Supporting Information

Synthesis of Novel Pyrrolidine 3,4-Diol Derivatives as Inhibitors of α-L-Fucosidases.

Elena Moreno-Clavijo,^a Ana T. Carmona,^{a*} Yolanda Vera-Ayoso,^a Antonio J. Moreno-Vargas,^a Claudia Bello,^b Pierre Vogel^b and Inmaculada Robina.^{a*}

a. Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain.

 b. Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Federal Institute of Technology (EPFL) 1015 Lausanne, Switzerland

robina@us.es, anatere@us.es

- General Methods and Experimental Procedures	S2-S14
- Copies of ¹ H and ¹³ C NMR spectra of compounds 39 , 40 , 24b , 44 ,	S15-S40
45, 46, 19a, 20b, 21b, 54, 21a, 42, 43, 25b, 47, 49, 19b, 50, 59, 60,	
61, 63, 64, 65, 66.	
- Lineweaver-Burk plots for enzymatic inhibition measurements of	S41-S47
compounds 18a, 18b, 19a, 20a, 21a, 21b.	

General Methods: Optical rotations were measured in a 1.0 cm or 1.0 dm tube with a Perkin–Elmer 241MC spectropolarimeter. ¹H and ¹³C NMR spectra were obtained for solutions in CDCl₃, [d₆]DMSO, CD₃OD and D₂O. All the assignments were confirmed by two-dimensional NMR experiments. The FAB mass spectra were obtained using glycerol or 3-nitrobenzyl alcohol as the matrix. TLC was performed on silica gel HF₂₅₄ (Merck), with detection by UV light charring with H₂SO₄ or with Pancaldi reagent [(NH₄)₆MoO₄, Ce(SO₄)₂, H₂SO₄, H₂O]. Silica gel 60 (Merck, 230 mesh) was used for preparative chromatography.

For experimental procedures, spectroscopic data and NMR spectra for compounds 26-37, 18a, 18b see: A. J. Moreno Vargas, A. T. Carmona, F. Mora, P. Vogel, I. Robina *Chem. Commun.* 2005, 4949 (Supporting Information).

5-deoxy-2,3-*O***-isopropylidene-L-lyxofuranose (41):** To a stirred solution of L-fucose (4 g, 24.36 mmol) in DMF (55 mL) at 0 °C was added 2,2-dimethoxypropane (13.8 mL) and PTSA (90 mg, 0.53 mmol). The reaction was stirred for 3 h at r.t. and then treated with Na₂CO₃. The mixture was filtered and the solution evaporated under reduced presure. The residue was then dissolved in water and washed with petroleum ether. NaIO₄ (6 g, 28 mmol) was added to the aqueous phase and the mixture was stirred for 1 h at r.t. NaOH (1N) was then added until basic pH and the reaction was stirred at r.t. for 1 h. The reaction mixture was then neutralized with HCl (1N) and extracted with ethyl acetate. The organic phase was dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by column chromatography (petroleum ether:ethyl acetate, 3:1) to give pure **41** (2.76 g, 65%). P.f. = 48-50 °C; $\left[\alpha\right]_D^{20}$ -28.0 (*c* 1 in CH₂Cl₂); IR (v cm⁻¹) 3442 (OH), 2985, 2930, 1382, 1210, 1055; CIMS 157 [(M-H₂O + H)⁺, 89%]. Anal. calcd. for C₈H₁₄O₄: C, 55.16; H, 8.10. Found: C,54.90; H, 7.83. Data for α-anomer: ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.31-1.33 (6H, m, 4-Me, C(CH₃)₂), 1.47 (3H, s,

C(CH₃)₂), 2.51 (1H, brs, OH), 4.31 (1H, qd, $J_{4,Me} = 6.3$, $J_{4,3} = 3.0$, 4-H), 4.59-4.64 (2H, m, 2-H, 3-H), 5.34 (1H, s, 1-H). ¹³C NMR (75.4 MHz, CD₃Cl, δ ppm) δ 13.6 (4-Me), 25.2 (C(CH₃)₂), 26.3 (C(CH₃)₂), 76.3 (C-4), 81.2, 86.2 (C-2, C-3), 101.2 (C-1), 112.5 (C(CH₃)₂); Data for β-anomer: ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.32 (3H, m, Me-4), 1.38 (3H, s, C(CH₃)₂), 1.54 (3H, s, C(CH₃)₂), 3.65 (1H, qd, $J_{4,Me} = 6.3$, $J_{4,3} = 3.0$, 4-H), 3.84 (1H, d, $J_{0H,1} = 12.3$, OH), 4.49 (1H, dd, $J_{2,3} = 6.0$, $J_{2,1} = 3.3$, 2-H), 4.54 (1H, dd, 3-H), 4.95 (1H, dd, 1-H). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 13.4 (4-Me), 25.1 (C(CH₃)₂), 26.0 (C(CH₃)₂), 71.9 (C-4), 79.4, 81.2 (C-2, C-3), 96.7 (C-1), 113.1 (C(CH₃)₂).

