Electronic Supplementary Information

Chemical synthesis of uridine 5'-diphospho 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid

(UDP-Glc-2,3-diNAcA), a key intermediate in cell surface O antigen polysaccharide biosynthesis

in the human respiratory pathogens Bordetella pertussis and Pseudomonas aeruginosa

Martin Rejzek,^{*a,b*} Vellupillai Sri Kannathasan,^{*a*} Corin Wing,^{*a*} Andrew Preston,^{*c*} Erin L. Westman, Joseph S. Lam,^{*d*} James H. Naismith,^{*e*} Duncan J. Maskell^{*f*} and Robert A. Field^{*a,b*} *

^a School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK.

^b Biological Chemistry Department, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK. Fax: +44 (0) 1603 450018; Tel: +44 (0) 1603 450720; E-mail: rob.field@bbsrc.ac.uk

^c Department of Clinical Veterinary Science, University of Bristol, Langford, North Somerset, BS40 5DU, UK.

^d Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.

^e School of Chemistry and Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.

^f Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.

*Corresponding author:

E-mail: rob.field@bbsrc.ac.uk

Tel: +44 (0) 1603 450720

Fax: +44 (0) 1603 450018

CONTENTS:

Synthesis of benzyl 2-acetamido-4,6- <i>O</i> -benzylidene-2-deoxy-α-D-glucopyranoside 5	. S2
Synthesis of benzyl 2-acetamido-4,6- <i>O</i> -benzylidene-2-deoxy-α-D-allopyranoside 7	. S3
Synthesis of benzyl 2-acetamido-3-azido-4,6-O-benzylidene-2,3-dideoxy-α-D-glucopyranoside	9
	S4
Synthesis of benzyl 2,3-diacetamido-2,3-dideoxy-α-D-glucopyranoside 11	S5
Synthesis of 2,3-diacetamido-2,3-dideoxy- α , β -D-glucose 12	S6
NMR data tables for several sugar nucleotides	S 8
NMR spectra of compounds 13, 14 and 15	. S9
Related references	515

Benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy- α -D-glucopyranoside (5). *N*-Acetvl-α-Dglucosamine (3) (20.0 g, 90.4 mmol) was suspended in benzyl alcohol (140 mL) and the suspension was warmed to 95°C under stirring. A saturated solution of anhydrous HCl in benzyl alcohol (10 mL) was added. The suspended material dissolved and turned dark over 20 min. The solution was filtered through sintered glass into vigorously stirring diethyl ether (500 mL). The precipitated solid was removed by filtration, washed thoroughly with diethyl ether, air dried to give crude benzyl 2-acetamido-2-deoxy- α -D-glucopyranoside (4)¹ (26.7 g) that was used without further purification. Fused zinc chloride (27.0 g) dried in an oven was added to a stirred mixture of the benzyl glycoside (4) in freshly distilled benzaldehyde (80 mL) and stirring was continued overnight at room temperature. The homogenous reaction mixture was then dispersed between ice - water and light petroleum. The solid that formed was filtered off, washed repeatedly with hexane and air dried. Recrystallisation gave 5 (32.2 g, 89 % over 2 steps) as elongated prisms. R_f = 0.10 (hexane / ethyl acetate 1:2); mp 263-265°C (1,4-dioxane / propan-2-ol) (lit.,² mp 263-264°C); $[\alpha]^{23}_{D}$ +118 (c 1.0, pyridine) (lit., $[\alpha]^{26}_{D}$ +120); δ_{H} (400 MHz; DMSO- d_{6} ; referenced to solvent residual peak at 2.54 ppm) 8.07 (d, 1H, ${}^{3}J_{2,\rm NH}$ = 7.6 Hz, NH), 7.49-7.34 (m, 10H, aromatic), 5.66 (s, 1H, CHPh), 5.26 (d, 1H, ${}^{3}J_{3,OH} = 4.8$ Hz, 3-OH), 4.83 (bs, 1H, H1), 4.74 (d, 1H, ${}^{2}J_{a,b} = 12.4 \text{ Hz}, CH_{a}H_{b}Ph), 4.53 \text{ (d, 1H, } {}^{2}J_{a,b} = 12.4 \text{ Hz}, CH_{a}H_{b}Ph), 4.22-4.17 \text{ (m, 1H, H6}_{a}), 3.91-$ 3.86 (m, 1H, H2), 3.79-3.75 (m, 3H, H3, H5, H6_b), 3.60-3.55 (m, 1H, H4), 1.89 (s, 3H, CH₃CONH); $\delta_{\rm C}$ (100 MHz; DMSO- d_6 , referenced to solvent peak at 40.45 ppm) 170.5 (s, 1C, CH₃CONH), 138.7 (s, 2C, aromatic), 129.9, 129.2, 129.0, 128.6, 128.5, 127.4 (d, 10C, aromatic), 101.8 (d, 1C, CHPh), 97.9 (d, 1C, C1), 83.1 (d, 1C, C4), 69.5 (t, 1C, CH₂Ph), 69.0 (t, 1C, C6), 68.2 (d, 1C, C3), 63.8 (d, 1C, C5), 55.1 (d, 1C, C2), 23.5 (q, 1C, CH₃CONH); m/z (ESI⁺) 422 $([M+Na]^+, 100\%), 400 ([M+H]^+, 14.8\%), 292 (14.8\%), 126 (13.5\%); m/z (ESI⁻) 398 ([M-H]⁻, 14.8\%), 126 (13.5\%); m/z (ESI⁻) 398 ([M-H]⁻), 126 ([M-H]⁻), 12$ 12.2%), 121 (100); HR-MS calcd for $C_{22}H_{26}NO_6 [M+H]^+$ 400.1755, found 400.1756. NMR spectra

