Supporting Information

Synthesis of Novel Pyrrolidine 3,4-Diol Derivatives as Inhibitors of α-L-Fucosidases.

Elena Moreno-Clavijo, ${ }^{a}$ Ana T. Carmona, ${ }^{a^{*}}$ Yolanda Vera-Ayoso, ${ }^{a}$ Antonio J. Moreno- Vargas, ${ }^{a}$ Claudia Bello, ${ }^{b}$ Pierre Vogel ${ }^{b}$ and Inmaculada Robina. ${ }^{a^{*}}$

a. Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain.
b. Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Federal Institute of Technology (EPFL) 1015 Lausanne, Switzerland robina@us.es, anatere@us.es

- General Methods and Experimental Procedures

General Methods: Optical rotations were measured in a 1.0 cm or 1.0 dm tube with a Perkin-Elmer 241 MC spectropolarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained for solutions in $\mathrm{CDCl}_{3},\left[\mathrm{~d}_{6}\right] \mathrm{DMSO}, \mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{D}_{2} \mathrm{O}$. All the assignments were confirmed by two-dimensional NMR experiments. The FAB mass spectra were obtained using glycerol or 3-nitrobenzyl alcohol as the matrix. TLC was performed on silica gel HF_{254} (Merck), with detection by UV light charring with $\mathrm{H}_{2} \mathrm{SO}_{4}$ or with Pancaldi reagent $\left[\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MoO}_{4}, \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}\right]$. Silica gel 60 (Merck, 230 mesh) was used for preparative chromatography.

For experimental procedures, spectroscopic data and NMR spectra for compounds 2637, 18a, 18b see: A. J. Moreno Vargas, A. T. Carmona, F. Mora, P. Vogel, I. Robina Chem. Commun. 2005, 4949 (Supporting Information).

