Supplementary Information

Enantioselective synthesis of tetrafluorinated ribose and fructose

Bruno Linclau, *^a A. James Boydell,^a Roxana S. Timofte,^a Kylie J. Brown,^a Victoria Vinader,^b and Alexander C. Weymouth-Wilson

Table of contents:

1)	Determination of the enantioselectivity of the SAD reaction	p1
2)	Confirmation of the <i>ee</i> of 11 and 20	p4
3)	Crystal structure of 22 .	p5
4)	Crystal Structure of 2	p5
5)	HMBC spectra of 2, 5, 6 and 7	p6
6)	¹ H, ¹³ C and ¹⁹ F NMR spectra of 2-7, 9-11, 20-22, 24, 25, 27, 30, 32-34.	p11

1) Determination of the enantioselectivity of the SAD reaction

a) Conversion to (2R)-1,2-dibenzoyloxy-4-bromo-3,3,4,4-tetrafluoro-butane-1,2-diol

To a solution of **9** (0.30 g, 1.25 mmol, 1 equiv) in pyridine (3.00 mL), BzCl (0.58 mL, 4.98 mmol, 4 equiv) was added. The reaction was stirred at RT for 2.5 h. To the reaction was added water (5 mL) and the aqueous phase was extracted with CH₂Cl₂ (3 x 8 mL). The combined organic phase was washed with saturated aqueous NaHCO₃ (2 x 10 mL), 1N aqueous HCl (2 x 10 mL), brine (2 x 10 mL) and dried over MgSO₄, filtered, concentrated *in vacuo* to give the crude as a transparent gel. Column chromatography (Petroleum ether/EtOAc: 90/10) gave the product the title compound as a transparent gel (0.4772 g, 1.06 mmol, 85% yield). **R**_f 0.36 (Petroleum ether/ EtOAc: 90/10). **IR** (Neat): 1728 (s), 1602 (m), 1452 (m), 1274 (s), 1244 (s) cm⁻¹. ¹**H NMR** (CDCl₃, 400 MHz): δ 8.08–7.98 (4H, m), 7.63–7.54 (2H, m), 7.49–7.40 (4H, m), 6.21 (1H, dtd, *J*=16.3, 6.8, 3.5 Hz), 4.91 (1H, ddd, *J*=12.2, 3.4, 1.5 Hz), 4.69 (1H, dd, *J*=12.3, 7.0 Hz) ppm. ¹³**C NMR** (CDCl₃, 100 MHz): δ 165.91 (C), 164.50 (C), 134.09(C), 133.53 (C) 130.24 (2 x C, CH), 129.91 (2 x C), 129.25 (CH), 128.76 (2 x C, CH), 128.60 (2 x C, CH), 128.39 (CH), 116.69 (tt, *J*=310.6, 38.6 Hz), 113.63 (ddt, *J*=262.7, 255.0, 31.9Hz), 67.43 (dd, *J*=30.5, 22.7 Hz, CH), 60.94 (CH₂) ppm. ¹⁹**F NMR** (CDCl₃, 282 MHz): δ -119.64 (1F, app dd, *J*=174.7, 16.0 Hz), -113.47 (1F, d, *J*=174.7 Hz), -64.29 (2F, s) ppm. **LR MS** (ES⁺) m/z (%): 471 and 473 ((M + Na)⁺, 1:1 ratio, 100). **HR MS** (ES⁺): for C₁₈H₁₃⁷⁹Br₁F₄O₄Na₁ (M + Na)⁺: calcd: 470.9826, found 470.9824.

b) Conversion to (2R)-1,2-diacetoxy-4-bromo-3,3,4,4-tetrafluoro-butane-1,2-diol

9 (0.1 g, 0.41mmol) was dissolved in CH_2Cl_2 (3 mL) and Et_3N (0.14 mL, 1.0 mmol) and DMAP (0.005g, 0.04 mmol) were added. Acetyl chloride (0.071 mL, 1.0 mmol) was added dropwise and the reaction stirred at RT for 2 h. The reaction was quenched by the addition of HCl (0.5M, aq, 10 mL). The layers were separated and the aqueous phase extracted with CH_2Cl_2 (2 × 5 mL), the organic phases were combined, dried over MgSO₄, filtered and

concentrated *in vacuo*. Column chromatography (pentane / Et_2O , 80:20) gave the title compound as a colourless oil (0.111 g, 83%).