(¹H in CDCl₃ and ¹³C in DMSO- d_6) were in good agreement with literature³ data. Assignment of the spectra differs from Kohlbau *et al.*¹ The situation was clarified with the aid of HSQC data.

Benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-D-allopyranoside (7). To a stirred solution of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy- α -D-glucopyranoside (5) (12.6 g, 32.0 mmol) in pyridine (79 mL), was added methanesulfonyl chloride (6.3 mL, 82.0 mmol) under cooling to 0°C. The mixture was stored at 0°C for 16 h and poured into ice and water. The crystalline product was collected by filtration and washed with diethyl ether (20 mL). The crystals were dissolved in dichloromethane, aqueous layer was separated. The organic layer was dried over Na₂SO₄ and evaporated to give crude benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-Omethanesulfonyl- α -D-glucopyranoside (6) (14.8 g) that was used without further purification. The crude methanesulfonate 6 was dissolved in ethylene glycol monomethyl ether (methyl cellosolve) (176.0 mL) and water (9.3 mL), and sodium acetate (14.8 g, 180 mmol) was added. The solution was refluxed for 48 h. After cooling, the mixture was poured into water and the precipitated product was collected by filtration. The solid was dissolved in dichloromethane and the aqueous layer was separated. The organic layer was dried over $MgSO_4$ and evaporated. The solid was crystallised to give 7 (11.24 g, 89 % over 2 steps) as colourless needles. $R_f = 0.20$ (hexane / ethyl acetate 1:1); mp 204-206°C (MeOH) (lit.,⁴ mp 203-206°C); $[\alpha]^{23}_{D}$ +116.8 (c 1.0, DMSO) (lit.,⁴ $\left[\alpha\right]^{20}_{D}$ +118.5); $\delta_{\rm H}$ (400 MHz; DMSO- d_6 ; referenced to solvent residual peak at 2.54 ppm) 7.91 (d, 1H, ${}^{3}J_{2.\text{NH}} = 8.8$ Hz, NH), 7.51-7.33 (m, 10H, aromatic), 5.69 (s, 1H, CHPh), 5.20 (bs, 1H, 3-OH), 4.76 (d, 1H, ${}^{3}J_{1,2} = 4.4$ Hz, H1), 4.72 (d, 1H, ${}^{2}J_{a,b} = 12.8$ Hz, $CH_{a}H_{b}Ph$), 4.53 (d, 1H, ${}^{2}J_{a,b} = 12.8$ Hz, CH_aH_bPh), 4.22-4.07 (m, 3H, H6_a, H5, H2), 4.02-3.96 (m, 1H, H3), 3.75-3.70 (m, 2H, H6_b, H4), 1.94 (s, 3H, CH₃CONH); δ_{C} (100 MHz; DMSO- d_6 ; referenced to solvent peak at 40.45 ppm) 170.1 (s, 1C, CH₃CONH), 139.0 (s, 1C, aromatic), 138.8 (s, 1C, aromatic), 129.8, 129.1, 128.9,