(Z) and (E)- Ethyl 2,3,7-trideoxy-4,5-O-isopropylidene-L-lyxo-hept-2-enoate (42 and 43): To a solution of 41 (2.66 g, 15.27 mmol) in dry toluene (31 mL), ethoxycarbonyltriphenylmethylenephosphorane (10 g, 28.7 mmol) was added, and the mixture was heated under reflux for 4 h. Then, the solvent was evaporated and the resulting residue was purified by column chromatography (ether:petroleum ether $1:2 \rightarrow 1:1$) to afford 42 (433 mg, 12%) and 43 (2.17 g, 58%), both as oils. Data for 42: $\left[\alpha\right]_{D}^{20}$ +100.7 (c 1.1 in CH₂Cl₂); IR (v cm⁻¹) 3542 (OH), 2983, 2936, 1725 (C=O); ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.17 (3H, d, $J_{Me,6} = 6.3$, 6-Me), 1.28 (3H, t, ${}^{2}J_{H,H} =$ 7.2, CH₂CH₃), 1.39, 1.52 (3H each, 2s, C(CH₃)₂), 3.62 (1H, m, 6-H), 4.15 (2H, q, CH_2CH_3 , 4.29 (1H, dd, $J_{5,4} = 7.5$, $J_{5,6} = 3.0$, 5-H), 5.60 (1H, td, $J_{4,3} = 7.5$, $J_{4,2} = 1.5$, 4-H), 5.92 (1H, dd, $J_{2,3} = 11.7, 2$ -H), 6.44 (1H, dd, 3-H). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 14.3 (CH₂CH₃), 20.6 (6-Me), 24.5, 26.4 (C(CH₃)₂), 60.6 (CH₂CH₃), 65.7 (C-6), 74.9 (C-4), 82.2 (C-5), 108.8 (C(CH₃)₂), 120.1 (C-2), 147.6 (C-3), 166.0 (C=O); CIMS 229 $[(M-Me)^+, 15\%]$, 245 $[(M + H)^+, 2\%]$; CIHRMS m/z found 245.1376, calcd. for $C_{12}H_{21}O_5 (M+H)^+$: 245.1389. Data for **43**: $[\alpha]_D^{20}$ -1.6 (c 1.3 in CH₂Cl₂); IR (v cm⁻¹)

3454 (OH), 2984, 2937, 1722 (C=O), 1372, 1303, 1263; ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.16 (3H, d, $J_{Me,6} = 6.3$, 6-Me), 1.29 (3H, t, CH₂CH₃), 1.40, 1.54 (3H each, 2s, C(CH₃)₂), 3.73 (1H, q, $J_{6,5} = 6.3$, 6-H), 4.03 (1H, t, $J_{5,4} = 6.6$, 5-H), 4.20 (2H, q, ² $J_{H,H} = 7.2$, CH₂CH₃), 4.69 (1H, td, $J_{4,3} = 6.6$, $J_{4,2} = 1.2$, 4-H), 6.07 (1H, dd, $J_{2,3} = 15.6$, 2-H), 6.88 (1H, dd, 3-H). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 14.3 (CH₂CH₃), 19.3 (6-Me), 25.4, 27.8 (C(CH₃)₂), 60.8 (CH₂CH₃), 66.0 (C-6), 76.4 (C-4), 82.7 (C-5), 109.6 (C(CH₃)₂), 123.9 (C-2), 142.6 (C-3), 165.9 (C=O); CIMS 245 [(M + H)⁺, 9%]; CIHRMS *m*/*z* found 245.1390, calcd. for C₁₂H₂₁O₅ (M+H)⁺: 245.1389

Ethyl 2,3,6,7-tetradeoxy-3,6-imino-4,5-*O*-isopropylidene-D-*altro*-heptanoate and ethyl 2,3,6,7-tetradeoxy-3,6-imino-4,5-*O*-isopropylidene-D-*allo*-heptanoate ((2*R* and 2*S*,3*S*,4*R*,5*R*)-2-ethoxycarbonylmethyl-3,4-*O*-isopropylidene-5-methyl-pyrrolidine-

3,4-diol) (**25a and 25b):** A solution of **43** (2.1 g, 8.60 mmol) in dry CH₂Cl₂ was added dropwise to a stirred solution of methanesulphonyl chloride (2.4 mL, 31.1 mmol) in dry pyridine (9 mL) cooled to 0 °C. The mixture was left at r.t. overnight. Then, the mixture was cooled to 0 °C, water was added and the reaction was stirred for 15 min at r.t.. The solvent was evaporated, the crude diluted with dichloromethane, washed with H₂O and brine. The organic phase was dried, filtered and concentrated. The residue was then dissolved in EtOH, cooled to 0 °C, and saturated with NH₃. After 5 days at r.t., the solvent was evaporated and the residue was treated with NH₄OH (25%) and extracted with CH₂Cl₂. The organic phase was dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by column chromatography (ethyl acetate (1% Et₃N) to afford **25a** (1.09 g) and **25b** (0.22 g) (63%, 2 steps). Data for **25a**: $\left[\alpha\right]_{10}^{20}$ -40.5 (*c* 1.2 in CH₂Cl₂); IR (v cm⁻¹) 2980, 2934, 1734 (C=O), 1373, 1263, 1209, 1066, 1045, 872; ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.05 (3H, d, $J_{Me,6} = 7.2$, 6-Me), 1.26 (3H, t, ² $J_{H,H} =$

