First Total Synthesis of (–)-Caulerpenynol

Laurent Commeiras,* Jérôme Thibonnet and Jean-Luc Parrain*

Aix-Marseille Université, Institut des Sciences Moléculaires de Marseille iSm2, UMR 6263, équipe STeRéO, service 532, Campus Scientifique de Saint Jérôme, 13397 Marseille cedex 20, France

 $laurent.commeiras @univ-cezanne.fr\ and\ jl.parrain @univ-cezanne.fr$

S2	General Experimental Methods					
S3-S16	5 Synthesis procedures and NMR spectrums of 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 and					
S17	Comparison of ¹ H NMR and ¹³ C NMR shifts of natural, synthetic caulerpenynol 2 and					
	iso-caulerpenynol iso-2					
G10						

S18 Superimposition of compound 13 and its TBS analogue 17

General Experimental Methods.

All reactions sensitive to oxygen and moisture were carried out in oven-dried glassware under a slight positive pressure of argon unless otherwise noted.

¹H NMR and ¹³C NMR spectra were recorded on a AC300 or AC500 using the deuterated solvent as internal deuterium lock. Chemical shift data are given in units δ relative to residual protic solvent where δ (chloroform) = 7.26 ppm and δ (benzene) = 7.16 ppm. The multiplicity of a signal is indicated as: br - broad, s - singlet, d - doublet, t - triplet, q - quartet, m - multiplet, dd - doublet of doublets, dt - doublet of triplets, etc. Coupling constants (*J*) are quoted in Hz and recorded to the nearest 0.1 Hz. ¹³C NMR Spectra were recorded on a AC300 or AC500 spectrometer using the deuterated solvent as internal deuterium lock. Chemical shift data are given in units δ relative to residual protic solvent where δ (chloroform) = 77.16 ppm and δ (benzene) = 128.06 ppm. NMR Spectra were assigned using information ascertained from DEPT, HMQC and NOE experiments.

Reagents and solvents were commercial grades and were used as supplied. Dichloromethane, hexane, N,Ndimethylformamide and toluene were distilled from calcium hydride and stored over molecular sieves 4 Å. THF and diethyl ether were distilled from sodium benzophenone prior to use. Triethyl and Pyridine were distilled from KOH prior to use.

Mass spectra (MS) were performed with a triple quadrupole system with a pneumatically assisted electrospray interface. High resolution mass spectra (HRMS) have been performed using a mass spectrometer equipped with a pneumatically assisted atmospheric pressure ionization. The sample was ionized in positive mode electrospray in the following conditions: electrospray voltage (ISV): 5500 V; orifice voltage (OR): 70 V; nebulising gas flow pressure (air): 0.6 psi. The mass spectrum was obtained using a time of flight analyzer (TOF). The measure was realized in triplicate. The sample was dissolved in methanol (500 μ L) then diluted (dilution factor 4/10000) in a methanolic solution of ammonium acetate (3 mM). The sample solution was infused in the ionization source at a 5 μ L/min flow rate.

Analytical thin layer chromatography (TLC) was performed on Merck precoated analytical plates, 0.25 mm thick, silica gel 60 F254. Flash column chromatography was performed on Merck Kieselgel 60 (230–400 mesh).

(S)-3-Triethylsilanyloxy-dihydro-furan-2-one (7). To a stirred solution of alcohol 6 (2.5 g, 24.48 mmol) in DMF (23 mL) was added imidazol (3.67 g, 53.87 mmol), DMAP (299 mg, 2.45 mmol) and TESC1 (4.98 mL, 29.38 mmol). The solution was stirred at room temperature for 5 hours then quenched with saturated aqueous NaHCO₃ solution. The

aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated aqueous NaCl solution, dried over Na₂SO₄ then concentrated under vacuum. The crude product was purified by column of chromatography (SiO₂, 3% NEt₃, petroleum ether-Et₂O, 7/3 to 6/4) to give **7** (5.3 g) in quantitative yield. $[\alpha]^{22}_{D}$ -36.3 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.60-0.69 (6H, m, 3 x CH₂), 0.90-0.98 (9H, m, 3 x CH₃), 2.11-2.25 (1H, m, CH₂), 2.39-2.49 (1H, m, CH₂), 4.11-4.20 (1H, m, CH₂), 4.30-4.40 (2H, m, CH₂ and CH); ¹³C NMR (75 MHz, CDCl₃) δ 4.7 (3 x CH₂), 6.6 (3 x CH₃), 32.5 (CH₂), 64.8 (CH₂), 68.00 (CH), 176.00 (C); HRMS (ESI) calcd for C₁₀H₂₄NO₃Si [M+NH₄]⁺: 234.1519 found 234.1515

