## **Electronic Supplementary Information (ESI) of the manuscript:**

# Shape persistent macrocycles comprising perfluorinated benzene subunits: synthesis, aggregation behaviour and unexpected µ-rod formation

**Lijin Shu,**<sup>*a*</sup> **Marcel Müri**, <sup>*b*</sup> **Ralph Krupke**<sup>*a*</sup> **and Marcel Mayor**\*<sup>*a*</sup> <sup>*a*</sup> Forschungzentrum Karlsruhe GmbH, Institute for Nanotechnology, P. O. Box 3640, D 76021 Karlsruhe, Germany. Fax: +49 7247 82 5685; Tel: +49 7247 82 6392; E-mail: marcel.mayor@kit.edu

<sup>b</sup> University of Basel, Department of Chemistry, St. Johannsring 19, CH-4056 Basel, Switzerland. Fax: +41 61 267 1016; Tel: +41 61 267 1006; E-mail: marcel.mayor@unibas.ch

### **Table of Contents**

| 1. | <b>Concentration and temperature dependent</b><br><sup>1</sup> <b>H-NMR investigations</b> |
|----|--------------------------------------------------------------------------------------------|
| 2. | <b>Determination of the solubility of</b><br><b>SPMs 1-6 in chloroform at 20 °C</b> ESI-12 |
| 3. | <b>Data of Figure 2</b> ESI-13                                                             |
| 4. | <b>Data of Figure 3</b> ESI-14                                                             |

### 1. Concentration and temperature dependent <sup>1</sup>H-NMR investigations

Chemical shifts of the *exo*-annular and the *endo*-annular protons of the macrocycle **2-4** and **6** at different concentrations and temperatures are listed in **Table 1** to **4**. Chemical shifts for the monomer ( $\delta_{Mono}$ ) and the dimer ( $\delta_{Dim}$ ) or association ( $\delta_{Ass}$ ) as well as the dimerization constants ( $K_{Dim}$ ) or association constants ( $K_{Ass}$ ) at different temperatures were obtained by fitting the data to the equation 1 for larger aggregation of cycle **2** and equation 2 for cycle **3**, **4** and **6** according to the dimer-model below applying the Origin® software from Microcal<sup>TM</sup>. Equation 1:  $\delta = \delta_{Mono} + (\delta_{Ass} - \delta_{Mono}) [1 + \{(1 - (4 \cdot K_{Ass} \cdot C_{tot} + 1)^{1/2}/(2 \cdot K_{Ass} \cdot C_{tot})\}]$  Equation 2:  $\delta = \delta_{Mono} + (\delta_{Dim} - \delta_{Mono}) [1 + \{(1 - (8 \cdot K_{Dim} \cdot C_{tot} + 1)^{1/2}/(4 \cdot K_{Dim} \cdot C_{tot})\}]$ 

**Table 1**. Chemical shifts of *exo*-annular ( $H_b$ ) and the *endo*-annular ( $H_a$ ) protons of cycle **2** at different concentrations and temperatures, calculated chemical shifts for monomer, aggregation and association constants.

