallisation from toluene. Yellow crystals, m.p. $106-108{ }^{\circ} \mathrm{C}$ (from petroleum ether $40-60{ }^{\circ} \mathrm{C}$); (Found C, 65.35; H, 4.68; N, 4.64; $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}$ requires C, 65.52; $\mathrm{H}, 4.81 ; \mathrm{N}, 4.78$); v (thin film, $\left.\mathrm{cm}^{-1}\right) 3430,1636,1135 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 6.76\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.92\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.69(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J} 8.1 \mathrm{~Hz}$, $\mathrm{ArCH}), 8.07\left(\mathrm{~d}, 2 \mathrm{H}, J\right.$ 8.1 Hz, ArCH); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.3\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 55.5$ $\left(\mathrm{OCH}_{3}\right), 114.4(\mathrm{ArCH}), 121.9(\mathrm{ArCH}), 124.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}} 272 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 125.2(\mathrm{ArCH})$, $127.5(\mathrm{ArCH}), 131.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}} 32.6 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 143.0(\mathrm{ArC}), 144.2(\mathrm{ArC}), 156.3(\mathrm{ArC})$, $164.3(\mathrm{C}=\mathrm{N})$; $\delta_{\mathrm{F}}\left(235 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-62.7 ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 64$ (26\%), 77 (34), 92 (30), 148 (25), 235 (19), 278 (100), 279 (31), 293 (83), $293.1030\left(\mathrm{M}^{+} \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}\right.$ requires 293.1027).

[1-(4-Nitrophenyl)ethylidene]-(4-methoxyphenyl)-amine ${ }^{18}$

Prepared using general procedure C (48\%). Purified by crystallisation from toluene. Yellow crystals, m.p. $90-92{ }^{\circ} \mathrm{C}$ (from petroleum ether $40-60^{\circ} \mathrm{C}$, lit. ${ }^{18} 93-95.5^{\circ} \mathrm{C}$ from hexane); v (thin film, cm^{-1}) $3660,3440,3102,2954,2836,1629,1598,1506$, $1444,1347,1320,1291,1245,1213,1169,1104,1037 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.34(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.80\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.96\left[(\mathrm{AX})_{2}, 2 \mathrm{H}\right.$, $\mathrm{ArCH}], 8.15\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 8.31\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right] ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.4$ $\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 55.5\left(\mathrm{OCH}_{3}\right), 114.4(\mathrm{ArCH}), 120.8(\mathrm{ArCH}), 123.5(\mathrm{ArCH}), 128.1$ $(\mathrm{ArCH}), 143.8(\mathrm{ArC}), 145.3(\mathrm{ArC}), 148.9(\mathrm{ArC}), 156.7(\mathrm{ArC}), 163.5(C=\mathrm{N})$. Data was in accordance with literature.

General procedure D for the reduction of imines with trichlorosilane

Imine (1 mmol), catalyst (0.01 mmol) and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ were introduced into an oven-dried $50 \mathrm{~cm}^{3}$ two-necked flask or an oven-dried carousel tube. The mixture was stirred until complete dissolution, then cooled to $0^{\circ} \mathrm{C}$ and trichlorosilane ($2 \mathrm{mmol}, 0.2$ cm^{3}) was added by syringe over five to ten seconds. The reaction was left to stir for the desired time. Hydrochloric acid ($1 \mathrm{M}, c a .2 \mathrm{~cm}^{3}$) was added, which led to strong gas evolution and precipitation, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and aqueous sodium hydroxide ($1 \mathrm{M}, 20 \mathrm{~cm}^{3}$). This mixture was stirred until the precipitate was completely dissolved. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic phases were combined, washed with brine ($20 \mathrm{~cm}^{3}$) and dried over magnesium sulfate. The product was isolated by concentration under reduced pressure. Racemic samples of compound were obtained by this procedure, using N-formylpyrrolidine (5\%) as catalyst. Characterisation of the chiral amines was made from their racemic samples.