128.7, 128.4, 127.4 (d, 10C, aromatic), 101.6 (d, 1C, *C*HPh), 97.4 (d, 1C, C1), 79.2 (d, 1C, C4), 69.9 (t, 1C, *C*H₂Ph), 69.3 (t, 1C, C6), 67.5 (d, 1C, C3), 58.3 (d, 1C, C5), 50.7 (d, 1C, C2), 23.4 (q, 1C, *C*H₃CONH); m/z (ESI⁺) 422 ([M+Na]⁺, 100%), 400 ([M+H]⁺, 2.7), 292 (10.8), 149 (18.9); m/z (ESI⁻) 398 ([M-H]⁻, 100%), 147 (21.6); HR-MS calcd for $C_{22}H_{26}NO_6$ [M+H]⁺ 400.1755, found 400.1759. The ¹H NMR spectrum (in CDCl₃) published by Jordaan *et al.*⁵ is incomplete and assigned differently. The situation was clarified with the aid of HSQC data.

Benzyl 2-acetamido-3-azido-4,6-O-benzylidene-2,3-dideoxy-α-D-glucopyranoside (9). To a solution of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy- α -D-allopyranoside (7) (10.0 g, 25.1 mmol) in pyridine (83.2 mL) was added methanesulfonyl chloride (6.6 mL, 85.5 mmol) with cooling to 0°C. The mixture was stored at 0°C overnight and then poured into ice and water. The mixture was extracted with chloroform (3 x 100 mL). The combined organic extracts were washed with 1 M H₂SO₄ (50 mL), dilute aqueous NaHCO₃ (50 mL), water (50 mL) and dried over MgSO₄. Evaporation gave crude benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-Omethanesulfonyl- α -D-allopyranoside (8) (11.2 g) that was used without further purification. The crude methanesulfonate (8) was dissolved in DMF (150 mL) and sodium azide (14.6 g, 224.0 mmol) and tetrabutylammonium hydrogen sulfate (TBAHS) (8.0 g, 23.5 mmol) were added.⁶ The mixture was heated to 100°C for 20 h under vigorous stirring. The mixture was allowed to cool down and poured into water and ice (500 mL). The resulting solid was collected by filtration on sintered glass, washed with water (50 mL) and air dried. The solid was dissolved in chloroform and the solvent was evaporated under reduced pressure. The resulting solid was crystallised twice to give pure 9 (8.7 g, 82 % over 2 steps). $R_f = 0.70$ (hexane / ethyl acetate 1:2); $v_{max}(film)/cm^{-1}$ 2120 (azido group); mp 245.0-245.5°C (EtOH) (lit., ⁴ mp 244-245°C); $[\alpha]^{23}_{D}$ +97.5 (c 1.0, DMSO) (lit., ${}^{4} \left[\alpha\right]_{D}^{20}$ +97.0); δ_{H} (400 MHz; CDCl₃; TMS) 7.50-7.26 (m, 10H, aromatic), 5.69 (d, 1H, ${}^{3}J_{2,NH}$

= 10.0 Hz, NH), 5.61 (s, 1H, CHPh), 4.87 (d, 1H, ${}^{3}J_{1,2}$ = 3.6 Hz, H1), 4.74 (d, 1H, ${}^{2}J_{a,b}$ = 11.6 Hz, CH_aH_bPh), 4.30-4.24 (m, 2H, H6_a, H2), 3.95-3.90 (m, 1H, H3), 3.84-3.75 (m, 2H, H6_b, H5), 3.66 (t, ${}^{3}J_{3,4}$ = ${}^{3}J_{4,5}$ = 9.6 Hz, H4), 1.99 (s, 3H, CH₃CONH); $\delta_{\rm C}$ (100 MHz; CDCl₃; TMS) 168.9 (s, 1C, CH₃CONH), 135.7 (s, 1C, aromatic), 135.5 (s, 1C, aromatic), 128.1, 127.7, 127.5, 127.3, 127.2, 124.9 (d, 10C, aromatic), 100.4 (d, 1C, CHPh), 96.0 (d, 1C, C1), 79.5 (d, 1C, C4), 69.2 (t, 1C, CH₂Ph), 67.8 (t, 1C, C6), 62.3 (d, 1C, C3), 60.1 (d, 1C, C5), 50.4 (d, 1C, C2), 22.3 (q, 1C, CH₃CONH); m/z (ESI⁺) 447 ([M+Na]⁺, 29.7%), 425 ([M+H]⁺, 13.5), 91 (100); m/z (ESI⁻) 423 ([M-H]⁻, 71.6%), 136 (100); HR-MS calcd for C₂₂H₂₄N₄O₅Na [M+Na]⁺ 447.1639, found 447.1642.