| Temp (                        | °C) 4  | 0      | 30     |                | 20     |                               | 10     | 0      |                |        |
|-------------------------------|--------|--------|--------|----------------|--------|-------------------------------|--------|--------|----------------|--------|
| Conc. <sup>a</sup>            | Ha     | $H_b$  | Ha     | H <sub>b</sub> | Ha     | H <sub>b</sub> H <sub>a</sub> | $H_b$  | Ha     | H <sub>b</sub> |        |
|                               | •      |        |        |                | -      | -                             | -      |        |                |        |
| 4,621                         | 7,717  | 7,557  | 7,699  | 7,54           | 7,669  | 7,515                         | 7,631  | 7,482  | 7,576          | 7,435  |
| 4,33                          | 7,718  | 7,558  | 7,701  | 7,542          | 7,673  | 7,52                          | 7,633  | 7,484  | 7,58           | 7,441  |
| 4,124                         | 7,719  | 7,559  | 7,702  | 7,543          | 7,675  | 7,521                         | 7,636  | 7,487  | 7,583          | 7,443  |
| 3,883                         | 7,72   | 7,56   | 7,703  | 7,545          | 7,677  | 7,523                         | 7,638  | 7,489  | 7,592          | 7,45   |
| 3,596                         | 7,721  | 7,561  | 7,705  | 7,546          | 7,681  | 7,526                         | 7,642  | 7,493  | 7,595          | 7,454  |
| 3,351                         | 7,722  | 7,562  | 7,708  | 7,548          | 7,683  | 7,528                         | 7,647  | 7,496  | 7,604          | 7,46   |
| 3,064                         | 7,723  | 7,563  | 7,709  | 7,55           | 7,687  | 7,531                         | 7,653  | 7,5    | 7,609          | 7,463  |
| 2,771                         | 7,725  | 7,564  | 7,712  | 7,552          | 7,689  | 7,533                         | 7,655  | 7,502  | 7,614          | 7,469  |
| 2,578                         | 7,726  | 7,565  | 7,714  | 7,554          | 7,694  | 7,536                         | 7,661  | 7,507  | 7,621          | 7,474  |
| 2,377                         | 7,727  | 7,566  | 7,717  | 7,556          | 7,697  | 7,539                         | 7,666  | 7,512  | 7,627          | 7,477  |
| 2,104                         | 7,728  | 7,567  | 7,718  | 7,557          | 7,7    | 7,541                         | 7,672  | 7,518  | 7,633          | 7,484  |
| 1,792                         | 7,73   | 7,568  | 7,719  | 7,559          | 7,702  | 7,544                         | 7,676  | 7,525  | 7,64           | 7,49   |
| 1,409                         | 7,732  | 7,569  | 7,724  | 7,564          | 7,71   | 7,548                         | 7,689  | 7,533  | 7,655          | 7,503  |
| 0,989                         | 7,734  | 7,571  | 7,728  | 7,566          | 7,716  | 7,553                         | 7,7    | 7,541  | 7,674          | 7,52   |
| 0,503                         | 7,735  | 7,574  | 7,731  | 7,57           | 7,722  | 7,562                         | 7,708  | 7,55   | 7,695          | 7,542  |
| $\delta_{Mono}{}^{b}$         | 7,738  | 7,576  | 7,736  | 7,575          | 7,731  | 7,568                         | 7,727  | 7,566  | 7,729          | 7,572  |
|                               | ±0,001 | ±0,001 | ±0,001 | ±0,001         | ±0,001 | ±0,001                        | ±0,003 | ±0,003 | ±0,003         | ±0,004 |
| $\delta_{Ass}{}^{c}$          | 7,293  | 7,187  | 7,247  | 7.187          | 7,095  | 7,203                         | 7,277  | 7,184  | 7,211          | 7,200  |
|                               | ±0,28  | ±0,264 | ±0,263 | ±0,129         | ±0,195 | ±0,082                        | 0,075  | ±0,062 | ±0,037         | ±0,021 |
| K <sup>d</sup>                | 11,8   | 11,0   | 19,6   | 23,4           | 25,6   | 41,4                          | 76,8   | 82,0   | 122,2          | 190,6  |
|                               | ±8,4   | ±8,2   | ±12,8  | ±9,8           | ±9,8   | ±13,2                         | ±22,2  | ±24,2  | ±19,2          | ±29,2  |
| K <sub>Ass</sub> <sup>e</sup> | 11,4   | 4      | 21,4   |                | 33,    | .4                            | 79,4   | 4      | 156,4          | 4      |
|                               | ±8,8   |        | ±14,   | 6              | ±2     | 1,2                           | ±26    | ,8     | ±63.4          | 4      |

<sup>a</sup> Total concentration of cycle **2** (in mM). <sup>b</sup> calculated chemical shift for the aromatic proton of monomer. <sup>c</sup> calculated chemical shift (in ppm) for the aromatic proton of the aggregates. <sup>d</sup> calculated aggregation constant (in M<sup>-1</sup>) for different protons. <sup>e</sup> Average association constant (in M<sup>-1</sup>)

From **Fig. 1**, we get  $A = -15.46 \pm 0.82$ ,  $B = 5602.4 \pm 239.5$ 

Here,  $A = \Delta S/R$ ,  $B = -\Delta H/R$  (R: 8.314 Jmol<sup>-1</sup>K<sup>-1</sup>)

Thus, it can be calculated that,  $\Delta S = A \times R = -15.46 \times 8.314 = -128.5 \pm 6.8 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ ,

 $\Delta H = -B \times R = 5602.4 \times 8.314/1000 = -46.6 \pm 2.0 \text{ KJ} \cdot \text{mol}^{-1},$ 

and at 20°C ,  $\Delta G_{293 k} = \Delta H$  - T $\Delta S$  = - 46.6 - 293\* (-128.5)/1000 = -8.9 ± 4.0 KJ · mol<sup>-1</sup>.