(S)-1-Hydroxy-8-methyl-3-(triethylsilyloxy)non-7-en-5-yn-4-one (8). To a solution of 1,1-dibromo-4-methylpent-1,3-diene (7.31 g, 30.46 mmol) in THF (130 mL) was added dropwise, at -78 °C, *n*-butyllithium (2.5 M, 24.4 mL, 61 mmol). The solution was stirred at -78 °C for 1.5 h. then transferred *via* canula to the lactone 7 (6 g, 27.73 mmol) in THF (130 mL) at -78 °C. After warming to -

20 °C, the mixture was quenched with a 9/1 mixture of saturated aqueous NH₄Cl solution and aqueous 33% NH₄OH solution. The aqueous phase was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered then concentrated under vacuum. The crude alcohol was purified by column of chromatography (SiO₂, 3% NEt₃, petroleum ether-Et₂O, 7/3 to 6/4) to give **8** (5.04 g) in 61% yield. $[\alpha]^{22}{}_{\rm D}$ -56.3 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.63 (6H, q, *J* = 7.9 Hz, 3 x CH₂), 0.95 (9H, t, *J* = 7.9 Hz, 3 x CH₃), 1.89 (3H, br s, CH₃), 1.99 (3H, br s, CH₃), 1.97-2.05 (2H, m, CH₂), 2.24 (1H, m, OH), 3.76 (2H, t, *J* = 5.6 Hz, CH₂), 4.39 (1H, br dd, *J* = 5.1 and 6.8 Hz, CH), 5.42 (1H, br s, CH); ¹³C NMR (75 MHz, CDCl₃) δ 4.8 (3 x CH₂), 6.8 (3 x CH₃), 22.0 (CH₃), 25.6 (CH₃), 36.9 (CH₂), 59.4 (CH₂), 77.5 (CH, C3), 89.6 (C), 94.3 (C), 103.7 (CH), 159.2 (C), 189.8 (C); HRMS (ESI) calcd for C₁₆H₂₉O₃Si [M+H]⁺: 297.1880 found 297.1879

(S)-8-Methyl-4-oxo-3-(triethylsilyloxy)non-7-en-5-ynal (9). To a stirred solution of alcohol 8 (1.5 g, 5.06 mmol) in DCM (45 mL) was added at 0°C Dess-Martin périodinane (2.55 g, 6.04 mmol). The mixture was stirred at r.t. and followed by TLC. After disappearance of starting material (2 hours), the solution was poured into a saturated aqueous $Na_2S_2O_3$ / $NaHCO_3$ solution (255 mL, 1/1). After stirring

for 10 mn, the layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated aqueous NaHCO₃ solution, dried over Na₂SO₄ then concentrated under vacuum. The crude aldehyde was purified by column of chromatography (SiO₂, 3% NEt₃, petroleum ether-Et₂O, 8/2) to give **9** (1.27 g) in 85% yield. $[\alpha]^{20}_{D}$ –46.4 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.63 (6H, q, *J* = 8.0 Hz, 3 x CH₂), 0.94 (9H, t, *J* = 8.0 Hz, 3 x CH₃), 1.91 (3H, s, CH₃), 2.00 (3H, s, CH₃), 2.80-2.83 (2H, m, CH₂), 4.68 (1H, br t, *J* = 5.8 Hz, CH), 5.43 (1H, br s, CH), 9.78 (1H, br t, *J* = 1.4 Hz, CH); ¹³C NMR (75 MHz, CDCl₃) δ 4.8 (3 x CH₂), 6.8 (3 x CH₃), 22.1 (CH₃), 25.6 (CH₃), 48.2 (CH₂), 74.3 (CH), 89.4 (C), 95.0 (C), 103.6 (CH), 159.8 (C), 188.0 (C), 199.08 (CH); m/z (ESI+) 295 [M+H]⁺; HRMS (ESI) calcd for C₁₆H₂₇O₃Si [M+H]⁺: 295.1723 found 295.1723