7.2, CH₂CH₃), 1.29, 1.44 (3H each, 2s, C(CH₃)₂), 2.15 (1H, s, NH), 2.56 (1H, dd, ²J_{2a,2b} = 16.2, $J_{2a,3}$ = 6.6, 2a-H), 2.65 (1H, dd, $J_{2b,3}$ = 7.5, 2b-H), 3.31 (1H, q, 6-H), 3.44 (1H, m, 3-H), 4.15 (2H, q, CH₂CH₃), 4.39 (1H, d, J_{5,4} = 5.7, 5-H), 4.66 (1H, dd, J_{4,3} = 4.7, 4-H). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 14.3 (CH₂CH₃), 17.4 (6-Me), 24.2, 26.1 (C(CH₃)₂), 33.8 (C-2), 56.5 (C-3), 58.7 (C-6), 60.6 (CH₂CH₃), 82.7 (C-4), 87.3 (C-5), 111.1 ($C(CH_3)_2$), 172.1 (C=O); CIMS 245 [(M + H)⁺, 14%], 244 [(M)⁺, 100%]; CIHRMS m/z found 244.1553, calcd. for C₁₂H₂₂NO₄ (M+H)⁺: 244.1549. Anal.calcd. for C₁₂H₂₁NO₄: C, 59.24; H, 8.70; N, 5.76. Found: C, 58.91; H, 8.28; N, 5.68. Data for **25b**: $\left[\alpha\right]_{D}^{20}$ -17.6 (*c* 1.31 in CH₂Cl₂); IR (v cm⁻¹) 3349 (NH), 2981, 2930, 1733 (C=O), 1372; ¹H NMR (300 MHz, CDCl₃, δ ppm) δ 1.21 (3H, d, $J_{Me,6}$ = 6.6, 6-Me), 1.24 (3H, t, ²J_{H,H} =7.2, CH₂CH₃), 1.29, 1.49 (3H each, 2s, C(CH₃)₂), 2.28 (1H, br s, NH), 2.46 $(1H, dd, {}^{2}J_{2a,2b} = 16.2, J_{2a,3} = 9.0, 2a-H), 2.72 (1H, dd, J_{2b,3} = 4.2, 2b-H), 3.20 (1H, m, 6-H)$ H), 3.45 (1H, m, 3-H), 4.09-4.20 (3H, m, 5-H, CH₂CH₃), 4.26 (1H, dd, J_{4,5} = 7.2, J_{4,3} = 5.1, 4-H). ¹³C NMR (75.4 MHz, CDCl₃, δ ppm) δ 14.3 (CH₂CH₃), 19.5 (6-Me), 25.5, 27.5 (C(CH₃)₂), 38.6 (C-2), 59.7 (C-6), 60.7, 60.8 (C-3, CH₂CH₃), 84.7 (C-4), 87.3 (C-5), 117.2 ($C(CH_3)_2$), 172.1 (C=O); CIMS 245 [(M + H)⁺, 6%], 244 [(M)⁺, 54%]; CIHRMS m/z found 244.1544, calcd. for C₁₂H₂₂NO₄ (M+H)⁺: 244.1549.

Ethyl *N*-Benzyloxycarbonyl-2,3,6,7-tetradeoxy-3,6-imino-4,5-*O*-isopropylidene-D*altro*-heptanoate ((2R,3S,4R,5R)-*N*-Benzyloxycarbonyl-2-ethoxycarbonylmethyl-3,4-*O*-isopropylidene-5-methyl-pyrrolidine-3,4-diol) (47): To a solution of 25a (0.866 g, 3.56 mmol) in 1:1 EtOH:H₂O (48 mL), NaHCO₃ (0.51 g, 6.05 mmol) and CbzCl (0.562 mL, 3.92 mmol) were added. After stirring for 2 h at r.t., the mixture was poured into satd. aq. sol. of NaHCO₃ and extracted with AcOEt. The organic phases were dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by column chromatography (ether:petroleum ether 1:2) to give pure **47** (1.21 g, 90%). $\left[\alpha\right]_{D}^{20}$ -76.6 (*c* 1.1 in CH₂Cl₂); IR (v cm⁻¹) 2983, 1732 (C=O), 1703 (C=O); ¹H NMR (500 MHz, DMSO-*d*₆, 353 K, δ ppm) δ 1.12 (3H, d, *J*_{6,Me} = 6.9, 6-Me), 1.18 (3H, t, ²*J*_{H,H} = 7.0, CH₂CH₃), 1.26, 1.38 (3H each, 2s, C(CH₃)₂), 2.49 (1H, dd, ²*J*_{2a,2b} = 16.5, *J*_{2a,3} = 9.0, 2a-H), 3.14 (1H, m, 2b-H), 4.00 (1H, q, 6-H), 4.07 (2H, m, CH₂CH₃), 4.14 (1H, m, 3-H), 4.43 (1H, d, *J*_{5,4} = 6.0, 5-H), 4.83 (1H, t, *J*_{4,3} = 6.0, 4-H), 5.06 (1H, d, ²*J*_{H,H} = 12.5, *CH*₂ of Cbz), 5.11 (1H, d, *CH*₂ of Cbz), 7.31-7.38 (5H, m, H-arom.). ¹³C NMR (125.7 MHz, DMSO-*d*₆, 353 K, δ ppm) δ 13.5 (CH₂CH₃), 16.2 (6-Me), 24.4, 25.2 (C(CH₃)₂), 39.5 (C-2), 56.0 (C-3), 57.9, 59.1 (C-6, *C*H₂CH₃), 65.7 (CH₂ of Cbz), 78.4 (C-4), 82.9 (C-5), 110.4 (*C*(CH₃)₂), 127.2, 127.4, 127.9, 136.4, (C-Ar), 154.0 (C=O of Cbz), 170.2 (COOEt); CIMS 378 [(M + H)⁺, 7%], 377 [(M)⁺, 4%]; CIHRMS *m*/*z* found 378.1930, calcd. for C₂₀H₂₈NO₆ (M+H)⁺: 378.1916.