IR (neat): 1752 (s), 1372 (m), 1203 (s), 1143 (s), 1085 (s). ¹**H NMR** (400 MHz, CDCl₃): δ 5.77 (1H, dtd, J = 16.4, 7.1, 3.3 Hz, C<u>H</u>OAc), 4.60 (1H, ddd, J = 12.3, 3.3, 1.7 Hz, C<u>H</u>HCH), 4.24 (1H, dd, J = 12.2, 7.4 Hz, CH<u>H</u>CH), 2.15 (3H, s, C<u>H</u>₃), 2.07 (3H, s, C<u>H</u>₃) ppm. ¹³C **NMR** (100 MHz, CDCl₃): δ 170.2 (<u>C</u>O), 168.7 (<u>C</u>O), 66.70 (1C, dd, J = 30.1, 22.4 Hz, <u>C</u>HCF₂), 60.1 (<u>C</u>H₂), 20.5 (<u>C</u>H₃), 20.3 (<u>C</u>H₃) ppm. The CF₂CF₂ carbons were not observed. ¹⁹**F NMR** (282 MHz, CDCl₃): δ -64.70 (2F, s, CF₂Br), -114.25 (1F, d, J = 272.9 Hz, CHC<u>F</u>F), -120.21 (1F, ddt, J = 272.9, 17.2, 4.3 Hz, CHCF<u>F</u>) ppm. CIMS: m/z (%):344 and 342 (M+NH₄⁺)⁺ (6, 1:1 ratio) **HRMS (ES⁺)** for C₈H₉⁷⁹BrF₄O₄Na₁ (M + Na)⁺: calcd: 346.9613, found; 346.9513.

Analysis of (2S)-1,2-dibenzoyloxy-4-bromo-3,3,4,4-tetrafluoro-butane-1,2-diol by reverse HPLC (OJ column, IPA/hexane eluent) showed a 83% *ee* when (DHQD)₂PYR was used in the AD of 8 (Figure 1).

Figure 1

Analysis of the (*2R*)-1,2-diacetoxy-4-bromo-3,3,4,4-tetrafluoro-butane-1,2-diol by chiral GC (Chiradex G9511-16 column,) showed a 78% *ee* when (DHQ)₂PYR was used in the AD (Figure 2).

Figure 2

2) Confirmation of the ee of 11 and 20

i) Alkylation under basic conditions.

The *ee* values of **11** were obtained on chiral HPLC with an OJ column. The eluent used for the resolution of **11** was 12% IPA in hexane and the concentration of the samples was 2 mg/ mL. The injection volume was 10 μ L and the flow 1 mL/min. The retention times were 5.8 min for (*S*)-**11** and 6.7 min for (*R*)-**11** (Figure 3).

Figure 3: Chiral HPLC trace (OJ column) of racemic 11.

Chiral HPLC chromatogram of a sample of **11** synthesised by treatment of **9** with Na_2CO_3 and BnBr. When compared to the 83% ee observed by a similar method in section 1 the sample shows no evidence of epimerisation (Figure 4).

Figure 4

ii) Alkylation via the stannylene acetal methodology.

NMR analysis of the Mosher's ester of **20** showed an *ee* of 77% i.e. no reduction in *ee* after alkylation *via* a stannylene acetal (Figure 5).

Figure 5

3) Crystal structure of 22

Thermal ellipsoids drawn at the 50% probability level

Thermal ellipsoids drawn at the 35% probability level

HMBC spectra of 2

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

HMBC of **5**

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

HMBC of 6

HMBC of 7

(2R)-4-bromo-3,3,4,4-tetrafluorobutane-1,2-diol (9)

(2R)-1-Benzyloxy-4-bromo-3,3,4,4-tetrafluorobutan-1-ol (10)

OBn HO_____CF₂CF₂Bi

(2R)-4-bromo-1-(naphth-2-ylmethyloxy)-3,3,4,4-tetrafluorobutan-1-ol (20)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

(2R)-(4-bromo-2-hydroxy-3,3,4,4-tetrafluorobut-1-yl)-2,2-dimethyl propanoate (25)

33

(2R)-(1-benzyloxy-4-bromo-3,3,4,4-tetrafluoro)but-2-yl formate (27)

(2*R*)-(1-benzyloxy-4-bromo-3,3,4,4-tetrafluoro)but-2-yl benzyloxyethanoate (32)

--64.0796

(2R)-(2-benzyloxy-4-bromo-3,3,4,4-tetrafluoro)but-1-yl formate (33)

(2*R*)-(2-benzyloxy-4-bromo-3,3,4,4-tetrafluoro)but-1-yl benzyloxyethanoate 34

(5R)-5-Benzyloxymethyl-3,3,4,4-tetrafluoro-tetrahydrofuran-2-ol 2

(5*R*)-2,5-Bisbenzyloxymethyl-3,3,4,4-tetrafluoro-tetrahydrofuran-2ol (3)

54

(2*S*,5*R*)-5-Benzyloxy-3,3,4,4-tetrafluoro tetrahydropyran-2-ol (4) (α anomer)

(2*R*,5*R*)-5-Benzyloxy-3,3,4,4-tetrafluoro tetrahydropyran-2-ol (4)(β anomer)

(5R)-2,5-Bisbenzyloxymethyl-3,3,4,4-tetrafluoro-tetrahydropyran-2-ol (5)

(5R)-3,3,4,4-Tetrafluoro-tetrahydropyran2,5-diol (6)

(5*R*)-2,5-bishydroxymethyl-3,3,4,4-tetrafluoro-tetrahydropuran-2-ol (7)