(*E*)-4-Triethylsilyloxy-2-tributylstannyl but-2-en-1-ol (10). To a solution of (*E*)-2tributylstannylbut-2-en-1-ol (9.66 g, 25.61 mmol) in THF (105 mL) at -20 °C was added NEt₃ (7.13 mL, 51.22 mmol) and triethylsilylchloride (4.33 mL, 25.61 mmol). The solution was stirred at -20 °C and followed by TLC. After disappearance of starting material (4 hours) the reaction was quenched with water and the aqueous layer was extracted with Et₂O. The combined organic layers were dried over

Na₂SO₄, filtered and concentrated under vacuum. The crude alcohol was purified by column of chromatography (SiO₂, 3% NEt₃, petroleum ether-Et₂O, 9/1) to give **10** (6.62 g) in 53% yield. ¹H NMR (300 MHz, CDCl₃) δ 0.62 (6H, q, J = 7.7 Hz, 3 x CH₂), 0.86-0.99 (24H, m, 6 x CH₃, 3 x CH₂), 1.25-1.37 (6H, m, 6 x CH₂), 1.44-1.55 (6H, m, 6 x CH₂), 1.82 (1H, br t, J = 5.4 Hz, OH), 4.22 (2H, br d, J = 5.5 Hz, ⁴ $J_{\text{Sn,H}} = 16$ Hz, CH₂), 4.34 (2H, m, ³ $J_{\text{Sn,H}} = 37$ Hz, CH₂), 5.72 (1H, br t, J = 5.4 Hz, ³ $J_{\text{Sn,H}} = 69$ Hz, CH); ¹³C NMR (75 MHz, CDCl₃) δ 4.6 (3 x CH₂), 6.9 (3 x CH₃), 7.9 (¹ $J_{\text{Sn-C}} = 332$ Hz, 3 x CH₂), 13.8 (3 x CH₂), 27.2 (³ $J_{\text{Sn-C}} = 58$ Hz, 3 x CH₂), 29.3 (² $J_{\text{Sn-C}} = 19$ Hz, 3 x CH₂), 60.5 (CH₂), 63.8 (² $J_{\text{Sn-C}} = 24$ Hz, CH₂), 138.9 (² $J_{\text{Sn-C}} = 19$ Hz, CH), 147.5 (C); HRMS (ESI) calcd for C₂₂H₄₉O₂SiSn [M+H]⁺: 493.2522 found 493.2534

(7S,9S,E)-9-Hydroxy-10-(hydroxymethyl)-2-methyl-7,12bis(triethylsilyloxy)dodeca-2,10-dien-4-yn-6-one (11). To a solution of vinyl tin 10 (1.08 g, 2.21 mmol) in THF (31 mL) at -78 °C was added dropwise MeLi.LiBr (2.0 mL, 4.41 mmol, 2.2 M in Et₂O). The reaction mixture was warmed to -35 °C. The mixture was then cooled

to -78° C and aldehyde **9** (620 mg, 2.1 mmol) diluted in minimum of THF was added dropwise at -78° C. The solution was kept at -78° C for 1h and quenched with a 9/1 mixture of saturated aqueous NH₄Cl solution and aqueous 33% NH₄OH solution. The aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by flash chromatography (SiO₂, 3% NEt₃, petroleum ether-Et₂O, 6/4) to give a 7/3 separable mixture of diastereomers **11** (444 mg) in 43% yield. Major diastereomer **11**: $[\alpha]^{21}_{D}$ -32.8 (*c* 1, CHCl₃); ¹H NMR of (300 MHz, CDCl₃) δ 0.55-0.68 (12H, m, 6 x CH₂), 0.91-0.99 (18H, m, 6 x CH₃), 1.90 (3H, s, CH₃), 2.00 (3H, s, CH₃), 2.00-2.15 (2H,m, CH₂), 4.17 (2H,br d, *J* = 2.5 Hz, CH₂), 4.25 (2H,d, *J* = 5.6 Hz, CH₂), 4.41 (1H,d, *J* = 9.2 Hz, CH), 4.51 (1H, br dd, *J* = 4.3 and 6.6 Hz, CH), 5.43 (1H, br s, CH), 5.71 (1H, t, *J* = 5.6 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz) δ 4.4 (CH₂), 4.8 (CH₂), 6.8 (3 x CH₃), 2.00 (CH₃), 25.6 (CH₃), 40.1 (CH₂), 59.1 (CH₂), 72.8 (CH), 77.4 (CH), 89.7 (C), 94.5 (C), 103.7 (CH), 128.5 (CH), 142.4 (C), 159.4 (C), 189.4 (C); m/z (ESI+) 514 [M+NH₄]⁺; HRMS (ESI) calcd for C₂₆H₅₂NO₅Si₂ [M+NH₄]⁺: 514.3378 found 514.3378