(2R,3S,4R,5R)-N-Benzyloxycarbonyl-(2-(2-aminophenylcarbamoylmethyl)-3,4-O-

isopropylidene- 5-methylpyrrolidine-3,4-diol (48): A solution of 47 (1.18 g, 3.12 mmol) in 2:1 EtOH: NaOH (90 mL) was heated to 50 °C for 1.5 h. The mixture was neutralized with IRA-120H⁺, filtered and concentrated. The crude acid was then dissolved in DMF and *o*-phenylenediamine (0.371 g, 3.43 mmol), DIPEA (1.07 mL, 6.24 mmol) and pyBOP (1.79 g, 3.43 mmol) were added. The mixture was stirred at r.t. for 4 h. After evaporation of the solvent, the residue was dissolved in CH₂Cl₂ and washed with satd. aq. sol. of citric acid and brine. The organic phase was dried (Na₂SO₄), filtered and concentrated. The resulting residue was purified by column chromatography (CH₂Cl₂:MeOH, 40:1) to give pure **48** (1.22 g, 89%, 2 steps). $[\alpha]_D^{20}$ -49 (*c* 0.95 in CH₂Cl₂); IR (v cm⁻¹) 3446 (NH), 3364 (NH), 3030, 2984, 2932, 1697 (C=O); ¹H NMR (500 MHz, DMSO-*d*₆, 353 K, δ ppm) δ 1.13 (3H, d, *J*_{Me,5} = 7.0, 5-Me), 1.28, 1.44 (3H each, 2s, C(CH₃)₂), 2.63 (1H, dd, ²*J*_{1'a,1'b} = 15.5, *J*_{1'a,2} = 9.0, 1'a-H), 3.31 (1H,

br d, 1'b-H), 4.02 (1H, q, 5-H), 4.23 (1H, m, 2-H), 4.42 (1H, d, $J_{4,3}$ = 6.0, 4-H), 4.67 (2H, brs, NH₂), 4.84 (1H, t, $J_{3,2}$ = 6.0, 3-H), 5.09 (1H, d, ${}^{2}J_{H,H}$ = 12.5, CH₂ of Cbz), 5.12 (1H, d, CH₂ of Cbz), 6.52 (1H, td, J = 7.5, J = 1.5, H-arom.), 6.71 (1H, dd, J = 8.0, J = 1.5, H-arom), 6.90 (1H, td, J = 8.0, J = 1.5, H-arom.), 7.09 (1H, d, J = 7.5, H-arom), 7.29-7.39 (5H, m, H-arom. of Cbz), 8.79 (1H, brs, CONH). ¹³C NMR (125.7 MHz, DMSO- d_{6} , 353 K, δ ppm) δ 16.1 (Me-5), 24.5, 25.6 (C(CH₃)₂), 34.9 (C-1'), 56.3 (C-2), 58.3 (C-5), 65.6 (CH₂ of Cbz), 79.0 (C-3), 82.8 (C-4), 110.3 (C(CH₃)₂), 115.2, 115.7, 123.1, 125.6, 127.2, 127.4, 127.9, 136.5, 142.3 (C-Ar), 154.1 (C=O of Cbz), 169.1 (CONH); CIMS 440 [(M + H)⁺, 8%], 439 [(M)⁺, 18%], 91 (100); CIHRMS m/z found 439.2110, calcd. for C₂₄H₂₉N₃O₅ (M)⁺: 439.2107. Anal. calcd. for C₂₄H₂₉N₃O₅: C, 65.59; H, 6.65; N, 9.56. Found: C, 65.58; H, 6.72; N, 9.13.

(2R,3S,4R,5R)-N-Benzyloxycarbonyl-(2-(1H-Benzoimidazol-2-ylmethyl)-3,4-O-

isopropylidene-5-methylpyrrolidine-3,4-diol (49): A solution of 48 (41 mg, 0.09 mmol) in glacial AcOH (1.5 mL) was stirred at 65 °C for 4 h. Then, the solvent was evaporated and the resulting residue was purified by column chromatography (ether:petroleum ether, 10:1) to give pure 49 (39 mg, 100%). $[\alpha]_D^{20}$ -48.6 (*c* 1.1 in CH₂Cl₂); IR (v cm⁻¹) 2895, 2933, 1701 (C=O); ¹H NMR (300 MHz, DMSO-*d*₆, δ ppm) δ 1.18 (3H, d, *J*_{Me,5} = 6.9, 5-Me), 1.23, 1.43 (3H each, 2s, C(*CH*₃)₂), 3.15 (1H, m, 1'a-H), 3.90 (1H, dd, ²*J*_{1'b,1'a} = 15.9, *J*_{1'b,2} = 3.6, 1'b-H), 4.08 (1H, q, 5-H), 4.44 (1H, d, *J*_{4,3} = 6.0, 4-H), 4.53 (1H, m, 2-H), 4.88 (1H, t, *J*_{3,2} = 6.0, 3-H), 5.09 (2H, s, *CH*₂ of Cbz), 7.09-7.14 (2H, m, H-arom.), 7.27-7.37 (5H, m, H-arom.), 7.46 (2H, brs, H-arom.), 11.81 (1H, s, NH). ¹³C NMR (75.4 MHz, DMSO-*d*₆, δ ppm) δ 16.1 (5-Me), 24.5, 25.7 (C(*CH*₃)₂), 27.4 (C-1'), 57.6 (C-2), 58.8 (C-5), 65.7 (CH₂ of Cbz), 78.8 (C-3), 82.8 (C-4), 110.4 (*C*(CH₃)₂), 119.2, 127.2, 127.4, 127.9, 136.5, 152.5 (C-Ar), 154.6 (C=O of

Cbz); CIMS 422 [(M + H)⁺, 100%], 421 [(M)⁺, 51%]; CIHRMS *m/z* found 422.2061, calcd. for $C_{24}H_{28}N_3O_4$ (M+H)⁺: 422.2079.