5-deoxy-2,3-O-isopropylidene-L-lyxofuranose (41): To a stirred solution of L-fucose $(4 \mathrm{~g}, 24.36 \mathrm{mmol})$ in DMF $(55 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added 2,2-dimethoxypropane $(13.8 \mathrm{~mL})$ and PTSA ($90 \mathrm{mg}, 0.53 \mathrm{mmol}$). The reaction was stirred for 3 h at r.t. and then treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The mixture was filtered and the solution evaporated under reduced presure. The residue was then dissolved in water and washed with petroleum ether. $\mathrm{NaIO}_{4}(6 \mathrm{~g}, 28 \mathrm{mmol})$ was added to the aqueous phase and the mixture was stirred for 1 h at r.t. $\mathrm{NaOH}(1 \mathrm{~N})$ was then added until basic pH and the reaction was stirred at r.t. for 1 h . The reaction mixture was then neutralized with $\mathrm{HCl}(1 \mathrm{~N})$ and extracted with ethyl acetate. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The resulting residue was purified by column chromatography (petroleum ether:ethyl acetate, $3: 1$) to give pure $41(2.76 \mathrm{~g}, 65 \%)$. P.f. $=48-50{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-28.0\left(c \quad 1\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\operatorname{IR}\left(v \mathrm{~cm}^{-1}\right)$ $3442(\mathrm{OH}), 2985,2930,1382,1210,1055 ;$ CIMS $157\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)^{+}, 89 \%\right]$. Anal. calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}$: C, $55.16 ; \mathrm{H}, 8.10$. Found: C,54.90; H, 7.83. Data for α-anomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) $\delta 1.31-1.33\left(6 \mathrm{H}, \mathrm{m}, 4-\mathrm{Me}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.47(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.51(1 \mathrm{H}$, brs, OH$), 4.31\left(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}_{4, \mathrm{Me}}=6.3, \mathrm{~J}_{4,3}=3.0,4-\mathrm{H}\right), 4.59-4.64(2 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}), 5.34(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}, \delta \mathrm{ppm}$) $\delta 13.6$ (4-Me), $25.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 76.3(\mathrm{C}-4), 81.2,86.2(\mathrm{C}-2, \mathrm{C}-3), 101.2(\mathrm{C}-1), 112.5$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$; Data for β-anomer: ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 1.32(3 \mathrm{H}, \mathrm{m}$, Me4), $1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.65\left(1 \mathrm{H}, \mathrm{qd}, \mathrm{J}_{4, \mathrm{Me}}=6.3, J_{4,3}=3.0,4-\right.$ H), $3.84\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{OH}, 1}=12.3, \mathrm{OH}\right), 4.49\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=6.0, J_{2,1}=3.3,2-\mathrm{H}\right), 4.54(1 \mathrm{H}$, dd, 3-H), $4.95(1 \mathrm{H}, \mathrm{dd}, 1-\mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 13.4$ (4-Me), 25.1
 $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$.
(Z) and (E)- Ethyl 2,3,7-trideoxy-4,5-O-isopropylidene-L-lyxo-hept-2-enoate (42 and 43): To a solution of $41(2.66 \mathrm{~g}, 15.27 \mathrm{mmol})$ in dry toluene (31 mL), ethoxycarbonyltriphenylmethylenephosphorane ($10 \mathrm{~g}, 28.7 \mathrm{mmol}$) was added, and the mixture was heated under reflux for 4 h . Then, the solvent was evaporated and the resulting residue was purified by column chromatography (ether:petroleum ether $1: 2 \rightarrow 1: 1)$ to afford $42(433 \mathrm{mg}, 12 \%)$ and $43(2.17 \mathrm{~g}, 58 \%)$, both as oils. Data for 42 : $[\alpha]_{\mathrm{D}}^{20}+100.7\left(c 1.1\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(\mathrm{v} \mathrm{cm}^{-1}\right) 3542(\mathrm{OH}), 2983,2936,1725(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 1.17\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me}, 6}=6.3,6-\mathrm{Me}\right), 1.28\left(3 \mathrm{H}, \mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ 7.2, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39,1.52\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.62(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.15(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J_{5,4}=7.5, J_{5,6}=3.0,5-\mathrm{H}\right), 5.60\left(1 \mathrm{H}, \mathrm{td}, J_{4,3}=7.5, J_{4,2}=1.5,4-\right.$ H), $5.92\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=11.7,2-\mathrm{H}\right), 6.44(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm) $\delta 14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 20.6(6-\mathrm{Me}), 24.5,26.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 60.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 65.7(\mathrm{C}-6)$, 74.9 (C-4), 82.2 (C-5), $108.8\left(C_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 120.1(\mathrm{C}-2), 147.6(\mathrm{C}-3), 166.0(\mathrm{C}=\mathrm{O}) ; \text { CIMS }}\right.$ $229\left[(\mathrm{M}-\mathrm{Me})^{+}, 15 \%\right], 245\left[(\mathrm{M}+\mathrm{H})^{+}, 2 \%\right] ;$ CIHRMS m / z found 245.1376, calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 245.1389$. Data for 43: $[\alpha]_{\mathrm{D}}^{20}-1.6\left(c 1.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(v \mathrm{~cm}^{-1}\right)$
$3454(\mathrm{OH}), 2984,2937,1722(\mathrm{C}=\mathrm{O}), 1372,1303,1263 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ppm) $\delta 1.16\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me}, 6}=6.3,6-\mathrm{Me}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40,1.54(3 \mathrm{H}$ each, 2 s , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.73\left(1 \mathrm{H}, \mathrm{q}, J_{6,5}=6.3,6-\mathrm{H}\right), 4.03\left(1 \mathrm{H}, \mathrm{t}, J_{5,4}=6.6,5-\mathrm{H}\right), 4.20\left(2 \mathrm{H}, \mathrm{q},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.69\left(1 \mathrm{H}, \mathrm{td}, J_{4,3}=6.6, J_{4,2}=1.2,4-\mathrm{H}\right), 6.07\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}=15.6,2-\mathrm{H}\right)$, $6.88(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) $\delta 14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.3$ (6Me), 25.4, $27.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 60.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 66.0(\mathrm{C}-6), 76.4(\mathrm{C}-4), 82.7(\mathrm{C}-5), 109.6$
 CIHRMS m/z found 245.1390, calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 245.1389$