Fig. 1. Van't Hoff plot for self-assembly of cycle 2 in CDCl<sub>3</sub>

| Temp (                       | °C)    | 25             | 15               |                | 5                |                  | -5               |                  | -15              |        |
|------------------------------|--------|----------------|------------------|----------------|------------------|------------------|------------------|------------------|------------------|--------|
| Conc. <sup>a</sup>           | Ha     | H <sub>b</sub> | H <sub>a</sub> I | H <sub>b</sub> | H <sub>a</sub> F | H <sub>b</sub> H | H <sub>a</sub> H | I <sub>b</sub> H | a H <sub>t</sub> | )      |
| 1,59                         | 7,545  | 7,317          | 7,501            | 7,248          | 7,456            | 7,194            | 7,402            | 7,123            | 7,331            | 7,052  |
| 1,08                         | 7,563  | 7,326          | 7,528            | 7,279          | 7,484            | 7,228            | 7,415            | 7,151            | 7,35             | 7,068  |
| 0,83                         | 7,572  | 7,335          | 7,545            | 7,297          | 7,503            | 7,255            | 7,443            | 7,182            | 7,369            | 7,094  |
| 0,63                         | 7,579  | 7,339          | 7,557            | 7,313          | 7,521            | 7,271            | 7,463            | 7,208            | 7,391            | 7,128  |
| 0,48                         | 7,583  | 7,346          | 7,565            | 7,32           | 7,534            | 7,288            | 7,479            | 7,226            | 7,412            | 7,153  |
| 0,35                         | 7,588  | 7,349          | 7,574            | 7,331          | 7,549            | 7,306            | 7,51             | 7,243            | 7,45             | 7,194  |
| 0,27                         | 7,591  | 7,352          | 7,579            | 7,336          | 7,559            | 7,318            | 7,527            | 7,285            | 7,477            | 7,228  |
| 0,2                          | 7,594  | 7,355          | 7,584            | 7,343          | 7,567            | 7,327            | 7,539            | 7,3              | 7,493            | 7,25   |
| 0,15                         | 7,597  | 7,355          | 7,589            | 7,346          | 7,576            | 7,331            | 7,548            | 7,31             | 7,512            | 7,267  |
| $\delta_{Mono}{}^{b}$        | 7,602  | 7,361          | 7,598            | 7,357          | 7,759            | 7,358            | 7,617            | 7,394            | 7,675            | 7,432  |
|                              | ±0,001 | ±0,001         | ±0,001           | ±0,001         | ±0,001           | ±0,003           | ±0,021           | ±0,026           | ±0,066           | ±0,058 |
| $\delta_{\rm Dim}{}^{\rm c}$ | 5,984  | 5,178          | 6,498            | 5,859          | 7,264            | 6,646            | 7,185            | 6,869            | 7,167            | 6,822  |
|                              | ±1,28  | ±1,95          | $\pm 0,368$      | $\pm 0,538$    | ±0,021           | $\pm 0,088$      | 0,055            | ±0,062           | ±0,099           | ±0,067 |
| K <sup>d</sup>               | 11,6   | 9,8            | 39,3             | 26,6           | 182,0            | 123              | 678              | 707              | 2174             | 1556   |
|                              | ±9,9   | ±9,3           | ±11,2            | ±11            | ±15,2            | ±25              | ±304             | ±311             | ±1347            | ±834   |
| K <sub>Dim</sub> e           | 10     | ,7             | 32,9             | )              | 152              | 152,5            |                  | 692,5            |                  | 5      |
|                              | ±10    | ,8             | ±12,             | ,8             | $\pm 54$         | 4,5              | $\pm 32$         | 25,5             | ±16              | 56     |

**Table 2**. Chemical shifts of *exo*-annular ( $H_b$ ) and the *endo*-annular ( $H_a$ ) protons of SPM **3** at different concentrations and temperatures, calculated chemical shifts for monomer and dimer as well as dimerization constants.