(2R,3S,4R,5R)-2-(1H-Benzoimidazol-2-ylmethyl)-5-methylpyrrolidine-3,4-diol

hydrochloride (19b): A solution of 49 (50 mg, 0.119 mmol) in MeOH (6 mL) was hydrogenated with Pd-C (10%) as catalyst. After 30 min, the catalyst was filtered off and the solution concentrated. The residue was purified by column chromatography (CH₂Cl₂:MeOH, 14:1) and the pure product thus obtained (27.3 mg, 0.095 mmol, 80%) was treated with 4M HCl (1 mL) and stirred for 12 h at r.t. After evaporation of the solvent, the resulting residue was purified by column chromatography (CH₂Cl₂:MeOH, 4:1) to give pure 19b (19.7 mg, 73%). $[\alpha]_D^{25}$ + 20.5 (*c* 1.3 in MeOH); IR (v cm⁻¹) 3252-2927 (OH, NH), 1445, 1272, 1129, 743; ¹H NMR (300 MHz, CD₃OD, δ ppm) δ 1.48 (3H, d, $J_{Me,5}$ = 6.6, 5-Me), 3.39 (1H, dd, ${}^2J_{1'a,1'b}$ = 15.9, $J_{1'a,2}$ = 7.8, 1'a-H), 3.54 (1H, dd, $J_{1'b,2}$ = 7.2, 1'b-H), 3.61 (1H, m, 5-H), 3.98 (1H, dd, $J_{4,5}$ = 9.0, 4-H), 4.18 (1H, t, $J_{3,2} = J_{3,4}$ = 3.6, 3-H), 4.28 (1H, m, 2-H), 7.25 (2H, dd, H-arom.), 7.55 (2H, dd, J = 3.3, J = 6.0, H-arom.). ¹³C NMR (75.4 MHz, CD₃OD, δ ppm) δ 15.8 (5-Me), 27.3 (C-1'), 58.2 (C-5), 59.8 (C-2), 72.1 (C-3), 78.3 (C-4), 115.6, 123.8, 139.3, 151.5 (C-Ar); CIMS 248 [(M+H)⁺, 45%]; CIHRMS *m*/*z* found 248.1396, calcd. for C₁₃H₁₈N₃O₂ (M + H)⁺: 248.1399.

Data for compound **50**: ¹H NMR (300 MHz, CD₃OD, δ ppm) δ 1.31 (3H, d, J = 6.3), 2.85 (1H, m), 2.92 (1H, dd, J = 17.5, J = 6.5), 3.43 (1H, dd, J = 17.5, J = 8.7), 3.77 (1H, dd, J = 6.3, J = 5.8,), 3.85 (1H, dt, J = 8.7, J = 6.3), 4.28 (1H, t, J = 6.3), 5.05 (1H, d, J = 12.6), 5.26 (1H, d, J = 12.6), 7.19-7.27 (2H, m), 7.46-7.51 (1H, m), 7.54-7.60 (1H, m). ¹³C NMR (75.4 MHz, CD₃OD, δ ppm) δ 17.7, 23.2, 58.5, 59.6, 61.4, 71.7, 78.3, 110.4, 118.9, 123.2, 123.4, 134.6, 143.0, 152.3; CIMS 259 [(M)⁺, 30%], 260 [(M+H)⁺, 100%]; CIHRMS *m*/*z* found 259.1319, calcd. for C₁₃H₁₈N₃O₂ (M)⁺: 259.1321. Ethyl *N*-Benzyloxycarbonyl-2,3,6-trideoxy-3,6-imino-4,5:7,8-di-*O*-isopropylidene-D-glycero-L-altro and L-allo-octonates (58): To a solution of ethyl 2,3,6-trideoxy-3,6imino-4,5:7,8-di-*O*-isopropylidene-D-glicero-L-altro- and L-allo-octonates¹ (4.07 g, 12.37 mmol) in EtOH:H₂O (1/1, 80 mL), NaHCO₃ (1.76 g, 21.05 mmol) and CbzCl (1.92 mL, 13.63 mmol) were added. After stirring 12 h at r.t., sat. aq. soln. of NaHCO₃ was added and the mixture was extracted with ethyl acetate. The organic phase was dried over Na₂SO₄ and concentrated. The residue was used in the next step without further purification.

N-Benzyloxycarbonyl-2,3,6-trideoxy-3,6-imino-4,5-O-isopropylidene-D-Ethyl glycero- L-altro and L-allo -octonates (59 and 60): To a solution of 58 (540 mg, 1.166 mmol) in MeCN (5.3 mL), Zn(NO₃)₂·6H₂O (1.04 g, 3.50 mmol) was added. After heating at 50 °C for 8 h, the solvent was evaporated. The residue was diluted with CH₂Cl₂ and washed with water and brine. The organic phases were dried, filtered and concentrated. Column chromatography (petroleum ether: AcOEt, $1:1 \rightarrow 1:3$) afforded 60 (10.7 mg, 9%) and **59** (160.1 mg, 66%) as syrups. Data for **60**: $[\alpha]_{D}^{22}$ +39.2 (c 1.0 in CH₂Cl₂). ¹H NMR (500 MHz, DMSO- d_6 , 363 K, δ ppm) δ 1.18 (3H, t, $J_{H,H}$ = 7.0, OCH_2CH_3 , 1.25, 1.32 (3H each, 2s, $C(CH_3)_2$), 2.67 (1H, dd, ${}^2J_{2a,2b} = 15.0$, $J_{2a,3} = 5.0$, 2a-H), 2.82 (1H, dd, $J_{2b,3} = 10.0$, 2b-H), 3.28 (1H, dd, ${}^{2}J_{8a,8b} = 11.0$, $J_{8a,7} = 6.5$, 8a-H), 3.42 (1H, dd, $J_{8b,7} = 5.0, 8b-H$), 3.68 (1H, m, H-7), 4.07 (2H, m, OCH₂CH₃), 4.15 (1H, brs, OH-8), 4.19 (1H, d, J_{6,7} = 3.5, 6-H), 4.23 (1H, ddd, J_{3,4} = 1.7, 3-H), 4.48 (1H, dd, J_{4,5} = 5.7, 4-H), 4.72 (1H, d, 5-H), 4.83 (1H, brs, OH-7), 5.14 (2H, s, CH₂Ph), 7.30-7.37 (5H, m, Ph). ¹³C NMR (125.7 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 13.5 (OCH₂CH₃), 24.7, 26.7 (C(CH₃)₂), 37.3 (C-2), 59.4 (OCH₂CH₃), 62.7 (C-8), 62.8 (C-3), 65.8 (C-6), 66.1 (CH₂Ph), 71.5 (C-7), 82.2 (C-5), 84.0 (C-4), 110.0 (C(CH₃)₂), 126.7, 127.3, 127.9, (C