(3S,5S,E)-10-Methyl-6-oxo-5-(triethylsilyloxy)-2-(2-

(triethylsilyloxy)ethylidene)undec-9-en-7-yne-1,3-diyl diacetate (12). A solution of diol 11 (70 mg, 0.141 mmol), acetic anhydride (53 μ L, 0.563 mmol) and DMAP (1.7 mg, 0.014 mmol) in pyridine (2 mL) was stirred at r.t. After disappearance of starting material (4 hours), the mixture was quenched with saturated aqueous NaHCO₃ solution. The aqueous layer was extracted with diethyl ether and the organic layers were washed with

saturated aqueous CuSO₄ solution and water, dried over MgSO₄ then concentrated under vacuum. The crude product was purified by column of chromatography (SiO₂, 3% NEt₃, petroleum ether-Et₂O, 85/15) to give **12** (66 mg) in 81% yield. $[\alpha]^{19}_{D}$ –31.5 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.53-0.63 (12H, m, 6 x CH₂), 0.92 (9H, t, *J* = 7.9 Hz, 3 x CH₃), 0.93 (9H, t, *J* = 7.9 Hz, 3 x CH₃), 1.74-1.87 (1H, m, CH₂), 1.91 (3H, s, CH₃), 2.01-2.02 (9H, m, 3 x CH₃), 2.06-2.20 (1H, m, CH₂), 4.23 (1H, dd, *J* = 9.8 and 2.8 Hz, CH), 4.27 (2H, d, *J* = 5.9 Hz, CH₂), 4.57 (1H, d, *J* = 12.7 Hz, CH₂), 4.62 (1H, d, *J* = 12.7 Hz, CH₂), 5.31 (1H, br dd, *J* = 10.6 and 1.9 Hz, CH), 5.44 (1H, br s, CH), 5.83 (1H, t, *J* = 5.9 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz) δ 4.5 (CH₂), 4.8 (CH₂), 6.8 (3 x CH₃), 20.9 (CH₃), 21.1 (CH₃), 22.0 (CH₃), 25.6 (CH₃), 39.6 (CH₂), 59.2 (CH₂), 59.7 (CH₂), 71.9 (CH), 76.0 (CH), 89.4 (C), 94.2 (C), 103.7 (CH), 133.4 (C), 133.7 (CH), 159.3 (C), 169.9 (C), 170.7 (C), 189.4 (C); m/z (ESI+) 598 [M+NH₄]⁺; HRMS (ESI) calcd for C₃₀H₅₆NO₇Si₂ [M+NH₄]⁺: 598.3589 found 598.3584

(3S,5S,E)-10-Methyl-6-oxo-5-(triethylsilyloxy)-2-(2-

(triethylsilyloxy)ethylidene)undec-9-en-7-yne-1,3-diyl diacetate (13). To a stirred solution of CH_3PPh_3Br (307 mg, 8.59 mmol) in THF (0.7 mL) was added *t*-BuOK (77 mg, 0.69 mmol) in THF (0.7 mL). The solution was stirred at 0°C for 30 mn then cooled to -78°C. The ketone **12** (100 mg, 0.172 mmol) diluted in THF (1 mL) was then added. The solution was warmed up to 0°C then quenched with water. The aqueous layer was extracted with Et₂O and the combined organic layers were dried over