<sup>a</sup> Total concentration of cycle **3** (in mM). <sup>b</sup> calculated chemical shift for the aromatic proton of monomer. <sup>c</sup> calculated chemical shift (in ppm) for the aromatic proton of dimer. <sup>d</sup> calculated dimerization constant (in M<sup>-1</sup>) for different protons. <sup>e</sup> Average dimerization constant (in M<sup>-1</sup>)

From **Fig. 2**, we get  $A = -31.9 \pm 1.9$ ,  $B = 10260 \pm 541$ .



Fig. 2. Van't Hoff plot for self- assembly of cycle 3 in CDCl<sub>3</sub>

Here,  $A = \Delta S/R$ ,  $B = -\Delta H/R$  (R: 8.314 Jmol<sup>-1</sup>K<sup>-1</sup>)

So, it can be calculated that,  $\Delta S = A \times R = -31.9 \times 8.314 = -265.2 \pm 15.7 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ ,

 $\Delta H = -B \times R = 10488 \times 8.314/1000 = -85.3 \pm 4.4 \text{ KJ} \cdot \text{mol}^{-1},$ 

and at 20°C ,  $\Delta G_{293 k} = \Delta H$  - T $\Delta S$  = - 85.3 - 293\* (-265.2)/1000 = -7.6 ± 4.8 KJ · mol<sup>-1</sup>.

 $K_{20} = 22.6 (M^{-1})$ 

| Temp (                        | °C) 4       | 0           | 30          |         | 20          |                           | 10       |                | 0                             |        |  |
|-------------------------------|-------------|-------------|-------------|---------|-------------|---------------------------|----------|----------------|-------------------------------|--------|--|
| Conc. <sup>a</sup>            | Ha          | $H_b$       | Ha          | $H_{b}$ | Ha          | $\mathrm{H}_{\mathrm{b}}$ | Ha       | H <sub>b</sub> | H <sub>a</sub> H <sub>b</sub> |        |  |
|                               |             |             |             |         |             |                           | 1        | 1              | -                             |        |  |
| 27,4                          | 7,397       | 6,777       | 7,344       | 6,686   | 7,286       | 6,589                     | 7,223    | 6,485          | 7,17                          | 6,397  |  |
| 24,96                         | 7,405       | 6,785       | 7,354       | 6,7     | 7,292       | 6,597                     | 7,233    | 6,498          | 7,177                         | 6,406  |  |
| 22,84                         | 7,417       | 6,805       | 7,362       | 6,711   | 7,3         | 6,609                     | 7,24     | 6,509          | 7,185                         | 6,416  |  |
| 20,43                         | 7,435       | 6,834       | 7,373       | 6,728   | 7,31        | 6,623                     | 7,247    | 6,52           | 7,188                         | 6,422  |  |
| 18,57                         | 7,451       | 6,858       | 7,387       | 6,75    | 7,322       | 6,641                     | 7,258    | 6,535          | 7,195                         | 6,431  |  |
| 16,7                          | 7,458       | 6,869       | 7,399       | 6,768   | 7,331       | 6,655                     | 7,265    | 6,546          | 7,203                         | 6,442  |  |
| 14,79                         | 7,469       | 6,896       | 7,412       | 6,789   | 7,345       | 6,676                     | 7,278    | 6,565          | 7,213                         | 6,457  |  |
| 12,88                         | 7,479       | 6,903       | 7,426       | 6,811   | 7,358       | 6,696                     | 7,292    | 6,586          | 7,226                         | 6,475  |  |
| 11,15                         | 7,493       | 6,927       | 7,444       | 6,839   | 7,374       | 6,721                     | 7,306    | 6,605          | 7,239                         | 6,494  |  |
| 9,42                          | 7,52        | 6,968       | 7,456       | 6,857   | 7,39        | 6,745                     | 7,321    | 6,63           | 7,25                          | 6,513  |  |
| 8,13                          | 7,543       | 7,008       | 7,477       | 6,892   | 7,405       | 6,772                     | 7,335    | 6,648          | 7,267                         | 6,531  |  |
| 6,724                         | 7,56        | 7,038       | 7,497       | 6,927   | 7,427       | 6,804                     | 7,352    | 6,678          | 7,279                         | 6,557  |  |
| 5,417                         | 7,581       | 7,074       | 7,523       | 6,968   | 7,451       | 6,842                     | 7,378    | 6,718          | 7,299                         | 6,587  |  |
| 4,296                         | 7,592       | 7,098       | 7,548       | 7,012   | 7,479       | 6,889                     | 7,399    | 6,752          | 7,323                         | 6,619  |  |
| 2,044                         | 7,668       | 7,207       | 7,618       | 7,135   | 7,562       | 7,001                     | 7,482    | 6,892          | 7,4                           | 6,745  |  |
| $\delta_{Mono}{}^{b}$         | 7,756       | 7,352       | 7,737       | 7,377   | 7,745       | 7,247                     | 7,667    | 7,293          | 7,622                         | 7,199  |  |
|                               | ±0,016      | ±0,024      | $\pm 0,007$ | ±0,016  | $\pm 0,008$ | ±0,014                    | ±0,013   | ±0,029         | ±0,021                        | ±0,036 |  |
| $\delta_{\text{Dim}}^{\ \ c}$ | 7,09        | 6,268       | 7,077       | 6,300   | 7,075       | 6,244                     | 7,04     | 6,235          | 7,026                         | 6,200  |  |
|                               | $\pm 0,035$ | $\pm 0,053$ | ±0,012      | ±0,025  | ±0,014      | ±0,022                    | 0,022    | ±0,052         | ±0,037                        | ±0,067 |  |
| K <sup>d</sup>                | 45,4        | 44,2        | 65,7        | 91,6    | 127,3       | 104,9                     | 148,0    | 243,0          | 231,2                         | 375,4  |  |
|                               | ±8,2        | ±7,8        | ±4,8        | ±7,6    | ±7,7        | ±8,0                      | ±13,9    | ±25,2          | ±31,1                         | ±45,1  |  |
| K <sub>Dim</sub> <sup>e</sup> | 44,         | 8           | 78,6        | 5       | 116         | ,1                        | 19       | 5,5            | 303,                          | 303,3  |  |
|                               | $\pm 8,8$   |             | ±20,        | 6       | ±19         | ,2                        | $\pm 72$ | 2,7            | ±11'                          | 7      |  |