Supporting information

N-Phenyl-1-phenylethanamine ${ }^{9}$

Prepared according to general procedure $\mathrm{D}(77 \%$, e.e. $86 \%)$. Yellow oil. $\mathrm{t}_{\mathrm{R}}=4.9 \mathrm{~min}$. (S isomer), 6.1 min . (R isomer) (3-Cellucoat, $95 / 5$ hexane/propan-2-ol); $[\alpha]_{\mathrm{D}}+13.9$ (c 1 in $\mathrm{MeOH}, 86 \%$ e.e. from HPLC); lit. ${ }^{19}+17.0$ (c 1 in MeOH , pure S isomer); $\delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.51 (d, 3H, J $6.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHN}$), $4.03(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.48(\mathrm{q}, 1 \mathrm{H}, J 6.7$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CHN}$), 6.50 (d, 2H, J $\left.7.6 \mathrm{~Hz}, \mathrm{ArCH}\right), 6.63$ (t, 1H, J 7.3 Hz, ArCH), 7.08 (t, $2 \mathrm{H}, J 7.3 \mathrm{~Hz}, \mathrm{ArCH}), 7.20-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.1\left(\mathrm{CH}_{3}\right)$, $53.5(\mathrm{CH}), 113.4(\mathrm{ArCH}), 117.3(\mathrm{ArCH}), 125.9(\mathrm{ArCH}), 126.9(\mathrm{ArCH}), 128.7$ $(\mathrm{ArCH}), 129.2(\mathrm{ArCH}), 145.3(\mathrm{ArC}), 147.4(\mathrm{ArC})$. Data was in accordance with literature.

N-Phenyl-1-(4-chlorophenyl)ethanamine ${ }^{20}$

Prepared according to general procedure D (77\%, e.e. $87 \%)$. Yellow oil. $\mathrm{t}_{\mathrm{R}}=8.2 \mathrm{~min}$. (major), 10.0 min . (minor) (3-Cellucoat, 98/2 hexane/propan-2-ol); $[\alpha]_{\mathrm{D}}-3.0$ (c 1 in $\mathrm{CHCl}_{3}, 85 \%$ e.e. from HPLC); lit. ${ }^{21}-17$ (c 1.7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$ e.e. from HPLC, absolute configuration was not determined), $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.52(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 6.9$ $\mathrm{Hz}, \mathrm{CHNCH}_{3}$), 4.04 (br. s, 1H, NH), 4.48 (q, 1H, J $6.9 \mathrm{~Hz}, \mathrm{CHNCH}_{3}$), 6.51 (d, 2H, J $7.8 \mathrm{~Hz}, \mathrm{ArCH}), 6.69$ (t, 1H, J $7.3 \mathrm{~Hz}, \mathrm{ArCH}$), 7.13 (app. t, 2H, J 7.8 Hz, ArCH), 7.28 - $7.35(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.2\left(\mathrm{CHNCH}_{3}\right), 53.4\left(\mathrm{CHNCH}_{3}\right)$, 113.7 (ArCH), 117.9 (ArCH), 127.7 (ArCH), 129.2 (ArCH), 129.6 (ArCH), 132.8 (ArC), 144.2 (ArC), 147.4 (ArC); m/z (ES) 139 (100\%), 141 (23), 232 (21), 234 (2); m / z (ES) $232.0887\left(\mathrm{MH}^{+} \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NCl}\right.$ requires 232.0893). Data was in accordance with literature.

N-Phenyl-1-phenylpropanamine ${ }^{11}$

Prepared according to general procedure $\mathrm{D}(59 \%$, e.e. $79 \%)$. Yellow oil. $\mathrm{t}_{\mathrm{R}}=4.1 \mathrm{~min}$. (major), 4.6 min. (minor) (3-Cellucoat, 95/5 hexane/propan-2-ol); [$\alpha]_{\mathrm{D}}-4.8$ (c 1.04 in $\mathrm{MeOH}, 80 \%$ e.e. from HPLC); lit. ${ }^{22}-6.79$ (c 1.06 in $\mathrm{MeOH}, 87 \%$ e.e., absolute configuration is not conclusively determined); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}$ $7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.74 - $1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.07(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.22(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 6.7$ $\mathrm{Hz}, \mathrm{CHN}), 6.51(\mathrm{~d}, 2 \mathrm{H}, J 8.9 \mathrm{~Hz}, \mathrm{ArCH}), 6.62(\mathrm{t}, 1 \mathrm{H}, J 7.3 \mathrm{~Hz}, \mathrm{ArCH}), 7.08$ (t, 2H, J $7.3 \mathrm{~Hz}, \mathrm{ArCH}), 7.18$ - $7.36(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $31.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 59.8(\mathrm{CHN}), 113.4(\mathrm{ArCH}), 117.2(\mathrm{ArCH}), 126.6(\mathrm{ArCH}), 127.0$ $(\mathrm{ArCH}), 128.1(\mathrm{ArCH}), 128.7(\mathrm{ArCH}), 129.2(\mathrm{ArCH}), 133.0(\mathrm{ArCH}), 144.1(\mathrm{ArC})$, 147.7 (ArC). Data was in accordance with literature.