Na₂SO₄ then concentrated under vacuum. The crude product was purified by column of chromatography (SiO₂, 3% NEt₃, petroleum ether-Et₂O, 9/1) to give **13** (52 mg) in 53% yield. $[\alpha]^{19}{}_{D}$ -34.0 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.57 (12H, q, *J* = 8.12 Hz, 6 x CH₂), 0.93 (9H, t, *J* = 8.1 Hz, 6 x CH₃), 1.74-1.87 (1H, m, CH₂), 1.81 (3H, s, CH₃), 1.90 (3H, s, CH₃), 1.95-2.08 (1H, m, CH₂), 2.01 (6H, m, 2 x CH₃), 4.20 (2H, dd, *J* = 9.1 and 2.7 Hz, CH), 4.27 (2H, d, *J* = 6.0 Hz, CH₂), 4.56 (1H, d, *J* = 12.5 Hz, CH₂), 5.29-5.37 (3H, m, CH₂ and 2 x CH), 5.43 (1H, br s, CH₂), 5.80 (1H, t, *J* = 6.0 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz) δ 4.5 (3 x CH₂), 4.9 (3 x CH₂), 6.8 (3 x CH₃), 6.9 (3 x CH₃), 20.9 (CH₃), 21.1 (CH₃), 21.2 (CH₃), 25.0 (CH₃), 42.32 (CH₂), 59.3 (CH₂), 59.8 (CH₂), 72.0 (CH), 72.7 (CH), 89.5 (C), 89.9 (C), 105.4 (CH), 119.1 (CH₂), 133.1 (CH), 133.9 (C), 135.7 (C), 149.2 (C), 170.0 (C), 170.8 (C); m/z (ESI+) 596 [M+NH₄]⁺; HRMS (ESI) calcd for C₃₁H₅₈NO₆Si₂ [M+NH₄]⁺: 596.3797 found 596.3790

(3S,5S,E)-2-(2-hydroxyethylidene)-10-methyl-6-methylene-5-(triethylsilyloxy)undec-9-en-7-yne-1,3-diyl diacetate (14). To a stirred solution of 13 (89 mg, 0.154 mmol) in THF (7 mL) was added a mixture of H₂O (700 µL) and AcOH (1.4 mL) dropwise. The mixture was warmed to 40°C and stirred for 12 hours. The mixture was then cooled to 0°C and poured slowly into a suspension of 3g of NaHCO₃ in 20 mL of water. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with saturated aqueous NaHCO₃ solution, dried over Na₂SO₄

then concentrated under vacuum. The crude product was purified by column of chromatography (SiO₂, 3% NEt₃, petroleum ether-EtOAc, 1/1) to give **14** (63 mg) in 88% yield. $[\alpha]^{18}{}_{\rm D}$ –36.9 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 0.52-0.60 (6H, m, 3 x CH₂), 0.93 (9H, t, *J* = 7.9 Hz, 3 x CH₃), 1.74-1.87 (1H, m, CH₂), 1.81 (3H, s, CH₃), 1.90 (3H, s, CH₃), 1.96-2.09 (1H, m, CH₂), 2.02 (6H, br s, 2 x CH₃), 2.37 (1H, m, OH), 4.14-4.27 (3H, m, CH and CH₂), 4.55 (1H, d, *J* = 12.5 Hz, CH₂), 4.74 (1H, d, *J* = 12.5 Hz, CH₂), 5.28 (1H, dd, *J* = 10.4 and 1.8 Hz, CH), 5.34 (1H, br s, CH₂), 5.36 (1H, br s, CH), 5.43 (1H, br s, CH₂), 5.88 (1H, t, *J* = 6.8 Hz, CH); ¹³C NMR (CDCl₃, 75 MHz) δ 4.9 (3 x CH₂), 6.9 (3 x CH₃), 21.0 (CH₃), 21.1 (CH₃), 21.2 (CH₃), 25.0 (CH₃), 42.5 (CH₂), 58.4 (CH₂), 59.7 (CH₂), 71.9 (CH), 72.5 (CH), 89.5 (C), 89.9 (C), 105.3 (CH), 119.1 (CH₂), 131.2 (CH), 135.6 (C), 136.1 (C), 149.3 (C), 170.2 (C), 171.2 (C); m/z (ESI+) 482 [M+NH₄]⁺; HRMS (ESI) calcd for C₂₅H₄₄NO₆Si [M+NH₄]⁺: 482.2932 found 482.2929 Chaptorned