Ethyl 2,3,6,7-tetradeoxy-3,6-imino-4,5-O-isopropylidene-D-altro-heptanoate and ethyl 2,3,6,7-tetradeoxy-3,6-imino-4,5-O-isopropylidene-D-allo-heptanoate (($2 R$ and 2S,3S,4R,5R)-2-ethoxycarbonylmethyl-3,4-O-isopropylidene-5-methyl-pyrrolidine-3,4-diol) (25a and 25b): A solution of $43(2.1 \mathrm{~g}, 8.60 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a stirred solution of methanesulphonyl chloride ($2.4 \mathrm{~mL}, 31.1 \mathrm{mmol}$) in dry pyridine (9 mL) cooled to $0^{\circ} \mathrm{C}$. The mixture was left at r.t. overnight. Then, the mixture was cooled to $0^{\circ} \mathrm{C}$, water was added and the reaction was stirred for 15 min at r.t.. The solvent was evaporated, the crude diluted with dichloromethane, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was dried, filtered and concentrated. The residue was then dissolved in EtOH, cooled to $0{ }^{\circ} \mathrm{C}$, and saturated with NH_{3}. After 5 days at r.t., the solvent was evaporated and the residue was treated with $\mathrm{NH}_{4} \mathrm{OH}(25 \%)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with satd. aq. sol. of NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$ until neutral pH . The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The resulting residue was purified by column chromatography (ethyl acetate $\left(1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford $25 a(1.09 \mathrm{~g})$ and $\mathbf{2 5 b}(0.22 \mathrm{~g})\left(63 \%, 2\right.$ steps). Data for 25a: $[\alpha]_{\mathrm{D}}^{20}-40.5$ (c 1.2 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\mathrm{IR}\left(\mathrm{vcm}^{-1}\right)$ 2980, 2934, $1734(\mathrm{C}=\mathrm{O}), 1373,1263,1209,1066,1045,872 ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 1.05\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me}, 6}=7.2,6-\mathrm{Me}\right), 1.26\left(3 \mathrm{H}, \mathrm{t},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=\right.$
7.2, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.29,1.44\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.15(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.56\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}_{2 \mathrm{a}, 2 \mathrm{~b}}\right.$ $\left.=16.2, J_{2 \mathrm{a}, 3}=6.6,2 \mathrm{a}-\mathrm{H}\right), 2.65\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{~b}, 3}=7.5,2 \mathrm{~b}-\mathrm{H}\right), 3.31(1 \mathrm{H}, \mathrm{q}, 6-\mathrm{H}), 3.44(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 4.15\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.39\left(1 \mathrm{H}, \mathrm{d}, J_{5,4}=5.7,5-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{dd}, J_{4,3}=4.7,4-\right.$ H). ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 17.4$ (6-Me), 24.2, 26.1 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.8(\mathrm{C}-2), 56.5(\mathrm{C}-3), 58.7(\mathrm{C}-6), 60.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 82.7(\mathrm{C}-4), 87.3(\mathrm{C}-5)$, $111.1\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 172.1(\mathrm{C}=\mathrm{O}) ;$ CIMS $245\left[(\mathrm{M}+\mathrm{H})^{+}, 14 \%\right], 244\left[(\mathrm{M})^{+}, 100 \%\right]$; CIHRMS m/z found 244.1553, calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}:$244.1549. Anal.calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, $59.24 ; \mathrm{H}, 8.70 ; \mathrm{N}, 5.76$. Found: C, $58.91 ; \mathrm{H}, 8.28 ; \mathrm{N}, 5.68$. Data for 25b: $[\alpha]_{\mathrm{D}}^{20}-17.6\left(c 1.31\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $\left(v \mathrm{~cm}^{-1}\right) 3349(\mathrm{NH}), 2981,2930,1733(\mathrm{C}=\mathrm{O})$, 1372; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 1.21\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me}, 6}=6.6,6-\mathrm{Me}\right), 1.24(3 \mathrm{H}$, $\left.\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.29,1.49\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.46$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{2 \mathrm{a}, 2 \mathrm{~b}}=16.2, J_{2 \mathrm{a}, 3}=9.0,2 \mathrm{a}-\mathrm{H}\right), 2.72\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{~b}, 3}=4.2,2 \mathrm{~b}-\mathrm{H}\right), 3.20(1 \mathrm{H}, \mathrm{m}, 6-$ H), $3.45(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.09-4.20\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.26\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{4,5}=7.2, J_{4,3}=\right.$ 5.1, 4-H). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) $\delta 14.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.5(6-\mathrm{Me}), 25.5$, $27.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.6(\mathrm{C}-2), 59.7(\mathrm{C}-6), 60.7,60.8\left(\mathrm{C}-3, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 84.7(\mathrm{C}-4), 87.3(\mathrm{C}-$ 5), $117.2\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 172.1(\mathrm{C}=\mathrm{O}) ;$ CIMS $245\left[(\mathrm{M}+\mathrm{H})^{+}, 6 \%\right], 244\left[(\mathrm{M})^{+}, 54 \%\right]$; CIHRMS m / z found 244.1544 , calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 244.1549$.