N-Phenyl-(1,2,3,4-tetrahydronaphthalen-1-yl)amine ${ }^{23}$

Prepared according to general procedure D (42%, e.e. $19 \%)$. Yellow oil. $\mathrm{t}_{\mathrm{R}}=5.1 \mathrm{~min}$. (minor), 5.4 min. (major) (Chiralpak AD, 95/5 hexane/propan-2-ol); $[\alpha]_{\mathrm{D}}-2.0$ (c 1 in $\mathrm{MeOH}, 19 \%$ e.e. from HPLC); lit. ${ }^{24}[\alpha]_{\mathrm{D}}+1.46$, (c 0.89 in $\mathrm{MeOH}, 12 \%$ e.e. from HPLC, absolute configuration was not determined); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.75-2.02$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CHNCH}_{2} \mathrm{CH}_{2}$), $2.70-2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.88(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.63(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CHNH}), 6.66-6.73(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArCH}), 7.10-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArCH}), 7.38-7.42(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.5\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 51.2(\mathrm{CHN}), 113.0$ (ArCH), 117.2 (ArCH$), 126.2(\mathrm{ArCH}), 127.2(\mathrm{ArCH}), 129.1(\mathrm{ArCH}), 129.4(\mathrm{ArCH})$, $129.5(\mathrm{ArCH}), 137.7(\mathrm{ArC}), 138.3(\mathrm{ArC}), 147.5(\mathrm{ArC})$. Data was in accordance with literature.

N-(4-Methoxyphenyl)-1-phenylethanamine ${ }^{11}$

Prepared according to general procedure D (95%, e.e. 87%). Yellow oil. $\mathrm{t}_{\mathrm{R}}=7.9 \mathrm{~min}$. (R isomer), 8.6 min . (S isomer) (Chiralpak AD, $95 / 5$ hexane/propan-2-ol); $[\alpha]_{\mathrm{D}}-5.6$ (c 0.54 in $\mathrm{CHCl}_{3}, 87 \%$ e.e. from HPLC); lit. ${ }^{25}-4.0$ (c 1.0 in $\mathrm{CHCl}_{3}, 81 \%$ e.e, major isomer S); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.49\left(\mathrm{~d}, 3 \mathrm{H}, J 6.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHN}\right), 3.68(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.78 (bs, $1 \mathrm{H}, \mathrm{NH}$), $4.41\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J} 6.7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHN}\right), 6.46\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right]$, 6.68 [(AX) $\left.)_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.18-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.2$ $\left(\mathrm{CH}_{3} \mathrm{CHN}\right), 54.3\left(\mathrm{CH}_{3} \mathrm{CHN}\right), 55.8\left(\mathrm{CH}_{3} \mathrm{O}\right), 114.6(\mathrm{ArCH}), 114.8(\mathrm{ArCH}), 125.9$ (ArCH), 126.8 (ArCH), 141.6 (ArC), 145.5 (ArC), 151.9 (ArC). Data was in accordance with literature.

N-(4-Methoxyphenyl)-(1,2,3,4-tetrahydronaphthalen-1-yl)amine ${ }^{26}$

Prepared according to general procedure D (41%, e.e. $22 \%)$. Yellow oil. $t_{R}=9.4 \mathrm{~min}$. (minor), 10.2 min. (major) (3-Cellucoat, 99.5/0.5 hexane/propan-2-ol); $[\alpha]_{\mathrm{D}}+3.0$ (c 1.0 in $\mathrm{CHCl}_{3}, 22 \%$ e.e. from HPLC); lit. ${ }^{16}-22.0$ (c 1.0 in $\mathrm{CHCl}_{3}, 91 \%$ e.e. from HPLC, absolute configuration was not determined); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.73-1.98$ (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.75-2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.52-4.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHNH}\right), 6.64\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.80\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right]$, 7.09 - 7.19 (m, 3H, ArCH), 7.40 - 7.43 (m, 1H, ArCH$) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.3$ $\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 52.2(\mathrm{CHN}), 55.9\left(\mathrm{CH}_{3} \mathrm{O}\right), 114.5(\mathrm{ArCH}), 115.0$ $(\mathrm{ArCH}), 126.1(\mathrm{ArCH}), 127.1(\mathrm{ArCH}), 129.0(\mathrm{ArCH}), 129.3(\mathrm{ArCH}), 137.6(\mathrm{ArC})$, $138.3(\mathrm{ArC}), 152.0(\mathrm{ArC})$. Data were in accordance with literature.