(3S,5S,E)-10-Methyl-6-methylene-2-(2-oxoethylidene)-5-(triethylsilyloxy)undec-9-en-7-yne-1,3-diyl diacetate (15). To a stirred solution of alcohol 14 (58 mg, 0.125 mmol) in DCM (4 mL) was added at 0°C Dess-Martin periodinane (63 mg, 0.15 mmol). The mixture was stirred at r.t. and followed by TLC. After disappearance of starting material (2 hours), the solution was poured into a saturated aqueous Na₂S₂O₃ / NaHCO₃ solution (7 mL, 1/1). After stirring for 10 mn, the layers were separated and the

aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated aqueous NaHCO₃ solution, dried over Na₂SO₄ then concentrated under vacuum. The crude aldehyde was purified by column of chromatography (SiO₂, 3% NEt₃, petroleum ether-EtOAc, 7/3) to give **15** (51 mg) in 89 % yield. $[\alpha]^{19}_{D}$ –18.7 (*c* 1, DCM); ¹H NMR (300 MHz, C₆D₆) δ 0.60-0.68 (6H, m, 3 x CH₂), 1.01 (9H, t, *J* = 7.9 Hz, 3 x CH₃), 1.46 (3H, br s, CH₃), 1.64 (3H, s, CH₃), 1.72 (3H, s, CH₃), 1.84 (3H, br s, CH₃), 2.00-2.04 (2H, m, CH₂), 4.40-4.44 (1H, m, CH), 4.62 (1H, d, *J* = 13.6 Hz, *CH*₂), 4.93 (1H, d, *J* = 13.6 Hz, *CH*₂), 5.39-5.44 (3H, m, CH and CH₂), 5.58-5.62 (1H, m, CH), 6.10 (1H, br d, *J* = 7.4 Hz, CH), 9.93 (1H, d, *J* = 7.4 Hz, CH); ¹³C NMR (C₆D₆, 75 MHz) δ 5.2 (3 x CH₂), 7.1 (3x CH₃), 20.2 (CH₃), 20.3 (CH₃), 21.1 (CH₃), 24.6 (CH₃), 42.5 (CH₂), 59.0 (CH₂), 71.1 (CH), 72.3 (CH), 89.9 (C), 90.9 (C), 105.8 (CH), 119.4 (CH₂), 128.1 (CH), 135.2 (C), 149.4 (C), 156.0 (C), 19.4 (C), 169.6 (C), 189.5 (CH); m/z (ESI+) 480 [M+NH₄]⁺; HRMS (ESI) calcd for C₂₅H₄₂NO₆Si [M+NH₄]⁺: 480.2775 found 480.2774

(3S,5S,Z)-2-(2-Acetoxyvinyl)-10-methyl-6-methylene-5-

(triethylsilyloxy)undeca-1,9-dien-7-yne-1,3-diyl diacetate (16). In a dry Schlenk tube, a solution of 15 (50 mg, 0.108 mmol), DMAP (13 mg, 0.108 mmol), NEt₃ (0.67 mL) and acetic anhydride (30 μ L, 0.324 mmol) was stirred under argon at 80°C and monitored by TLC. After disappearance of the starting material (3 hours), the mixture was concentrated under vacuum.

The crude product was then purified by flash chromatography (SiO₂, 3% NEt₃, petroleum ether-EtOAc, 7/3) to give a 53/47 mixture (40 mg) of **16** and *iso*-**16** in 89 % yield. ¹H NMR (300 MHz, C₆D₆) δ 0.68-0.77 (12H, m, 6 x CH₂), 1.05-1.11 (18H, m, 6 x CH₃), 1.43 (3H, br s, CH₃), 1.45 (3H, br s, CH₃), 1.59 (3H, s, CH₃), 1.67 (3H, s, CH₃), 1.73 (6H, br s, 2 x CH₃), 1.81 (6H, br s, 2 x CH₃), 1.86 (3H, br s, CH₃), 2.00-2.16 (2H, m, 2 x CH₂), 2.42-2.51 (1H, m, CH₂), 2.62-2.72 (1H, m, CH₂), 4.50-4.58 (2H, m, 2 x CH), 5.08 (1H, d, *J* = 7.4 Hz, CH), 5.35-5.48 (6H, m, 6 x CH), 5.74 (1H, d, *J* = 12.7 Hz, CH), 6.36-6.44 (2H, m, 2 x CH₂), 7.31 (1H, d, *J* = 7.4 Hz, CH), 7.34 (1H, s, CH), 6.10 (1H, br d, *J* = 7.4 Hz, CH), 7.93 (1H, d, *J* = 12.7 Hz, CH), 8.17 (1H, s, CH); ¹³C NMR (C₆D₆, 75 MHz) δ 5.3₂ (3 x CH₂), 5.3₄ (3 x CH₂), 7.3 (6 x CH₃), 20.0 (3 x CH₃), 20.1 (CH₃), 20.5 (CH₃), 20.7 (CH₃), 21.0 (CH₃), 21.1 (CH₃), 24.6 (2 x CH₃), 41.7 (CH₂), 42.0 (CH₂), 67.0 (CH), 67.2 (CH), 72.5 (CH), 72.6 (CH), 90.1₁ (C), 90.1₄ (C), 90.7 (C), 90.8 (C), 103.7 (CH), 106.1 (CH), 110.2 (CH), 118.2 (C), 119.2 (CH₂), 119.3 (CH₂), 120.1 (C), 128.4 (CH), 134.6 (CH), 135.3 (CH), 136.4 (C), 136.6 (C), 137.2 (CH), 137.7 (CH), 148.9 (C), 149.0 (C), 166.6 (C), 166.8 (C), 166.9 (C), 167.2 (C), 169.1 (C), 169.2 (C); m/z (ESI+) 522 [M+NH₄]⁺; HRMS (ESI) calcd for C₂₇H₄₄NO₇Si [M+NH₄]⁺: 522.2881 found 522.2880