Ethyl N-Benzyloxycarbonyl-2,3,6,7-tetradeoxy-3,6-imino-4,5-O-isopropylidene-D-altro-heptanoate ((2R,3S,4R,5R)-N-Benzyloxycarbonyl-2-ethoxycarbonylmethyl-3,4-O-isopropylidene-5-methyl-pyrrolidine-3,4-diol) (47): To a solution of 25a ($0.866 \mathrm{~g}, 3.56 \mathrm{mmol}$) in $1: 1 \mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(48 \mathrm{~mL}), \mathrm{NaHCO}_{3}(0.51 \mathrm{~g}, 6.05 \mathrm{mmol})$ and $\mathrm{CbzCl}(0.562 \mathrm{~mL}, 3.92 \mathrm{mmol})$ were added. After stirring for 2 h at r.t., the mixture was poured into satd. aq. sol. of NaHCO_{3} and extracted with AcOEt. The organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The resulting residue was purified by
column chromatography (ether:petroleum ether 1:2) to give pure 47 (1.21 g, 90\%). $[\alpha]_{D}^{20}$ -76.6 (c 1.1 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\mathrm{IR}\left(\mathrm{vcm}^{-1}\right)$ 2983, $1732(\mathrm{C}=\mathrm{O}), 1703(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 353 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 1.12\left(3 \mathrm{H}, \mathrm{d}, J_{6, \mathrm{Me}}=6.9,6-\mathrm{Me}\right), 1.18\left(3 \mathrm{H}, \mathrm{t},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26,1.38\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.49\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{2 \mathrm{a}, 2 \mathrm{~b}}=16.5, J_{2 \mathrm{a}, 3}=9.0\right.$, $2 \mathrm{a}-\mathrm{H}), 3.14(1 \mathrm{H}, \mathrm{m}, 2 \mathrm{~b}-\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{q}, 6-\mathrm{H}), 4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.14(1 \mathrm{H}, \mathrm{m}, 3-$ H), $4.43\left(1 \mathrm{H}, \mathrm{d}, J_{5,4}=6.0,5-\mathrm{H}\right), 4.83\left(1 \mathrm{H}, \mathrm{t}, J_{4,3}=6.0,4-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{H} ; \mathrm{H}}=12.5\right.$, CH_{2} of Cbz), $5.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right.$ of Cbz$), 7.31-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{arom}.) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, DMSO- $\left.d_{6}, 353 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 13.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $16.2(6-\mathrm{Me}), 24.4$, $25.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $39.5(\mathrm{C}-2), 56.0(\mathrm{C}-3), 57.9,59.1\left(\mathrm{C}-6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 65.7\left(\mathrm{CH}_{2}\right.$ of Cbz$), 78.4(\mathrm{C}-4), 82.9$
 (COOEt); CIMS $378\left[(\mathrm{M}+\mathrm{H})^{+}, 7 \%\right], 377\left[(\mathrm{M})^{+}, 4 \%\right] ;$ CIHRMS m/z found 378.1930, calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{H})^{+}: 378.1916$.