N-(4-Methoxyphenyl)-1-phenylpropanamine ${ }^{16}$

Prepared according to general procedure D (95%, e.e. $84 \%)$. Yellow oil. $\mathrm{t}_{\mathrm{R}}=9.2 \mathrm{~min}$. (minor), 10.3 min. (major) (Chiralpak AD, 98/2 hexane/propan-2-ol); $[\alpha]_{D}-26.9$ (c 1.0 in $\mathrm{CHCl}_{3}, 84 \%$ e.e. from HPLC,) lit. ${ }^{16}-24.2$, (c 0.5 in $\mathrm{CHCl}_{3}, 92 \%$ e.e., absolute configuration was not determined); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.94(\mathrm{t}, 3 \mathrm{H}, J 7.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.71-1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.15$ $(\mathrm{t}, 1 \mathrm{H}, J 6.7 \mathrm{~Hz}, \mathrm{CHNH}), 6.46\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.68\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.17-$ $7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 55.8$ $\left(\mathrm{OCH}_{3}\right), 60.6(\mathrm{CHN}), 114.5(\mathrm{ArCH}), 114.8(\mathrm{ArCH}), 126.6(\mathrm{ArCH}), 126.9(\mathrm{ArCH})$, $128.5(\mathrm{ArCH}), 141.8(\mathrm{ArC}), 144.2(\mathrm{ArC}), 151.9(\mathrm{ArC})$. Data was in accordance with literature.

N-(4-Methoxyphenyl)-1-cyclohexylethanamine ${ }^{15}$

Prepared according to general procedure $\mathrm{D}(85 \%$, e.e. $73 \%)$. Yellow oil. $\mathrm{t}_{\mathrm{R}}=9.6 \mathrm{~min}$. (minor), 10.4 min. (major) (Chiralpak AD, 99.5/0.5 hexane/propan-2-ol). $[\alpha]_{\mathrm{D}}+10.5$ (c 0.44 in $\mathrm{CHCl}_{3}, 73 \%$ e.e. from HPLC); lit. ${ }^{15}+18.2$ (c 0.99 in CHCl_{3}, absolute configuration not determined but assumed to be (S) isomer in analogy with other compounds prepared); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.07\left(\mathrm{~d}, 3 \mathrm{H}, J 6.4 \mathrm{~Hz}, \mathrm{CHNCH}_{3}\right), 1.14-$ 1.28 (m, 5H, cyclohexyl ring), $1.39-1.50\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}(\mathrm{NH}) \mathrm{CH}_{3}\right], 1.60-1.82(\mathrm{~m}$, 5 H , cyclohexyl ring), 3.19 - $3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHNH}\right.$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.53\left[(\mathrm{AX})_{2}\right.$, $2 \mathrm{H}, \mathrm{ArCH}], 6.75\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right] ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.4\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{CH}_{2}\right)$, $26.7\left(\mathrm{CH}_{2}\right)$, $28.3\left(\mathrm{CH}_{2}\right)$, $29.7\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{CH}), 54.1(\mathrm{CH}), 55.9\left(\mathrm{OCH}_{3}\right)$, $114.5(\mathrm{ArCH}), 115.0(\mathrm{ArCH}), 142.3(\mathrm{ArC}), 151.6(\mathrm{ArC})$. Data was in accordance with literature.