Caulerpenynol (2). To a stirred solution of **16** (20 mg, 0.0396 mmol) in THF (640 μ L) was added a mixture of 2 mL of AcOH and 1 mL of H₂O. The solution was then heated at 45°C and followed by TLC. After disappearance of the starting material (2 hours) the mixture was poured into a aqueous solution of NaHCO₃ (3 g). The aqueous layer was extracted with EtOAc. The combined organic layers were washed with saturated aqueous NaHCO₃ solution, dried over Na₂SO₄ then concentrated under vacuum. The crude product was purified by column of chromatography (SiO₂, 3% NEt₃,

petroleum ether-EtOAc, 1/1) to give a 52/48 mixture of **2** and *iso*-**2** (12.5 mg) in 81 % yield separable by HPLC.¹

Mixture of caulerpenynol 2 and iso-caulerpenynol iso-2

m/z (ESI+) 408 [M+NH₄]⁺

¹ Semi-preparative separations were performed by successive injections on a Knauer unit composed of a Smartline 1000 pump, a Smartline 3900 autosampler, a Smartline 2500 UV-detector and a valve to collect separately the different isomers. Chiralpak AD ($250 \times 10 \text{ mm}$) was used with hexane/ethanol (95/5) as mobile phase, 5 mL/min as flow-rate and UV at 220 nm.

Caulerpenynol 2

 $[\alpha]^{25}_{D}$ –48.6 (*c* 0.105 in EtOH), (lit., $[\alpha]^{20}_{D}$ –53.7 (*c* 0.095 in EtOH) ¹H NMR (500 MHz, C₆D₆) 1.46 (3H, br s, CH₃), 1.57 (3H, s, CH₃), 1.59 (3H, s, CH₃), 1.71 (3H, s, CH₃), 1.84 (3H, br s, CH₃), 2.00 (1H, ddd, *J* = 14.5, 9.6 and 3.4 Hz, CH₂), 2.69 (1H, ddd, *J* = 14.5, 10.4 and 3.2 Hz, CH₂), 4.30 (1H, br d, *J* = 9.6 Hz, CH), 5.39 (1H, br s, CH), 5.46 (1H, br s, CH), 5.53 (1H, br s, CH), 5.77 (1H, d, *J* = 12.7 Hz, CH), 6.53 (1H, dd, *J* = 10.4 and 3.4 Hz, CH), 7.30 (1H, s, CH), 7.92 (1H, d, *J* = 12.7 Hz, CH); ¹³C NMR (C₆D₆, 125 MHz) 19.87 (CH₃), 19.98 (CH₃), 20.46 (CH₃), 21.07 (CH₃), 24.59 (CH₃), 40.74 (CH₂), 67.15 (CH), 70.92 (CH), 89.95 (C), 90.72 (C), 105.91 (CH), 109.93 (CH), 119.15 (CH₂), 119.92 (C), 134.46 (CH), 135.48 (C), 137.34 (CH), 149.06 (C), 166.73 (C), 167.24 (C), 170.00 (C).