(2R,3S,4R,5R)-N-Benzyloxycarbonyl-(2-(2-aminophenylcarbamoylmethyl)-3,4-O-

 isopropylidene- 5-methylpyrrolidine-3,4-diol (48): A solution of 47 ($1.18 \mathrm{~g}, 3.12$ mmol) in 2:1 EtOH: $\mathrm{NaOH}(90 \mathrm{~mL})$ was heated to $50^{\circ} \mathrm{C}$ for 1.5 h . The mixture was neutralized with IRA- $120 \mathrm{H}^{+}$, filtered and concentrated. The crude acid was then dissolved in DMF and o-phenylenediamine ($0.371 \mathrm{~g}, 3.43 \mathrm{mmol}$), DIPEA (1.07 mL , $6.24 \mathrm{mmol})$ and pyBOP ($1.79 \mathrm{~g}, 3.43 \mathrm{mmol}$) were added. The mixture was stirred at r.t. for 4 h . After evaporation of the solvent, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd. aq. sol. of citric acid and brine. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The resulting residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 40: 1\right)$ to give pure $48(1.22 \mathrm{~g}, 89 \%$, 2 steps $) .\left[\begin{array}{ll}{[\alpha]_{\mathrm{D}}^{20}} & -49\end{array}\right.$ (c 0.95 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{vcm}^{-1}\right) 3446(\mathrm{NH}), 3364(\mathrm{NH}), 3030,2984,2932,1697(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}, 353 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 1.13\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me}, 5}=7.0,5-\mathrm{Me}\right), 1.28$, $1.44\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.63\left(1 \mathrm{H}, \mathrm{dd}^{2}{ }^{2} J_{1}{ }^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}=15.5, J_{1^{\prime} \mathrm{a}, 2}=9.0,1{ }^{\prime} \mathrm{a}-\mathrm{H}\right), 3.31(1 \mathrm{H}$,br d, 1’b-H), $4.02(1 \mathrm{H}, \mathrm{q}, 5-\mathrm{H}), 4.23(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.42\left(1 \mathrm{H}, \mathrm{d}, J_{4,3}=6.0,4-\mathrm{H}\right), 4.67$ $\left(2 \mathrm{H}\right.$, brs, $\left.\mathrm{NH}_{2}\right), 4.84\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,2}=6.0,3-\mathrm{H}\right), 5.09\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=12.5, \mathrm{CH}_{2}\right.$ of Cbz$), 5.12$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right.$ of Cbz$), 6.52(1 \mathrm{H}, \mathrm{td}, J=7.5, J=1.5, \mathrm{H}$-arom.) , $6.71(1 \mathrm{H}, \mathrm{dd}, J=8.0, J=$ 1.5, H-arom), $6.90(1 \mathrm{H}, \mathrm{td}, J=8.0, J=1.5, \mathrm{H}$-arom. $), 7.09(1 \mathrm{H}, \mathrm{d}, J=7.5, \mathrm{H}$-arom $)$, 7.29-7.39 (5H, m, H-arom. of Cbz), 8.79 (1 H , brs, CONH). ${ }^{13} \mathrm{C}$ NMR (125.7 MHz, DMSO- $\left.d_{6}, 353 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 16.1$ (Me-5), 24.5, $25.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.9(\mathrm{C}-1$ '), $56.3(\mathrm{C}-2)$, $58.3(\mathrm{C}-5), 65.6\left(\mathrm{CH}_{2}\right.$ of Cbz$), 79.0(\mathrm{C}-3), 82.8(\mathrm{C}-4), 110.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 115.2,115.7,}\right.$ 123.1, 125.6, 127.2, 127.4, 127.9, 136.5, 142.3 (C-Ar), 154.1 ($\mathrm{C}=\mathrm{O}$ of Cbz), 169.1 (CONH); CIMS $440\left[(\mathrm{M}+\mathrm{H})^{+}, 8 \%\right], 439\left[(\mathrm{M})^{+}, 18 \%\right], 91$ (100); CIHRMS m / z found 439.2110, calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right.$: 439.2107. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 65.59; H, 6.65; N, 9.56. Found: C, 65.58; H, 6.72; N, 9.13.
(2R,3S,4R,5R)-N-Benzyloxycarbonyl-(2-(1H-Benzoimidazol-2-ylmethyl)-3,4-O-isopropylidene-5-methylpyrrolidine-3,4-diol (49): A solution of 48 ($41 \mathrm{mg}, 0.09$ mmol) in glacial $\mathrm{AcOH}(1.5 \mathrm{~mL})$ was stirred at $65^{\circ} \mathrm{C}$ for 4 h . Then, the solvent was evaporated and the resulting residue was purified by column chromatography (ether:petroleum ether, 10:1) to give pure 49 ($39 \mathrm{mg}, 100 \%$). $\left[\begin{array}{ll}{[\alpha]_{\mathrm{D}}^{20}} & -48.6 \text { (c } 1.1 \mathrm{in}\end{array}\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR ($\mathrm{v} \mathrm{cm}^{-1}$) 2895, 2933, $1701(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta$ ppm) $\delta 1.18\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me}, 5}=6.9,5-\mathrm{Me}\right), 1.23,1.43\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.15(1 \mathrm{H}, \mathrm{m}$, $\left.1^{\prime} \mathrm{a}-\mathrm{H}\right), 3.90\left(1 \mathrm{H}, \mathrm{dd}^{2}{ }^{2} J_{1^{`} \mathrm{~b}, 1^{\prime} \mathrm{a}}=15.9, J_{1^{\prime} \mathrm{b}, 2}=3.6,1^{ } \mathrm{b}-\mathrm{H}\right), 4.08(1 \mathrm{H}, \mathrm{q}, 5-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{d}$, $\left.J_{4,3}=6.0,4-\mathrm{H}\right), 4.53(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.88\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{3,2}=6.0,3-\mathrm{H}\right), 5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right.$ of Cbz), 7.09-7.14 (2H, m, H-arom.), 7.27-7.37 (5H, m, H-arom.), 7.46 (2H, brs, H-arom.), $11.81(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, DMSO-d $\left.{ }_{6}, \delta \mathrm{ppm}\right) \delta 16.1$ (5-Me), 24.5, 25.7 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.4\left(\mathrm{C}-1\right.$ '), $57.6(\mathrm{C}-2), 58.8(\mathrm{C}-5), 65.7\left(\mathrm{CH}_{2}\right.$ of Cbz$), 78.8(\mathrm{C}-3), 82.8(\mathrm{C}-$