**Table 3**. Chemical shifts of *exo*-annular  $(H_b)$  and the *endo*-annular  $(H_a)$  protons s of SPM 4 at different concentrations and temperatures, calculated chemical shifts for monomer, dimer and association constants.

<sup>a</sup> Total concentration of cycle **4** (in mM). <sup>b</sup> calculated chemical shift for the aromatic proton of monomer. <sup>c</sup> calculated chemical shift (in ppm) for the aromatic proton of dimer. <sup>d</sup> calculated dimerization constant (in M<sup>-1</sup>) for different protons. <sup>e</sup> Average dimerization constant (in M<sup>-1</sup>).



Fig. 3. Van't Hoff plot for self- assembly of cycle 4 in CDCl<sub>3</sub>.

From Fig. 3, we get A =  $-9.03 \pm 0.55$ , B =  $4039 \pm 160$ 

Here,  $A = \Delta S/R$ ,  $B = -\Delta H/R$  (R: 8.314 Jmol<sup>-1</sup>K<sup>-1</sup>)

So, it can be calculated that,  $\Delta S = A \times R = -9.03 \times 8.314 = -75.1 \pm 4.6 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ ,

 $\Delta H = -B \times R = 4029 \times 8.314/1000 = -33.6 \pm 1.3 \text{ KJ} \cdot \text{mol}^{-1}$ ,

and at 20°C ,  $\Delta G_{293 k} = \Delta H - T\Delta S = -33.6 - 293* (-75.1)/1000 = -11.6 \pm 2.7 \text{ KJ} \cdot \text{mol}^{-1}$ .

