Supplementary Information

[¹⁸F]- and [¹¹C]N-benzyl-isatin sulfonamide analogues as PET tracers for Apoptosis: Synthesis, radiolabeling mechanism, and *in vivo* imaging study of Apoptosis in Fas-treated mice using [¹¹C]WC-98

Dong Zhou,^{*a*} Wenhua Chu,^{*a*} Delphine L. Chen,^{*a*} Qi Wang,^{*a*} David E. Reichert,^{*a*} Justin Rothfuss,^{*a*} Andre D'Avignon,^{*a*} Michael J. Welch^{*a*} and Robert H. Mach^{*a*,*}

^aDivision of Radiological Sciences, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110

^bDepartment of Chemistry, Washington University, One Brookings Dr., St. Louis, Missouri 63130

Table of Contents

1.	Figure S1. RadioTLCs of the reaction mixture of radiosynthesis of [¹⁸ F] 2S3
2.	Figure S2 . Typical HPLC chromatograms for [¹⁸ F] 2 purification
3.	Figure S3. HPLC chromatograms of isatin analogue 2, isatinate 17, and isatin 2
	recyclized from isatinate 17
4.	Figure S4. ESI/MS of isatin analogue 2, isatinate 17, and isatin 2 recyclized from
	isatinate 17S6
5.	Figure S5 . 282 MHz ¹⁹ F NMR spectrum (DMSO-d6) of Bu ₄ NFS7
6.	Figure S6. 282 MHz 19 F NMR spectrum (DMSO-d6) of Bu ₄ NF with addition of N-
	benzyl isatin 21
7.	Figure S7 . 150 MHz ¹³ C NMR (DMSO-d6) Spectrum of N-benzyl isatin 21
8.	Figure S8. 150 MHz ¹³ C NMR Spectrum (DMSO-d6) of N-benzyl isatin 21 treated with
	1M Bu ₄ NOH/H ₂ O

9.	Figure S9. 150 MHz ¹³ C NMR Spectrum (DMSO-d6) of N-benzyl isatin 21 treate	d with
	1 equivalent Bu ₄ NF/H ₂ O	S11
10.	. Figure S10. 150 MHz ¹³ C NMR Spectrum (DMSO-d6) of N-benzyl isatin 21 treat	ed with
	3 equivalents Bu ₄ NF/H ₂ O	S12
11.	. Figure S11. 150 MHz ¹³ C NMR spectrum (DMSO-d6) of 7a	S13
12.	. Figure S12. 150 MHz ¹³ C NMR spectrum (DMSO-d6) of ring-opened 7a	S14
13.	. Figure S13. 150 MHz ¹³ C NMR spectrum (DMSO-d6) of 2	S15
14.	. Figure S14. 150 MHz ¹³ C NMR spectrum (DMSO-d6) of ring-opened 2	S16
15.	. Figure S15. 300 MHz ¹ H NMR spectrum (CDCl ₃) of 2	S17
16.	. Figure S16. 300 MHz ¹ H NMR spectrum (CDCl ₃) of 4	S18
17.	. Figure S17. 300 MHz ¹ H NMR spectrum (CDCl ₃) of 7a	S19
18.	. Figure S18. 300 MHz ¹ H NMR spectrum (CDCl ₃) of 7b	S20
19.	. Figure S19. 300 MHz ¹ H NMR spectrum (CDCl ₃) of 8	S21
20.	. Figure S20. 300 MHz ¹ H NMR spectrum (CDCl ₃) of 12	S22
21.	. Figure S21 . 300 MHz ¹ H NMR spectrum (CDCl ₃) of 13	S23

Figure S1. RadioTLCs of the reaction mixture of radiosynthesis of $[^{18}F]$ 2.

Above: Precursor **7a**, [¹⁸F]fluoride, K₂₂₂, K₂CO₃, DMSO, Microwave;

Bottom: 1 N HCl, Microwave.

Silica Gel TLC place; solvent: 20% MeOH, 80% CH₂Cl₂.