HMBC of 2

Iso-caulerpenynol iso-2

 $[\alpha]^{25}_{D}$ –33.2 (*c* 0.295 in EtOH), ¹H NMR (500 MHz, C₆D₆) 1.45 (3H, br s, CH₃), 1.62 (3H, s, CH₃), 1.64 (3H, s, CH₃), 1.66 (3H, s, CH₃), 1.80 (3H, br s, CH₃), 1.98 (1H, ddd, *J* = 14.2, 9.6 and 3.4 Hz, CH₂), 2.53 (1H, ddd, *J* = 14.2, 10.4 and 3.0 Hz, CH₂), 4.30 (1H, br d, *J* = 9.6 Hz, CH), 5.12 (1H, d, *J* = 7.3 Hz, CH), 5.36 (1H, br s, CH), 5.48 (1H, br s, CH), 5.58 (1H, br s, CH), 6.57 (1H, dd, *J* = 10.4 and 3.4 Hz, CH), 7.31 (1H, d, *J* = 7.3 Hz, CH), 8.10 (1H, s, CH); ¹³C NMR (C₆D₆, 125 MHz) 20.00 (CH₃), 20.57 (CH₃), 21.04 (CH₃), 24.57 (CH₃), 40.99 (CH₂), 67.13 (CH), 70.89 (CH), 90.03 (C), 90.57 (C), 103.83 (CH), 105.88 (CH), 118.07 (C), 119.30 (CH₂), 135.33 (CH), 135.52 (C), 137.73 (CH), 149.10 (C), 166.84 (C), 166.97 (C), 170.14 (C).

Comparison of ¹H NMR and ¹³C NMR shifts of natural, synthetic caulerpenynol 2 and iso-caulerênynol iso-2

	¹ H Natural Product	¹ H Synthetic Compound 2	¹ H Synthetic Compound iso-2	¹³ C Natural Product	¹³ C Synthetic Compound 2	¹³ C Synthetic Compound <i>iso-2</i>
12	1.46	1.46	1.45	24.57	24.59	24.57
20 (ou 21)	1.551	1.57	1.62	19.82	19.87	20.00(-2)
21 (ou 20)	1.554	1.59	1.64	19.95	19.98	20.00 (X2)
19	1.69	1.71	1.66	20.42	20.46	20.57
13	1.84	1.84	1.80	21.04	21.07	21.04
5	2.00	2.00	1.98			
5	ddd, <i>J</i> = 14.7, 9.3, 3.3 Hz	ddd, <i>J</i> = 14.5, 9.6, 3.4 Hz	ddd, <i>J</i> = 14.2, 9.6, 3.4 Hz	40.71	40.74	40.00
57	2.68	2.69	2.53	40.71	40.74	40.99
5	ddd, <i>J</i> = 14.7, 10.5, 3.0 Hz	ddd, $J = 14.5$, 10.4, 3.2 Hz	ddd, <i>J</i> = 14.2, 10.4, 3.0 Hz			
6	4.27	4.30	4.30	70.88	70.02	70.89
U	br d, $J = 9.3$ Hz	br d, $J = 9.6$ Hz	br d, $J = 9.6$ Hz	70.00	70.92	/0.89
10	5.38	5.39	5.36	105.87	105.91	105.88
14	5.45	5.46	5.48	110 12	110 15	110 30
14'	5.50	5.53	5.58	117.12	117.15	117.50
2	5.77	5.77	5.12	109.86	100.03	103 83
4	d, <i>J</i> = 12.6 Hz	d, <i>J</i> = 12.7 Hz	d, <i>J</i> = 7.3 Hz	107.00	107.75	105.05
4	6.54	6.53	6.57	67.08	67 15	67 13
-	dd, $J = 10.5$ and 3.3 Hz	dd, $J = 10.4$ and 3.4 Hz	dd, $J = 10.4$ and 3.4 Hz	07.00	07.15	07.15
15	7.30	7.30	8.10	134.39	134.46	135.33
1	7.93	7.92	7.31	137 29	137 34	137 73
1	d, <i>J</i> = 12.6 Hz	d, <i>J</i> = 12.7 Hz	d, <i>J</i> = 7.3 Hz	137.27	137.31	107.75
3				119.85	119.92	118.07
7				135.36	135.48	135.52
8				90.69	90.72	90.57
9				89.87	89.95	90.03
11				149.04	149.06	149.10
17				166.62	166.73	166.84
18				169.91	170.00	170.14
16				167.15	167.24	166.97