| Temp (°C) 4 0                 |                  |         | 30     |                | 20     |             | 10     |                |                               |        |
|-------------------------------|------------------|---------|--------|----------------|--------|-------------|--------|----------------|-------------------------------|--------|
| Conc.                         | a H <sub>a</sub> | $H_{b}$ | Ha     | H <sub>b</sub> | Ha     | $H_{b}$     | Ha     | H <sub>b</sub> | H <sub>a</sub> H <sub>b</sub> | )      |
| 2                             | 7 672            | 7 1 9 4 | 7607   | 7 1 2 2        | 756    | 7.02        | 7 502  | 6 057          | 7 4 2 2                       | 6 961  |
| 2                             | 7,075            | 7,104   | 7,027  | 7,125          | 7,30   | 7,05        | 7,302  | 0,937          | 7,425                         | 0,804  |
| 1,886                         | 7,676            | 7,189   | 7,634  | 7,131          | 7,577  | 7,051       | 7,507  | 6,962          | 7,431                         | 6,882  |
| 1,752                         | 7,6802           | 7,198   | 7,646  | 7,148          | 7,582  | 7,058       | 7,514  | 6,971          | 7,442                         | 6,889  |
| 1,584                         | 7,692            | 7,221   | 7,656  | 7,163          | 7,596  | 7,078       | 7,523  | 6,983          | 7,452                         | 6,899  |
| 1,397                         | 7,699            | 7,236   | 7,669  | 7,181          | 7,609  | 7,095       | 7,538  | 7,001          | 7,467                         | 6,919  |
| 1,223                         | 7,708            | 7,246   | 7,68   | 7,198          | 7,62   | 7,113       | 7,551  | 7,02           | 7,48                          | 6,929  |
| 1,055                         | 7,716            | 7,257   | 7,685  | 7,212          | 7,638  | 7,131       | 7,571  | 7,043          | 7,49                          | 6,945  |
| 0,909                         | 7,721            | 7,273   | 7,701  | 7,231          | 7,65   | 7,152       | 7,585  | 7,063          | 7,512                         | 6,971  |
| 0,773                         | 7,726            | 7,28    | 7,713  | 7,252          | 7,667  | 7,176       | 7,606  | 7,089          | 7,532                         | 6,995  |
| 0,634                         | 7,734            | 7,29    | 7,722  | 7,263          | 7,686  | 7,207       | 7,627  | 7,122          | 7,554                         | 7,028  |
| 0,351                         | 7,753            | 7,321   | 7,745  | 7,3            | 7,723  | 7,257       | 7,682  | 7,198          | 7,62                          | 7,112  |
| 0,184                         | 7,76             | 7,335   | 7,755  | 7,323          | 7,748  | 7,302       | 7,728  | 7,243          | 7,69                          | 7,205  |
| $\delta_{Mono}^{b}$           | 7,77             | 7,359   | 7,778  | 7,356          | 7,79   | 7,359       | 7,808  | 7,345          | 7,839                         | 7,449  |
|                               | ±0,003           | ±0,006  | ±0,005 | $\pm 0,005$    | ±0,006 | $\pm 0,008$ | ±0,006 | ±0,014         | ±0,013                        | ±0,030 |
| $\delta_{\text{Dim}}^{\ \ c}$ | 6,653            | 6,178   | 6,88   | 6,081          | 7,09   | 6,368       | 7,159  | 6,481          | 7,16                          | 6,576  |
|                               | ±0,448           | ±0,482  | ±0,243 | ±0,181         | ±0,062 | $\pm 0,073$ | 0,017  | ±0,048         | ±0,021                        | ±0,046 |
| K <sup>d</sup>                | 26,6             | 49,9    | 58,6   | 67,2           | 173,3  | 179,0       | 434,0  | 386,0          | 983,2                         | 1461,4 |
|                               | ±12,9            | ±24,8   | ±23,1  | ±14,6          | ±33,1  | ±28,5       | ±37,2  | ±66,2          | ±117,1                        | ±254,0 |
| K <sub>Dim</sub> <sup>e</sup> | 38,              | ,2      | 62,9   | )              | 176    | ,2          | 410,0  |                | 1222                          | 2,3    |
|                               | ±36.             | .4      | ±27,   | ,4             | ±35    | ,9          | ±90    | ),2            | ±492                          | 3      |

**Table 4**. Chemical shifts of *exo*-annular  $(H_b)$  and the *endo*-annular  $(H_a)$  protons of SPM **6** at different concentrations and temperatures, calculated chemical shifts for monomer, dimer and association constants.