¹ Wightman, H. et al. Tetrahedron **1993**, 49, 3827-3840.

arom.), 136.5 (Cq arom.), 154.9 (C=O of Cbz), 170.1 (COOEt). CIHRMS *m*/z found 424.1960, cald. for C₂₁H₂₉NO₈+H: 424.1971. Data for **59**: $[\alpha]_D^{22}$ +66.7 (*c* 1.6 in CH₂Cl₂). ¹H NMR (500 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 1.18 (3H, t, *J*_{H,H} = 7.0, OCH₂*CH*₃), 1.27, 1.36 (3H each, 2s, C(C*H*₃)₂), 2.46 (1H, dd, ²*J*_{2a,2b} = 17.0, *J*_{2a,3} = 8.5, 2a-H), 3.22 (1H, brs, 2b-H), 3.29 (1H, dt, ²*J*_{8a,8b} = 11.0, *J*_{8a,7} = *J*_{8a,OH} = 5.7, 8a-H), 3.38 (1H, dt, *J*_{8b,7} = *J*_{8b,OH}= 4.5, 8b-H), 3.82 (1H, brs, 6-H), 4.04-4.10 (3H, m, 7-H, OCH₂CH₃), 4.22-4.25 (2H, m, 3-H, OH-8), 4.73 (1H, dd, *J*_{4,3} = 6.0, 4-H), 4.77 (1H, t, *J*_{5,4} = *J*_{5,6} = 6.5, 5-H), 5.02, 5.10 (1H each, 2d, *J*_{H,H'} = 12.7, *CH*₂Ph), 7.32-7.37 (5H, m, Ph). ¹³C NMR (125.7 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 13.5 (OCH₂*C*H₃), 24.4, 25.3 (C(*C*H₃)₂), 33.6 (C-2), 58.0 (C-3), 59.0 (OCH₂CH₃), 62.3 (C-8), 64.8 (C-7), 65.6 (*C*H₂Ph), 70.2 (C-6), 79.3 (C-4), 79.7 (C-5), 109.8 (*C*(CH₃)₂), 127.1, 127.3, 127.8 (C arom.), 136.4 (Cq. arom.), 154.0 (C=O of Cbz), 170.3 (COOEt). CIHRMS *m*/*z* found 424.1955, cald. for C₂₁H₂₉NO₈+H: 424.1971.

(2S,3R,4S,5S)-N-Benzyloxycarbonyl-2-ethoxycarbonylmethyl-5-formyl-3,4-O-

isopropylidene-pyrrolidine-3,4-diol (61): A solution of NaIO₄ (356 mg, 1.65 mmol) in water (6 mL) was added dropwise to a solution of **59** (348 mg, 0.823 mmol) in THF (5 mL) cooled to 0°C. After stirring 3 h at r.t., THF was evaporated and the residue dissolved in CH₂Cl₂ (20 mL) and washed successively with water, sat. aq. soln. of NaHCO₃ and brine. The organic phase was dried, filtered and concentrated to give crude aldehyde **61** (300 mg, 93%) which was used for the next step without further purification. ¹H NMR (300 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 1.18 (3H, t, *J*_{H,H} = 7.0, OCH₂*CH*₃), 1.29, 1.41 (3H each, 2s, C(*CH*₃)₂), 2.60 (1H, dd, ²*J*₁'a,1'b = 16.5, *J*₁'a,2 = 9.3, 1'a-H), 3.18 (1H, m, 1'b-H), 4.06 (2H, m, OC*H*₂CH₃), 4.28 (1H, m, 2-H), 4.46 (1H, brs, 5-H), 4.70 (1H, t, *J*_{3,2} = *J*_{3,4} = 6.3, 3-H), 4.79 (1H, t, *J*_{4,5} = 6.3, 4-H), 5.08 (2H, s, *CH*₂Ph), 7.31-7.37 (5H, m, Ph), 9.55 (1H, d, *J*_{CHO,5}= 1.5, CHO). ¹³C NMR (75.4 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 13.4 (OCH₂*C*H₃), 24.4, 25.3 (C(*C*H₃)₂), 33.3 (C-1'), 57.7 (C-2), 59.1 (OCH₂CH₃), 66.2 (*C*H₂Ph), 70.8 (C-5), 77.1 (C-4), 78.8 (C-3), 111.2 (*C*(CH₃)₂), 127.1, 127.4, 127.8, (C arom.), 135.8 (Cq arom.), 154.1 (C=O of Cbz), 169.8 (COOEt), 197.7 (*C*HO). CIHRMS *m*/*z* found 392.1711, cald. for C₂₀H₂₅NO₇+H: 392.1709.

(2S,3R,4S,5S)-N-Benzyloxycarbonyl-2-ethoxycarbonylmethyl-5-carboxy-3,4-O-

isopropylidene-pyrrolidine-3,4-diol (62): To a stirred solution of aldehyde 61 (300 mg, 0.767 mmol) and 2-methyl-2-butene (0.85 mL) in *t*-butanol (9.4 mL), a solution of NaClO₂ (0.77 g, 18.53 mmol) and NaH₂PO₄ (1.33 mg, 18.53 mmol) in water (7.5 mL) was added. The reaction mixture was stirred overnight at r.t. Then, the solvent was evaporated, the resulting residue was dissolved in CH₂Cl₂, washed with water, the organic phase dried (Na₂SO₄) and the solvent evaporated to give 62 (272 mg, 87 %), which was used in the next step without further purification.