Benzyl 2,3-diacetamido-2,3-dideoxy-α-D-glucopyranoside (11). A solution of benzyl 2acetamido-3-azido-4,6-*O*-benzylidene-2,3-dideoxy-α-D-glucopyranoside (9) (3.53 g, 8.3 mmol) in acetic acid 80% (176.0 mL) was heated to 90°C for 45 min. The solution was evaporated under reduced pressure and the remaining acetic acid was removed by co-evaporation with water to give crude benzyl 2-acetamido-3-azido-2,3-dideoxy-α-D-glucopyranoside (10) (2.78 g) that was used without further purification. The crude azide 10 was dissolved in MeOH (246 mL) and palladium, 10% on carbon (700 mg) was added. The mixture was hydrogenated for 1.5 h at 1 atm. The catalyst was removed by filtration through 2 filter papers and washed with MeOH, acetic anhydride (2.5 mL, 26.0 mmol) was added to the filtrate and the solution was evaporated under reduced pressure. The residue was re-crystallised to give pure 11 (2.46 g, 84 % over 2 steps). R_f = 0.54 (dichloromethane / methanol 5:1); mp 265.0-267.0°C (EtOH) (lit.,⁴ mp 267-268°C); [α]²³_D +145.3 (c 1.0, DMSO) (lit.,⁴ [α]²⁰_D +146.5); $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; referenced to solvent residual peak at 2.54 ppm) 7.78 (d, 1H, ³J_{3,NH} = 8.8 Hz, 3-NH), 7.54 (d, 1H, ³J_{2,NH} = 8.8 Hz, 2-NH), 7.47-7.33 (m, 5H, aromatic), 5.04 (d, 1H, ³J_{4,OH} = 14.8 Hz, 4-OH), 4.75-4.73 (m, 2H, H1,

 $CH_{a}H_{b}Ph$), 4.65 (bt, 1H, ${}^{3}J_{6,OH} = 6.0$ Hz, 6-OH), 4.49 (d, 1H, ${}^{2}J_{a,b} = 12.4$ Hz, $CH_{a}H_{b}Ph$), 4.08-4.00 (m, 1H, H3), 3.87-3.82 (m, 1H, H2), 3.71-3.67 (m, 1H, H6_a), 3.60-3.52 (m, 2H, H5, H6_b), 3.36-3.29 (m, 1H, H4), 1.79 (s, 6H, 2 x $CH_{3}CONH$); δ_{C} (100 MHz; DMSO- d_{6} ; referenced to solvent peak at 40.45 ppm) 171.3, 170.6 (s, 2C, 2 x $CH_{3}CONH$), 138.8 (s, 1C, aromatic), 129.2, 128.8, 128.5 (d, 5C, aromatic), 96.4 (d, 1C, C1), 74.6 (d, 1C, C5), 69.2 (d, 1C, C4), 68.8 (t, 1C, $CH_{2}Ph$), 61.6 (t, 1C, C6), 53.2 (d, 1C, C2), 52.4 (d, 1C, C3), 23.9, 23.5 (q, 2C, 2 x $CH_{3}CONH$); m/z (ESI⁺) 375 ([M+Na]⁺, 100%), 353 ([M+H]⁺, 12.2), 245 (20.3), 138 (62.2); m/z (ESI⁻) 351 ([M-H]⁻, 100%), 243 (82.4), 153 (91.9); HR-MS calcd for $C_{17}H_{25}N_{2}O_{6}$ [M+H]⁺ 353.1707, found 353.1708.