<sup>a</sup> Total concentration of cycle **6** (in mM). <sup>b</sup> calculated chemical shift for the aromatic proton of monomer. <sup>c</sup> calculated chemical shift (in ppm) for the aromatic proton of dimer. <sup>d</sup> calculated dimerization constant (in M<sup>-1</sup>) for different protons. <sup>e</sup> Average dimerization constant (in M<sup>-1</sup>)



Fig. 4. Van't Hoff plot for self- assembly of cycle 6 in CDCl<sub>3</sub>.

From Fig. 4, we get A =  $-20.8 \pm 1.0$ , B =  $7611.2 \pm 311.9$ 

Here,  $A = \Delta S/R$ ,  $B = -\Delta H/R$  (R: 8.314 Jmol<sup>-1</sup>K<sup>-1</sup>)

So, it can be calculated that,  $\Delta S = A \times R = -20.8 \times 8.314 = -172.9 \pm 8.3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ ,

 $\Delta H = -B \times R = 7611.2 \times 8.314/1000 = -63.3 \pm 2.5 \text{ KJ} \cdot \text{mol}^{-1}$ ,

and at 20°C ,  $\Delta G_{293 \text{ k}} = \Delta H - T\Delta S = -63.3 - 293^{*} (-172.9)/1000 = -12.6 \pm 4.9 \text{ KJ} \cdot \text{mol}^{-1}$ .



**Fig. 5**. Aromatic regions of the <sup>1</sup>H-NMR spectra of SPM **6** in various concentrations in CDCl<sub>3</sub> at 20°C. The series of spectra illustrates the concentration dependent chemical shifts of the *exo*-annular ( $H_b$ ) and the *endo*-annular ( $H_a$ ) protons.



**Fig. 6**. Aromatic regions of the <sup>1</sup>H-NMR spectra of SPM **6** (1.866 mM) in CDCl<sub>3</sub> recorded at various temperature. The series of spectra illustrates the temperature dependence of the chemical shifts of the *exo*-annular ( $H_b$ ) and the *endo*-annular ( $H_a$ ) protons.

### 2. Determination of the solubility of cycle 1-6 in chloroform at 20 °C

The solubility of various SPMs was determined by the weight of added CHCl3 required to dissolve a known amount of the SPM under investigation. The procedure was the following: To a 5 mL small bottle with cap was added certain SPM. Subsequently, a small portion of CHCl<sub>3</sub> was added and the sample was shacked extensively for some minutes and put it to a 20 °C water bath for several minutes. This process is repeated until the sample was dissolved completely. Then the weight of CHCl<sub>3</sub> added was weighted.

For example, 3.8 mg of SPM **3** with a molecular weight of 1225 g mol<sup>-1</sup> were deposited in the 5 mL flask.

Thus,  $0.0038 \text{ g} / 1225 \text{ g mol}^{-1} = 3.1 \cdot 10^{-6} \text{ mol SPM } 3$  were in the flask.

To dissolve this portion completely 2.33 g CHCl<sub>3</sub> were required. With the density of CHCl<sub>3</sub> of 0.6773 mL/g this corresponds to 1.58 mL CHCl<sub>3</sub>.

The concentration of SPM **3** is given as:

0.0031 mmol/1.58 mL = 0.00196 mol/L or 1.96 mmol/L.

Table 5 : Solubility of macrocycle 1-6 in CHCl<sub>3</sub> at 20 °C

|                         | SPM 1 | SPM <b>2</b> | SPM 3 | SPM 4 | SPM 5 | SPM <b>6</b> |
|-------------------------|-------|--------------|-------|-------|-------|--------------|
| Solubility <sup>a</sup> | 2,75  | 5,15         | 1,96  | 31,0  | 25,1  | 2,64         |
| mM(mMol/L)              |       |              |       |       |       |              |