(2S,3S,4R,5S)-N-Benzyloxycarbonyl-2-(2-aminophenylcarbamoyl)-5-

ethoxycarbonylmethyl-3,4-*O*-isopropylidene-pyrrolidine-3,4-diol (63): To a solution of 62 (250 mg, 0.614 mmol) and *o*-phenylenediamine (72.8 mg, 0.676 mmol) in DMF, PyBOP (350 mg, 1.35 mmol) and DIPEA (208 μL, 1.35 mmol) were added, and the mixture was stirred at r.t. for 12 h. Then, the solvent was evaporated, the resulting residue was dissolved in CH₂Cl₂ and washed with HCl 1N, sat. aq. soln. of NaHCO₃ and brine. The resulting crude was purified by column chromatography (petroleum ether:AcOEt, 4:1→1:1) to give 63 (268 mg, 88%). $[\alpha]_D^{22}$ +44.8 (*c* 1.3 in CH₂Cl₂). ¹H NMR (500 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 1.20 (3H, t, *J*_{H,H} = 7.5, OCH₂CH₃), 1.33, 1.46 (3H each, 2s, C(CH₃)₂), 2.57 (1H, dd, *J*_{1'a,1'b} = 16.5, *J*_{1'a,5} = 9.5, 1'a-H), 3.23 (1H, m, 1'b-H), 4.09 (2H, m, OCH₂CH₃), 4.44 (1H, m, 5-H), 4.68 (1H, s, 2-H), 4.83-4.87 (2H, m, 4-H, 3-H), 5.05, 5.13 (1H each, 2d, *J*_{H,H'} = 14.0, CH₂Ph), 6.53 (1H, t, *J* = 7.0, Ar), 6.75 (1H, d, J = 6.9, Ar), 6.93 (1H, t, J = 6.8, Ar), 7.11 (1H, d, J = 7.0, Ar), 7.27-7.35 (5H, m, Ph), 9.43 (1H, brs, N*H*). ¹³C NMR (125.7 MHz, DMSO- d_6 , 363 K, δ ppm) δ 13.5 (OCH₂CH₃), 24.4, 25.3 (C(CH₃)₂), 34.0 (C-1'), 58.4 (C-5), 59.1 (OCH₂CH₃), 66.0 (CH₂Ph), 66.3 (C-2), 78.9, 81.1 (C-4, C-3), 110.9 (C(CH₃)₂), 115.5, 115.8, 122.2, 125.1, 125.8, 126.9, 127.3, 127.8, 135.9, 141.6 (C arom.), 154.8 (C=O of Cbz), 168.2 (CONH), 170.0 (COOEt). CIHRMS *m*/*z* found 497.2157, cald. for C₂₆H₃₁N₃O₇: 497.2162.

(2S,3S,4R,5S)-N-Benzyloxycarbonyl-2-(1H-benzoimidazol-2-yl)-5-

ethoxycarbonylmethyl-3,4-*O*-isopropylidene-pyrrolidine-3,4-diol (64): Compound 63 (250 mg, 0.503 mmol) was disolved in glacial AcOH (8.5 mL) and the mixture was stirred for 5 h at 50 °C. Then, the solvent was evaporated and the resulting residue was purified by column chromatography (petroleum ether:AcOEt 1:1) to give pure 64 (231 mg, 96 %). [α]_D²² +98.4 (*c* 1.3 in CH₂Cl₂). ¹H NMR (500 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 1.21 (3H, t, *J*_{H,H} = 7.0, OCH₂*CH*₃), 1.30, 1.48 (3H each, 2s, C(*CH*₃)₂), 2.66 (1H, dd, *J*_{1'a,1'b} = 17.0, *J*_{1'a,5} = 9.0, 1'a-H), 3.35 (1H, brd, 1'b-H), 4.11 (2H, m, OCH₂CH₃), 4.68 (1H, m, 5-H), 4.81 (1H, d, *J*_{3,4} = 5.8, 3-H), 4.97 (1H, t, *J*_{4,5} = 5.8, 4-H), 4.91, 4.99 (1H each, 2d, *J*_{H,H'} = 12.5, *CH*₂Ph), 5.21 (1H, s, 2-H), 7.06-7.55 (9H, m, Ar), 12.29 (1H, brs, N*H*). ¹³C NMR (125.7 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 13.5 (OCH₂CH₃), 24.4, 25.3 (C(*C*H₃)₂), 33.7 (C-1'), 58.1 (C-5), 59.1 (OCH₂CH₃), 61.2 (C-2), 65.7 (*C*H₂Ph), 79.0 (C-4), 82.0 (C-3), 110.9 (*C*(CH₃)₂), 118.3-135.9 (Ar), 152.2 (C=N), 154.4 (C=O of Cbz), 170.1 (*C*OOEt). CIHRMS *m*/*z* found 480.2125, cald. for C₂₆H₂₉N₃O₆+H: 480.2135.