2,3-Diacetamido-2,3-dideoxy-\alpha, \beta-D-glucose (12). A solution of benzyl 2,3-diacetamido-2,3dideoxy- α -D-glucopyranoside (11) (2.30 g, 6.5 mmol) in MeOH (50 mL) was hydrogenated with Pd(OH)₂ (20 wt. % Pd on carbon; 230 mg). After 24 h TLC showed incomplete conversion. The mixture was filtered and a new batch of the catalyst (230 mg) was added. After a further 24 h the conversion was complete (by TLC). The catalyst was removed by filtration through 2 filter papers and washed with MeOH. The filtrate was evaporated under reduced pressure and the residue was recrystallised by dissolving it in minimum EtOH and by adding a few drops of diethyl ether to induce turbidity. The crystallisation gave pure 12 (1.58 g, 92 %) as a 3.3:1 α / β equilibrium (by ¹³C NMR). $R_f = 0.15$ (dichloromethane / methanol 5:1); mp 250.0-252.0°C (EtOH / Et₂O) (lit., ⁴ mp 250-251°C); $[\alpha]^{23}_{D}$ -21.0 to -41.0 (c 1.0, DMSO) (lit., $(\alpha)^{20}_{D}$ -21.0 to -41.0); δ_{H} (400 MHz; D₂O, referenced to the methyl resonance of internal acetone at 2.22 ppm) 5.18 (d, ${}^{3}J_{1,2} = 2.4$ Hz, H1_{α}), 4.82 (d, H1_b overlapping with HDO signal), 4.14 (t, ${}^{3}J_{3,4} = {}^{3}J_{2,3} = 10.4$ Hz, H3_a), 3.98-3.89 (m, $H2_{\alpha}$, $H5_{\alpha}$, $H3_{\beta}$, $H6_{\beta}$), 3.86-3.76 (m, $H6_{\alpha,\beta}$), 3.74-3.63 (m, $H2_{\beta}$), 3.56-3.51 (m, $H4_{\alpha,\beta}$, $H5_{\beta}$), 1.99, 1.98 (s, 2 x CH₃CONH); $\delta_{\rm C}$ (100 MHz; D₂O; referenced to the methyl resonance of internal acetone at 30.89 ppm) 175.5, 174.9 (s, 2C, 2 x CH₃CONH α anomer), δ 175.3, 175.0 (s, 2C, 2 x

CH₃CONH β anomer), 95.7 (d, 1C, C1_{β}), 91.0 (d, 1C, C1_{α}), 77.8 (d, 1C, C5_{β}), 72.4 (d, 1C, C5_{α}), 68.4 (d, 1C, C4_{α}), 68.3 (d, 1C, C4_{β}), 61.4 (d, 1C, C6_{β}), 61.2 (t, 1C, C6_{α}), 56.1 (d, 1C, C3_{β}), 55.7 (d, 1C, C2_{β}), 53.0 (d, 1C, C2_{α}), 52.6 (d, 1C, C3_{α}), 22.7, 22.4 (q, 4C, 4 x CH₃CONH); m/z (ESI⁺) 285 ([M+Na]⁺, 100%), 138 (25.7); m/z (ESI⁻) 261 ([M-H]⁻, 21.6%), 202 (13.5), 142 (100); HR-MS calcd for C₁₀H₁₈N₂O₆Na [M+H]⁺ 285.1057, found 285.1060. NMR spectra (¹H and ¹³C in benzene d_6 / DMSO- d_6 4:1⁷ and ¹H and ¹³C NMR in D₂O⁸) were in good agreement with literature data.