N-(4-Methoxyphenyl)-1-naphth-1-ylethanamine ${ }^{16}$

Prepared according to general procedure D (71\%, e.e. 74\%). Yellow crystals. m.p. 61 ${ }^{\circ} \mathrm{C}$ (not reported in literature). $\mathrm{t}_{\mathrm{R}}=9.2 \mathrm{~min}$. (minor), 12.4 min . (major) (Chiralpak AD, $95 / 5$ hexane/propan-2-ol); $[\alpha]_{\mathrm{D}}+123.8$ (c 0.44 in $\mathrm{CHCl}_{3}, 74 \%$ e.e. from HPLC); lit. ${ }^{16}$ +80.2 (c 0.44 in $\mathrm{CHCl}_{3}, 98 \%$ e.e., absolute configuration not determined); $\delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.65 (d, $3 \mathrm{H}, J 6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHN}$), 3.67 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.93 (bs, 1 H , $\mathrm{NH}), 5.22\left(\mathrm{q}, 1 \mathrm{H}, J 6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHN}\right), 6.44\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.67\left[(\mathrm{AX})_{2}, 2 \mathrm{H}\right.$, ArCH], 7.42 (t, 1H, J 7.8 Hz, ArH), 7.48 - 7.60 (m, 2H, ArCH), 7.66 (d, 1H, J 7.0 Hz, ArCH), 7.75 (d, 1H, J $8.2 \mathrm{~Hz}, \mathrm{ArCH}), 7.89$ - 7.93 (m, 1H, ArCH), 8.18 (d, 1H, J 7.9 $\mathrm{Hz}, \mathrm{ArCH}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.8\left(\mathrm{CH}_{3} \mathrm{CHN}\right)$, $50.1\left(\mathrm{CH}_{3} \mathrm{CHN}\right), 55.8\left(\mathrm{CH}_{3} \mathrm{O}\right)$, $114.3(\mathrm{ArCH}), 114.9(\mathrm{ArCH}), 122.4(\mathrm{ArCH}), 122.7(\mathrm{ArCH}), 125.5(\mathrm{ArCH}), 126.0$ $(\mathrm{ArCH}), 126.1(\mathrm{ArCH}), 127.4(\mathrm{ArCH}), 129.2(\mathrm{ArCH}), 130.8(\mathrm{ArC}), 134.2(\mathrm{ArC})$, $140.3(\mathrm{ArC}), 141.5(\mathrm{ArC}), 151.9(\mathrm{ArC})$. Data was in accordance with literature.

N-(4-Methoxyphenyl)-1-naphth-2-ylethanamine ${ }^{25}$

Prepared according to general procedure D (86\%, e.e. $86 \%)$. Yellow crystals. m.p. 95 $-96^{\circ} \mathrm{C}$ (not reported in literature). $\mathrm{t}_{\mathrm{R}}=19.5 \mathrm{~min}$. (S isomer), 22.4 min . $(R$ isomer) (Chiralpak AD, 99/1 hexane/propan-2-ol); [$\alpha]_{\mathrm{D}}-26.0$ (c 1.0 in $\mathrm{CHCl}_{3}, 86 \%$ e.e. from HPLC); lit. ${ }^{25}$-23.2 (c 1.0 in $\mathrm{CHCl}_{3}, 96 \%$ e.e., S major isomer); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $1.60\left(\mathrm{~d}, 3 \mathrm{H}, J 6.6 \mathrm{~Hz}, \mathrm{CHNCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.60(\mathrm{q}, 1 \mathrm{H}$, $\left.J 6.6 \mathrm{~Hz}, \mathrm{CHNCH}_{3}\right), 6.54\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.70\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.44-7.51$ (m, 2H, ArH), 7.53 (dd, 1H, J 1.5, $8.6 \mathrm{~Hz}, \mathrm{ArH}$), $7.81-7.85$ (m, 4H, ArH); $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.2\left(\mathrm{CHNCH}_{3}\right), 54.5\left(\mathrm{CHNCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right), 114.7(\mathrm{ArCH}), 114.8$ (ArCH), 124.3 (ArCH$), 124.5(\mathrm{ArCH}), 125.5(\mathrm{ArCH}), 126.0(\mathrm{ArCH}), 127.7(\mathrm{ArCH})$,
$127.8(\mathrm{ArCH}), 128.5(\mathrm{ArCH}), 132.8(\mathrm{ArC}), 133.6(\mathrm{ArC}), 141.6(\mathrm{ArC}), 143.1(\mathrm{ArC})$, $152.0(\mathrm{ArC})$. Data was in accordance with literature.