(2S,3S,4R,5S)-N-tert-Butoxycarbonyl-2-(1H-benzoimidazol-2-yl)-5-

ethoxycarbonylmethyl-3,4-*O*-isopropylidene-pyrrolidine-3,4-diol (65): To a solution of compound 64 (310 mg, 0.647 mmol) in THF (2 mL) and a few drops of MeOH, Pd/C

(38.7 mg) and (Boc)₂O (155 mg, 0.711 mmol) were added. The mixture was hydrogenated overnight. After filtration through celite, the filtrate was purified by column chromatography (petroleum ether:AcOEt 2:1) to give **65** (230.2 mg, 80%). $[\alpha]_D^{22}$ +73.2 (*c* 0.9 in CH₂Cl₂). ¹H NMR (500 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 1.11 (9H, s, C(*CH*₃)), 1.23 (3H, t, *J*_{H,H} = 7.1, OCH₂*CH*₃), 1.29, 1.49 (3H each, 2s, C(*CH*₃)₂), 2.60 (1H, dd, *J*_{1'a,1'b} = 16.5, *J*_{1'a,5} = 4.5, 1'a-H), 3.29 (1H, dd, *J*_{1'b,5} = 10.0, H-1'b), 4.12 (2H, q, OCH₂CH₃), 4.62 (1H, ddd, *J*_{5,4} = 6.2, 5-H), 4.74 (1H, d, *J*_{3,4} = 6.2, 3-H), 4.95 (1H, t, 4-H), 5.05 (1H, s, 2-H), 7.15-7.51 (9H, m, Ar), 12.25 (1H, brs, NH). ¹³C NMR (125.7 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 13.6 (OCH₂CH₃), 24.4, 25.3 (C(*CH*₃)₂), 27.3 (C(*CH*₃)₃), 33.9 (C-1'), 57.8 (C-5), 59.1 (OCH₂CH₃), 61.4 (C-2), 78.8 (C-4), 79.2 (*C*(CH₃)₃), 82.1 (C-3), 111.0 (*C*(CH₃)₂), 111.1-121.2 (Ar), 153.1 (C=N), 154.0 (C=O of Cbz), 170.3 (COOEt). CIHRMS *m*/*z* found 446.2294, cald. for C₂₃H₃₁N₃O₆ + H: 446.2291.

(2S,3S,4R,5S)-N-tert-Butoxycarbonyl-2-(1H-benzoimidazol-2-yl)-5-(2-

hydroxyethyl)-3,4-*O*-isopropylidene-pyrrolidine-3,4-diol (66): To a cooled solution of 65 (100 mg, 0.215 mmol) in dry THF (10 mL), LiAlH₄ (74 mg) was added. After 1 h at 0 °C, the reaction was quenched with H₂O (500 µL) and 1M NaOH (200 µL). The reaction mixture was dried over Na₂SO₄ and purified by column chromatography (petroleum ether:AcOEt 1:4) to give 66 (87 mg, 96%). $[\alpha]_D^{22}$ +61.0 (*c* 1.5 in CH₂Cl₂). ¹H NMR (500 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 1.12 (9H, s, C(*CH*₃)₃), 1.31, 1.50 (3H each, 2s, C(*CH*₃)₂), 1.94 (1H, m, 1'a-H), 2.50 (1H, m, 1'b-H), 3.55-3.64 (2H, m, 2'a-H, 2'b-H), 4.26 (1H, m, 5-H), 4.73 (1H, d, *J*_{3,4} = 6.0, 3-H), 4.86 (1H, dd, *J*_{4,5} = 5.5, 4-H), 5.00 (1H, s, 2-H), 7.14 (2H, m, Ar), 7.50 (2H, brs, Ar), 12.25 (1H, brs, NH). ¹³C NMR (125.7 MHz, DMSO-*d*₆, 363 K, δ ppm) δ 24.5, 25.9 (C(*C*H₃)₂), 27.3 (C(*C*H₃)₃), 31.4 (C-1'), 58.2 (C-2'), 58.9 (C-5), 62.2 (C-2), 78.6 (*C*(CH₃)₃), 79.5 (C-4), 80.1 (C-3), 110.6 ($C(CH_3)_2$), 111.1-121.0 (Ar), 153.5, 154.0 (C=N, C=O of Boc). CIMS 404 [(M+H)⁺, 98%]; CIHRMS *m*/*z* found 404.2201, cald. for C₂₁H₃₀N₃O₅ + H: 404.2185.

(2S,3S,4R,5S)-2-(1H-benzoimidazol-2-yl)-5-(2-hydroxyethyl)-pyrrolidine-3,4-diol

(18c): Compound 66 (49.3 mg, 0.122 mmol) was treated with 4N HCl (4 mL) and stirred for 2 h at r.t. After evaporation of the solvent, the residue was treated with sat. aq. soln. of NH₄OH for 1 h. Then, elimination of the solvent and purification through chromatography column (DCM/MeOH/NH₄OH 10:1:0.1 \rightarrow 2:1:0.1) afforded 18c (30 mg, 92%). $[\alpha]_{D}^{22}$ -23.0 (*c* 1.0 in MeOH). ¹H NMR (300 MHz, CD₃OD, δ ppm) δ 2.01 (2H, m, 1'a-H, 1'b-H), 3.75 (2H, m, 2'a-H, 2'b-H), 4.06 (1H, td, $J_{5,1'a} = J_{5,1'b} = 6.9, J_{5,4} = 3.0, 5$ -H), 4.29 (1H, t, $J_{4,3} = 3.0, 4$ -H), 4.67-4.75 (2H, m, 2-H, 3-H). ¹³C NMR (125.7 MHz, CD₃OD, δ ppm) δ 31.6 (C-1'), 59.4 (C-2), 59.9 (C-2'), 62.2 (C-5), 73.2 (C-4), 78.8 (C-3), 116.8, 120.7, 125.9, 140.1 (C arom.), 150.3 (C=N). CIHRMS *m*/*z* found 264.1353, cald. for C₁₃H₁₇N₃O₃+H: 264.1348.

¹³C-NMR (125 MHz, CDCl₃)

S16

¹³C-NMR (75.4 MHz, CDCl₃)

S20

¹³C-NMR (75.4 MHz, CDCl₃)

¹³C-NMR (75.4 MHz, CDCl₃)

¹³C-NMR (125 MHz, DMSO-*d*₆, 363K)

¹³C-NMR (125 MHz, DMSO-*d*₆, 363K)

¹³C-NMR (75.4 MHz, CD₃OD)

S43