GleNAc3N 9,10,a	J _{5,6} 8.13	1.90 a	5.99 d J _{1',2} ' 4.46	~4.37	~4.37	~4.29 m	$4.19 ext{ ddd} \\ J_{5'a,P} 5.6 \\ J_{4,5'a} 3.1 \\ J_{5'-5''} 11 ext{ 8}$	${{J}_{{{\rm{5}}}{{\rm{b}}_{{\rm{p}}}}}}$ 4.25 ddd ${{J}_{{{\rm{5}}}{{\rm{b}}_{{\rm{p}}}}}$ 4.5 ${{J}_{{{\rm{4}}},{{\rm{5}}{\rm{b}}}}}$ 2.6	5.52 dd $J_{1^{1,2^{2}}} 3.2$ $J_{1^{1,p}} 7.2$	3.99 dt $J_{2^{,,3^{,.}}}$ 10.3 $J_{2^{'',p}}$ 3.0	$3.81 ext{ dd}$ $J_{3^{\circ},4^{\circ}}$ 9.3	$3.50 ext{ dd}$ $J_{4^{\circ},5^{\circ}}$ 10.1	3.93 ddd $J_{5^{\circ},6^{\circ}a} 4.9$ $J_{5^{\circ},6^{\circ}b} 2.3$	3.80 dd J _{6"a,6"b} 12.5	3.87 dd	ementary
	5.97 d J _{5,6} 8.13	7.96 d	5.99 d $J_{1'2'}$ 4.36	~4.37	~4.37	~4.30 m	$J_{5,a,P} 5.7$ $J_{4,5'a} 5.7$ $J_{4,5'a} 3.2$	$4.26 ext{ ddd} \ J_{5^{ m b,p}} ext{ 4.5} \ J_{4,5^{ m b}} ext{ 2.6}$	5.54 dd $J_{1^{11},2^{11}}$ 3.3 $J_{1^{11},p}$ 6.9	~4.21 dt ^b J _{2",3} " 9.8	3.39 m	3.67 m $J_{4^{\circ},5^{\circ}}$ 10.0	3.97 ddd $J_{5^{\circ},6^{\circ},a}$ 4.2 $J_{5^{\circ},6^{\circ},b}$ 2.2	3.82 dd J _{6''a,6''b} 12.6	3.88 dd	Material (c,√The Ro
GlcNAcA 11,°	5.96 d J _{5,6} 8.2	7.95 d J _{5,6} 8.2	5.98 d $J_{1^{,2^{*}}}$ 4.4	4.38-4.34 m	4.38-4.34 m	4.29-4.27 m	4.24-4.20 m	4.18-4.13 m	5.52 dd J _{1", 2"} 3.2 J _{1", Pβ} 7.6	4.02 dt $J_{2^{,,3^{,.}}}$ 10.6 $J_{1^{,,2^{,.}}}$ 3.2	$3.81 ext{ dd}$ $J_{3,4} 9.4$ $J_{2^{,3}} 10.6$	3.58 dd $J_{3,.,4^{\circ}}$ 9.4 $J_{4^{\circ},5^{\circ}}$ 10.5	4.16 d $J_{4^{},5^{}} 10.5$	ı	ı	ES) for Or yal Society
Jlc-2,3-diNAc	5.94 d J _{5,6} 8.2	7.93 d J _{5,6} 8.2	$6.00 ext{ d}$ $J_{1,2}$ 4.0	4.38-4.34 m	4.38-4.34 m	4.29-4.27 m	4.25-4.23 m	4.22-4.19 m	5.53 dd $J_{1^{1,2^{\prime\prime}}}$ 3.2 $J_{1^{1,1},PB}$ 7.2	$J_{2^{1},3^{2}}^{2^{2},1^{2}}$ dt 4.08 dt $J_{1^{1},2^{2}}$ 3.2 $J_{1^{1},2^{2}}$ 3.2	4.12 dd $J_{3^{,,4^{,\cdot}}}$ 9.6 $J_{2^{,,3^{,\cdot}}}$ 11.2	$3.62 ext{ dd} J_{3^{\circ},4^{\circ}} 9.6 J_{4^{\circ},5^{\circ}} 10.0$	$3.98 ext{ ddd} J_{4^{1,5^{,.}}} 10.0 J_{5^{,.,6^{,a}}} 4.0 J_{5^{,.,6^{,a}}} 4.0 J_{5^{,.,6^{,a}}} $	$3.81 ext{ dd} J_{6^{,a},6^{,b}} ext{ 12.6.} J_{5^{,,6^{,a}}} ext{ 4.0}$	$3.87 ext{ dd} J_{6^{n}a,6^{n}b} 12.6 J_{5^{n},6^{n}b} 2.4$	rganiế & B v ofichemi
lc-2,3-diNAcA	5.91 d J _{5,6} 8.0	7.85 d J _{5,6} 8.0	$6.01 ext{ d}$ $J_{1,2}^{*}$ 4.4	4.37-4.33 m	4.37-4.33 m	4.28-4.20 m	4.19-4.16 m	4.28-4.20 m	5.56 dd J _{1",2} , 2.4 J _{1",P} 8 7.2	_{72", рв} 2.8 4.16-4.12 т	4.19-4.16 m	3.65 dd $J_{3^{0},4^{0}}$ 9.6 $J_{4^{0},5^{0}}$ 9.6	J ₅ ., ₆ ., _b 2.4 4.28-4.20 m			iorgobecula stry 2009
					Ta	ble 2 ¹³ C NN	IR data for	a series of U	IDP sugar n	ucleotides						
DP-œ-D-sugar	C-2	C-4	C-5	C-6	C-1'	C-2'	C-3'	C-4'	C-5'	C-1"	C-2''	C-3''	C-4''	C-5''	С-6''	Acetyl
GlcNAc 9,4	154.5 s	168.9 s	105.2 d	144.2 d	91.0 d	76.3 d	72.0 d	$85.8 ext{ dd} J_{C4^{+}P} 9.08$	67.5 dt J _{C5} p 5.88	97.0 dd $J_{C1p} 6.41$	$56.2 ext{ dd} J_{C2^{m} p} 8.54$	73.5 d	72.2 d	75.5 d	62.9 t	24.6 q 177.3 s
GlcNAc3N 9,10,a, b	$\sim \! 154.4$	~ 168.9	~ 105.2	~144.2	~ 91.0	~76.3	~72.2	~85.7	~67.7	~96.4	~54.0	~56.4	~69.8	~75.4	~62.8	24.5 177 3
GlcNAcA	152.5 s	167.0 s	103.3 d	142.3 d	p 0.68	74.4 d	70.3 d	83.9 dd ر	65.7 td	94.9 dd	54.1 dd	71.3 d	72.8 d	73.8 d	177.0 s	22.7 q 175 5 s
ile-2,3-diNAc	153.4 s	168.1 s	103.3 d	142.1 d	89.1 d	74.4 d	70.3 d	J _{C4', Pa} 7.2 83.8 dd J _{C4', Pa} 9.9	J _{CS',Pa} 5.0 65.7 dt J _{CS',Pa} 5.3	JCI'', PB 0.1 94.6 dd J _{CI'', PB} 6.0	Jc2'', pp 0.3 52.6 dd Jc2'', pp 9.2	53.1 d	67.9 d	73.8 d	60.9 t	22.7 q 22.5 q 175.4 s
lc-2,3-diNAcA	156.2 s ^f	167.0 s ^r	103.5 d	141.6 d	89.1 d	74.3 d	70.3 d	83.5 dd J _{C4',Ρα} 9.3	65.8 dt J _{C5',Pα} 5.5	$94.3 ext{ dd}$ $J_{ ext{Cl}^{11}, ext{PB}} 5.6$	52.3 dd J _{C2'',PB} 8.8	52.6 d	70.6 d	74.0 d	176.7 s	22.7 q 22.5 q 175.5 s