### 3. Data of Figure 2

| SPM 1          |                  | SPM 2 |            | SPM 3 |            | SPM 4 |            | SPM 5  |            | SPM 6 |            |
|----------------|------------------|-------|------------|-------|------------|-------|------------|--------|------------|-------|------------|
| C <sup>a</sup> | $\delta_A^{\ b}$ | С     | $\delta_A$ | С     | $\delta_A$ | С     | $\delta_A$ | С      | $\delta_A$ | С     | $\delta_A$ |
| 1,724          | 7,743            | 4,621 | 7,631      | 1,59  | 7,476      | 27,4  | 7,223      | 11,062 | 7,057      | 2     | 7,502      |
| 1,438          | 7,744            | 4,33  | 7,633      | 1,08  | 7,506      | 24,96 | 7,233      | 10,257 | 7,06       | 1,886 | 7,507      |
| 1,152          | 7,744            | 4,124 | 7,636      | 0,83  | 7,521      | 22,84 | 7,24       | 9,4681 | 7,064      | 1,752 | 7,514      |
| 0,815          | 7,745            | 3,883 | 7,638      | 0,63  | 7,539      | 20,43 | 7,247      | 8,7936 | 7,069      | 1,584 | 7,523      |
| 0,387          | 7,744            | 3,596 | 7,642      | 0,48  | 7,548      | 18,57 | 7,258      | 7,8944 | 7,073      | 1,397 | 7,538      |
| 0,208          | 7,745            | 3,351 | 7,647      | 0,35  | 7,568      | 16,7  | 7,265      | 6,8039 | 7,083      | 1,223 | 7,551      |
|                |                  | 3,064 | 7,653      | 0,27  | 7,572      | 14,79 | 7,278      | 6,0767 | 7,087      | 1,055 | 7,571      |
|                |                  | 2,771 | 7,655      | 0,2   | 7,577      | 12,88 | 7,292      | 4,9521 | 7,101      | 0,909 | 7,585      |
|                |                  | 2,578 | 7,661      | 0,15  | 7,584      | 11,15 | 7,306      | 4,163  | 7,11       | 0,773 | 7,606      |
|                |                  | 2,377 | 7,666      |       |            | 9,42  | 7,321      | 3,6155 | 7,121      | 0,634 | 7,627      |
|                |                  | 2,104 | 7,672      |       |            | 8,13  | 7,335      | 2,9563 | 7,14       | 0,351 | 7,682      |
|                |                  | 1,792 | 7,676      |       |            | 6,724 | 7,352      | 2,3963 | 7,153      | 0,184 | 7,728      |
|                |                  | 1,409 | 7,689      |       |            | 5,417 | 7,378      | 1,8382 | 7,181      |       |            |
|                |                  | 0,989 | 7,7        |       |            | 4,296 | 7,399      | 1,342  | 7,211      |       |            |
|                |                  | 0,503 | 7,708      |       |            | 2,044 | 7,482      | 0,9125 | 7,254      |       |            |
|                |                  |       |            |       |            |       |            | 0,6232 | 7,302      |       |            |

Table 6: Data for the concentration dependentce of the <sup>1</sup>H NMR chemical shifts of the *endo*-

annular protons ( $\delta_A$ ) of the macrocycles **1-6** in CDCl<sub>3</sub> at 10 °C (in Figure 2)

 ${}^{a}C$  (concentration of cycles in mM),  ${}^{b}\delta_{A}$  (chemical shifts in ppm)

### 4. Data of Figure 3

| SPM 2     |                  | SPM 3   |      | SPM 4   |       | SPM 5   |       | SPM 6   |      |
|-----------|------------------|---------|------|---------|-------|---------|-------|---------|------|
| $1/T^{a}$ | LnK <sup>b</sup> | 1/T     | LnK  | 1/T     | LnK   | 1/T     | LnK   | 1/T     | LnK  |
| 0,00319   | 2,434            | 0,00335 | 2,37 | 0,00319 | 3,802 | 0,00319 | 5,624 | 0,00319 | 3,64 |
| 0,0033    | 3,063            | 0,00347 | 3,49 | 0,0033  | 4,364 | 0,0033  | 6,633 | 0,0033  | 4,14 |
| 0,00341   | 3,508            | 0,00359 | 5,03 | 0,00341 | 4,75  | 0,00341 | 7,536 | 0,00341 | 5,17 |
| 0,00353   | 4,374            | 0,00373 | 6,54 | 0,00353 | 5,275 | 0,00353 | 8,377 | 0,00353 | 6,02 |
| 0,00366   | 5,052            | 0,00387 | 7,53 | 0,00366 | 5,714 | 0,00366 | 9,273 | 0,00366 | 7,1  |

 Table 7: Data for the van't Hoff plot for Figure 3

 ${}^{a}T(K), {}^{b}K(M^{-1}).$