Electronic Supplementary Information for Radical intermediates in chloroform reactions over triphenylphosphine-protected Au nanoparticles

Marco Conte, Karen Wilson and Victor Chechik*

Department of Chemistry, University of York at Heslington, York, United Kingdom, YO10 5DD

* To whom correspondence may be addressed. E-mail: vc4@york.ac.uk, Fax: (+)-44-1904-432516.

Contents:

Figure S1. EPR spectra of DMPO spin adducts formed during reaction of $CHCl_3$ (a) and $CDCl_3$ (b) over Au/CeO ₂ .	S 3
Figure S2a. TEM image of triphenylphosphone protected gold nanoparticles purified via	
gel permeation chromatography: first fraction set containing bigger particles	S4
Figure S2b. TEM images of triphenylphosphone protected gold nanoparticles purified via	
gel permeation chromatography: second fraction set containing smaller particles.	S5
Figure S3. TEM image of gold triphenylphosphone protected gold nanoparticles after	
treatment with PbO_2 in CH_2Cl_2 solution (1 min).	S 6
Figure S4. EPR spectra of DMPO spin adducts formed during reaction of CDCl ₃ with	
triphenylphosphine protected gold nanoparticles: as prepared (a), PbO ₂ treated (b), and	
treated with PbO ₂ and purified by gel permeation chromatography (c).	S7

Figure S5. Effect of air treatment (20 mL min⁻¹) on the ratio of DMPO spin adducts formed in a reaction of $CDCl_3$ with triphenylphosphine protected gold nanoparticles: sample as prepared (a), and treated for 1 min (b), 10 min (c), and 30 min (d).

Figure S6. Effect of $Ce(SO_4)_2$ on the ratio of DMPO spin adducts formed in a reaction of $CDCl_3$ with triphenylphosphine protected gold nanoparticles: sample as prepared (a), treated with emulsion containing 10^{-2} M. $Ce(SO_4)_2$ (b).

Figure S7. Effect of purification conditions on the activity of gold nanoparticles. EPR spectra of DMPO spin adducts formed from $CDCl_3$ are shown for the following samples of triphenylphosphine protected gold nanoparticles: crude material (a), particles purified using gel permeation chromatography using CH_2Cl_2 as eluent (b); particles purified using gel permeation chromatography using CH_2Cl_2 containing NaBH₄ as eluent (c).

Figure S8. EPR spectra of DMPO spin adducts formed in a reaction of $CDCl_3$ with triphenylphosphine protected gold nanoparticles: sample was exposed to air for 3 days (a), and treated with CH_2Cl_2 containing NaBH₄ (b).

Figure S9. X-ray photoelectron spectroscopy in the P_{2p} region for triphenylphosphine protected gold nanoparticles: as prepared, exposed to air, treated with Ce(SO₄)₂ and PbO₂. S11

Figure S10. ¹H-NMR spectra of triphenylphosphine protected gold nanoparticles purified by gel permeation chromatography. Only trace amount of tetraoctylammonium bromide (δ 1-4 ppm) was detected (peaks at 5.7 ppm and 7.8 ppm are from residual solvent protonss, CH₂Cl₂ and CHCl₃).

Figure S11. Thermal gravimetric analysis (TGA) of triphenylphosphine protected gold nanoparticles. S12

S9

S11

S12

S10

Figure S1. EPR spectra of DMPO spin adducts formed during reaction of $CHCl_3$ (a) and $CDCl_3$ (b) over Au/CeO_2 .

Figure S2a: TEM image of triphenylphosphine protected gold nanoparticles purified *via* gel permeation chromatography: first fraction set containing bigger particles

Figure S2b: TEM images of triphenylphosphine protected gold nanoparticles purified via gel permeation chromatography: second fraction set containing smaller particles.

Figure S3: TEM image of gold triphenylphosphine protected gold nanoparticles after treatment with PbO_2 in CH_2Cl_2 solution (1 min).

Figure S4: EPR spectra of DMPO spin adducts formed during reaction of $CDCl_3$ with triphenylphosphine protected gold nanoparticles: as prepared (a), PbO_2 treated (b), and treated with PbO_2 and purified by gel permeation chromatography (c).

Figure S5: Effect of air treatment (20 mL min⁻¹) on the ratio of DMPO spin adducts formed in a reaction of $CDCl_3$ with triphenylphosphine protected gold nanoparticles: sample as prepared (a), and treated for 1 min (b), 10 min (c), and 30 min (d).

Figure S6: Effect of $Ce(SO_4)_2$ on the ratio of DMPO spin adducts formed in a reaction of $CDCl_3$ with triphenylphosphine protected gold nanoparticles: sample as prepared (a), treated with emulsion containing 10^{-2} M. $Ce(SO_4)_2$ (b).

Figure S7: Effect of purification conditions on the activity of gold nanoparticles. EPR spectra of DMPO spin adducts formed from $CDCl_3$ are shown for the following samples of triphenylphosphine protected gold nanoparticles: crude material (a), particles purified using gel permeation chromatography using CH_2Cl_2 as eluent (b); particles purified using gel permeation chromatography using CH_2Cl_2 containing NaBH₄ as eluent (c).

Figure S8: EPR spectra of DMPO spin adducts formed in a reaction of $CDCl_3$ with triphenylphosphine protected gold nanoparticles: sample was exposed to air for 3 days (a), and treated with CH_2Cl_2 containing NaBH₄ (b).

Figure S9: X-ray photoelectron spectroscopy in the P_{2p} region for triphenylphosphine protected gold nanoparticles: as prepared, exposed to air, treated with Ce(SO₄)₂ and PbO₂.

Figure S10: ¹H-NMR spectra of triphenylphosphine protected gold nanoparticles purified by gel permeation chromatography. Only trace amount of tetraoctylammonium bromide (δ 1-4 ppm) was detected (peaks at 5.7 ppm and 7.8 ppm are from residual solvent protonss, CH₂Cl₂ and CHCl₃).

Figure S11: Thermal gravimetric analysis (TGA) of triphenylphosphine protected gold nanoparticles.