N-(4-Methoxyphenyl)-1-(4-methoxyphenyl)ethanamine ${ }^{25}$

Prepared according to general procedure D (81\%, e.e. 85%). Yellow oil. $t_{R}=23.9$ min. (minor), 27.1 min . (major) (Chiralcel OD, 99/1 hexane/propan-2-ol); [$\alpha]_{\mathrm{D}}-15.5$ (c 1.1 in $\mathrm{CHCl}_{3}, 85 \%$ e.e. from HPLC); lit. ${ }^{25}-17.8$ (c 1.0 in $\mathrm{CHCl}_{3}, 94 \%$ e.e. for the (S)-enantiomer); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.48\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J} 6.6 \mathrm{~Hz}, \mathrm{CHNCH}_{3}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.38\left(\mathrm{q}, 1 \mathrm{H}, J 6.6 \mathrm{~Hz}, \mathrm{CHNCH}_{3}\right), 6.49\left[(\mathrm{AX})_{2}, 2 \mathrm{H}\right.$, $\mathrm{ArCH}], 6.70\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 6.86\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.28\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right] ;$ $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.0\left(\mathrm{CH}_{3}\right), 53.6(\mathrm{CHNH}), 55.2\left(\mathrm{OCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 113.9$ $(\mathrm{ArCH}), 114.6(\mathrm{ArCH}), 114.7(\mathrm{ArCH}), 126.9(\mathrm{ArCH}), 137.4(\mathrm{ArC}), 141.5(\mathrm{ArC})$, $151.9(\mathrm{ArC}), 158.4(\mathrm{ArC})$. Data was in accordance with literature.

N-(4-Methoxyphenyl)-1-(4-trifluoromethylphenyl)ethanamine ${ }^{25}$

Prepared according to general procedure $\mathrm{D}(72 \%$, e.e. $82 \%)$. Yellow oil. $\mathrm{t}_{\mathrm{R}}=29.1$ min. (minor), 40.1 min . (major) (Chiralcel OD, 99/1 hexane/propan-2-ol); $[\alpha]_{\mathrm{D}}+6.3$ (c 0.32 in $\mathrm{CHCl}_{3}, 82 \%$ e.e. from HPLC); lit. ${ }^{25}+6.5$ (c $1, \mathrm{CHCl}_{3}, 81 \%$ e.e. for (S)enantiomer); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.53\left(\mathrm{~d}, 3 \mathrm{H}, J 6.9 \mathrm{~Hz}, \mathrm{CHNCH}_{3}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 3.88 (bs, 1H, NH), 4.48 (q, 1H, J $6.9 \mathrm{~Hz}, \mathrm{CHNCH}_{3}$), 6.45 [(AX) $\left.2,2 \mathrm{H}, \mathrm{ArCH}\right]$, 6.71 [(AX) 2 , 2H, ArCH], 7.50 (d, 2H, J $8.2 \mathrm{~Hz}, \mathrm{ArCH})$, 7.59 (d, 2H, J $8.2 \mathrm{~Hz}, \mathrm{ArCH})$; $\delta_{\mathrm{F}}\left(235 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-62.3 ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.1\left(\mathrm{CHNCH}_{3}\right), 54.1$ $\left(\mathrm{CHNCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 114.6(\mathrm{ArCH}), 114.9(\mathrm{ArCH}), 124.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}} 272 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $125.7(\mathrm{ArCH}), 126.3(\mathrm{ArCH}), 129.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}} 33 \mathrm{~Hz}, \mathrm{ArCCF}_{3}\right), 141.1(\mathrm{ArC}), 149.8$ $(\mathrm{ArC}), 152.3(\mathrm{ArC})$. Data was in accordance with literature.

N-(4-Methoxyphenyl)-1-(4-nitrophenyl)ethanamine ${ }^{27}$

Prepared according to general procedure D (85\%, e.e. $86 \%)$. Dark yellow oil. $\mathrm{t}_{\mathrm{R}}=$ 43.2 min . (major), 50.9 min . (minor) (Chiralpak AD, $98 / 2$ hexane/propan-2-ol); $[\alpha]_{\mathrm{D}}-$ 25.9 (c 0.54 in $\mathrm{CHCl}_{3}, 86 \%$ e.e. from HPLC); lit. ${ }^{27}+29.8$ (c $0.2, \mathrm{CHCl}_{3}, 95 \%$ e.e. for (R)-enantiomer); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.55\left(\mathrm{~d}, 3 \mathrm{H}, J 6.6 \mathrm{~Hz}, \mathrm{CHNCH}_{3}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.91$ (br. s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 4.52\left(\mathrm{q}, 1 \mathrm{H}, J 6.6 \mathrm{~Hz}, \mathrm{CHNCH}_{3}\right), 6.43\left[(\mathrm{AX})_{2}, 2 \mathrm{H}\right.$, $\mathrm{ArCH}], 6.71\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 7.57\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right], 8.19\left[(\mathrm{AX})_{2}, 2 \mathrm{H}, \mathrm{ArCH}\right] ;$ $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.0\left(\mathrm{CH}_{3} \mathrm{CHN}\right), 54.0(\mathrm{CHNH}), 55.7\left(\mathrm{OCH}_{3}\right), 114.6(\mathrm{ArCH})$, $114.7(\mathrm{ArCH}), 124.0(\mathrm{ArCH}), 126.8(\mathrm{ArCH}), 140.8(\mathrm{ArC}), 147.0(\mathrm{ArC}), 152.3(\mathrm{ArC})$, 153.6 (ArC). Data was in accordance with literature.