Figure S2. Typical HPLC chromatograms for [¹⁸F]2 purification

Above: UV absorbance at 251 nm;

Bottom: radioactivity (The "rabbit" ears are due to saturation of the radioactive detector) Alltech Econosil 250×10 mm, 10µ; 4.0 mL/min, 251 nm, 800 psi; 24% Acetonitrile, 44%

methanol, 32% Ammonium formate buffer (pH = 4.5)

Time (20 min)

Figure S3. HPLC chromatograms of isatin analogue 2 (bottom), isatinate 17 (middle) and isatin2 recyclized from isatinate 17 (top).

HPLC condition: Alltech Altima C18 $250 \times 4.6 \text{ mm } 10\mu$, gradient: 25% Acetonitrile, 40% ammonium formate buffer (pH = 4.5), 35% Methanol to 35% Acetonitrile, 20% ammonium formate buffer (pH = 4.5), 45% Methanol over 15 min, 1.0 mL/min, 251 nm.

Before Bu₄NOH treatment: 20 µL 1000 ppm 2 injected

Bu₄NOH treatment: 0.1 mg **2** in 100 μ L acetonitrile treated with 2 μ L 1 M Bu₄NOH/H₂O, 20 μ L 1000 ppm injected

1 N HCl treatment: 100 µL 1 N HCl, 1 hour at ambient temperature, 40 µL 500 ppm injected.

Figure S4. ESI/MS of isatin analogue 2 (bottom), isatinate 17 (middle, negative and positive) and isatin 2 recyclized from isatinate 17 (top).

Isatinate and isatin recyclized from isatinate were purified by HPLC (see above)

Pulse Sequence: s2pul

Figure S5. 282 MHz ¹⁹F NMR spectrum (DMSO-d6) of Bu₄NF

Figure S6. 282 MHz 19 F NMR spectrum (DMSO-d6) of Bu₄NF with addition of N-benzyl isatin 21

Figure S7. 150 MHz ¹³C NMR (DMSO-d6) Spectrum of N-benzyl isatin **21**.

Figure S8. 150 MHz ¹³C NMR Spectrum (DMSO-d6) of N-benzyl isatin **21** treated with 1M Bu₄NOH/H₂O (10 mg **21** in 0.6 mL DMSO-d6)

C13_isatin+one-eq-F Pulse Sequence: s2pul

Figure S9. 150 MHz ¹³C NMR Spectrum (DMSO-d6) of N-benzyl isatin **21** treated with 1 equivalent Bu₄NF/H₂O (10 mg **21** in 0.6 mL DMSO-d6)

Figure S10. 150 MHz 13 C NMR Spectrum (DMSO-d6) of N-benzyl isatin 21 treated with 3 equivalents Bu₄NF/H₂O (10 mg 21 in 0.6 mL DMSO-d6)

Figure S11. 150 MHz ¹³C NMR spectrum (DMSO-d6) of **7a** (10 mg **7a** in 0.6 mL DMSO-d6)

Figure S12. 150 MHz ¹³C NMR spectrum (DMSO-d6) of ring-opened **7a** (10 mg **7a** in 0.6 mL DMSO-d6 treated with 20 μ L 1M Bu₄NOH/H₂O)

Figure S13. 150 MHz ¹³C NMR spectrum (DMSO-d6) of 2 (10 mg 2 in 0.6 mL DMSO-d6)

Figure S14. 150 MHz ¹³C NMR spectrum (DMSO-d6) of ring-opened **2**(10 mg **2** in 0.6 mL DMSO-d6 treated with 20 μ L 1M Bu₄NOH/H₂O)

Figure S15. 300 MHz 1 H NMR spectrum (CDCl₃) of 2

Figure S16. 300 MHz 1 H NMR spectrum (CDCl₃) of 4

Figure S17. 300 MHz ¹H NMR spectrum (CDCl₃) of 7a

Figure S18. 300 MHz 1 H NMR spectrum (CDCl₃) of 7b

STANDARD 1H OBSERVE

exp1 std1h

Figure S19. 300 MHz 1 H NMR spectrum (CDCl₃) of 8

Figure S20. 300 MHz ¹H NMR spectrum (CDCl₃) of 12

Figure S21. 300 MHz ¹H NMR spectrum (CDCl₃) of 13