¹³C NMR Spectrum of Compound **13**

S 12

¹³C NMR Spectrum of Compound 14

- 2 P. H. Gross and R. W. J. Jeanloz, Org. Chem., 1967, **32**, 2759-2763.
- 3 C. Gallo-Rodriguez, O. Varela and R. M. de Lederkremer, Carbohydr. Res., 1998, 305, 163-170.
- 4 W. Meyer zu Reckendorf, Methods in Carbohydrate Chemistry, 1972, 6, 266-269.
- 5 J. H. Jordaan, J. J. Nieuwenhuis and G. J. Lourens, Carbohydr. Res., 1976, 51, 195-206.
- 6 A. Calvo-Mateo and F. G. de las Heras, *Carbohydr. Res.*, 1986, **155**, 266- 271.
- 7 P. K. Agrawal, Phytochemistry, 1992, 31, 3307-3330.
- 8 Y. A. Knirel, E. V. Vinogradov, N. A. Kocharova, A. S. Shashkov, B. A. Dmitriev and N. K. Kochetkov, Carbohydr. Res., 1983, 122, 181-188.
- 9 C. R. Sweet, A. A. Ribeiro and C. R. H. Raetz, J. Biol. Chem., 2004, 279, 25400-25410.
- 10 For info on UDP-Glc-2NAc-3NH₂A see: E. L. Westman, A. Preston, R. A. Field and J. S. Lam, J. Bacteriol., 2008, **190**, 6060-6069.
- 11 M. Rejzek, B. Mukhopadhyay, C. Q. Wenzel, J. S. Lam and R. A. Field, Carbohydr. Res., 2007, 342, 460-466.
- 12 For info on UDP-Man-2,3-diNAcA see: E. L. Westman, D. J. McNally, M. Rejzek, W. L. Miller, V. S. Kannathasan, A. Preston, D. J. Maskell, R. A. Field, J.-R. Brisson, J. S. Lam,
 - Biochem. J., 2007, 405, 123-130.