References

${ }^{1}$ C. Bakhtiar, E. H. Smith, J. Chem. Soc., Perkin Trans. 1, 1994, 239-244.
${ }^{2}$ K. Krowicki, J. W. Lown, J. Org. Chem., 1987, 52, 3493-3501.
${ }^{3}$ E. Alcalde, M. Alemany, M. Gisbert, Tetrahedron, 1996, 52, 15171-15188.
${ }^{4}$ S. Jones, H. C. Norton, Synlett, 2003, 338-340.
${ }^{5}$ S. Yoshifuji, K. Tanaka, T. Kawai, Y. Nitta, Chem. Pharm. Bull., 1985, 33, 55155521.
${ }^{6}$ C. L. Colin, Tetrahedron: Asymmetry, 1999, 10, 1551-1561.
${ }^{7}$ D. J. Mathre, T. K. Jones, L. C. Xavier, T. J. Blacklock, R. A. Reamer, J. Org. Chem., 1991, 56, 751-762.
${ }^{8}$ M. P. Sibi, S. Manyem, Org. Lett., 2002, 4, 2929-2932.
${ }^{9}$ P. Nongkunsarn, C. A. Ramsden, Tetrahedron, 1997, 53, 3805-3830.
${ }^{10}$ R. Knorr, A. Schnegg, E. Lattke, E. Räpple, Chem. Ber., 1979, 112, 3490-3514.
${ }^{11}$ J. S. M. Samec, A. H. Éll, J.-E. Bäckvall, Chem. Europ. J., 2005, 11, 2327-2334.
${ }^{12}$ J. Barluenga, F. Aznar, Synthesis, 1977, 195-196.
${ }^{13}$ H. Ahlbrecht, S. Fischer, Tetrahedron, 1970, 26, 2837-2848.
${ }^{14}$ K. Bogdanowicz-Szwed, Rocz. Chem., 1977, 51, 267-278.
${ }^{15}$ M. C. Hansen, S. L. Buchwald, Org. Lett., 2000, 2, 713-715.
${ }^{16}$ C. Moessner, C. Bolm, Angew. Chem. Int. Ed., 2005, 44, 7564-7567.
${ }^{17}$ N. De Kimpe, C. Stevens, Tetrahedron, 1991, 47, 3407-3416.
${ }^{18}$ R. Gawinecki, Pol. J. Chem., 1987, 61, 589-598
${ }^{19}$ J. V. B. Kanth, M. Periasamy, J. Org. Chem., 1993, 53, 3156-3157.
${ }^{20}$ B. T. Cho, S. K. Kang, Tetrahedron, 2005, 61, 5725-5734.
${ }^{21}$ S. -F. Zhu, J. -B. Xie, Y. -Z. Zhang, S. Li, Q. -L. Zhou, J. Am. Chem. Soc., 2006, 128, 12886-12891.
${ }^{22}$ B. T. Cho, Y. S. Chun, Tetrahedron: Asymm., 1992, 3, 1583-90.
${ }^{23}$ J. E. Baldwin, D. H. R. Barton, N. J. A. Gutteridge, R. J. Martin, J. Chem. Soc. (C), 1971, 2184-2192.
${ }^{24}$ M. Nakagawa, T. Kawate, T. Kakikawa, H. Yamada, T. Matsui, Teruaki, T. Hino, Tetrahedron, 1993, 49, 1739-48.
${ }^{25}$ A. V. Malkov, M. Figlus, P. Kocovsky, J. Org. Chem., 2008, 73, 3985-3995.
${ }^{26}$ K. Bogdanowicz-Szwed, Rocz. Chem., 1977, 51, 267-278.
${ }^{27}$ I. R. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan, J. Am. Chem. Soc., 2006, 128, 84-86.