Cbz); CIMS $422\left[(\mathrm{M}+\mathrm{H})^{+}, 100 \%\right], 421\left[(\mathrm{M})^{+}, 51 \%\right]$; CIHRMS m/z found 422.2061, calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 422.2079.
(2R,3S,4R,5R)-2-(1H-Benzoimidazol-2-ylmethyl)-5-methylpyrrolidine-3,4-diol
hydrochloride (19b): A solution of $49(50 \mathrm{mg}, 0.119 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ was hydrogenated with Pd-C (10\%) as catalyst. After 30 min , the catalyst was filtered off and the solution concentrated. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 14: 1\right)$ and the pure product thus obtained ($27.3 \mathrm{mg}, 0.095 \mathrm{mmol}, 80 \%$) was treated with $4 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ and stirred for 12 h at r.t. After evaporation of the solvent, the resulting residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$, 4:1) to give pure 19b $(19.7 \mathrm{mg}, 73 \%) .[\alpha]_{\mathrm{D}}^{25}+20.5(c 1.3$ in MeOH$) ; \operatorname{IR}\left(v \mathrm{~cm}^{-1}\right)$ 3252-2927 (OH, NH), 1445, 1272, 1129, 743; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta$ $1.48\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{Me}, 5}=6.6,5-\mathrm{Me}\right), 3.39\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=15.9, J_{1^{\prime} \mathrm{a}, 2}=7.8,1^{\prime} \mathrm{a}-\mathrm{H}\right), 3.54$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \mathrm{b}, 2}=7.2,1\right.$ 'b-H), $3.61(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.98\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5}=9.0,4-\mathrm{H}\right), 4.18(1 \mathrm{H}$, $\left.\mathrm{t}, J_{3,2}=J_{3,4}=3.6,3-\mathrm{H}\right), 4.28(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.25(2 \mathrm{H}, \mathrm{dd}, \mathrm{H}-\mathrm{arom}),. 7.55(2 \mathrm{H}, \mathrm{dd}, J=3.3$, $J=6.0, \mathrm{H}$-arom.). ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta 15.8$ (5-Me), 27.3 (C-1'), 58.2 (C-5), 59.8 (C-2), 72.1 (C-3), 78.3 (C-4), 115.6, 123.8, 139.3, 151.5 (C-Ar); CIMS $248\left[(\mathrm{M}+\mathrm{H})^{+}, 45 \%\right]$; CIHRMS m / z found 248.1396, calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 248.1399.

Data for compound 50: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}$) $\delta 1.31(3 \mathrm{H}, \mathrm{d}, J=6.3)$, $2.85(1 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}, \mathrm{dd}, J=17.5, J=6.5), 3.43(1 \mathrm{H}, \mathrm{dd}, J=17.5, J=8.7), 3.77(1 \mathrm{H}$, dd, $J=6.3, J=5.8,), 3.85(1 \mathrm{H}, \mathrm{dt}, J=8.7, J=6.3), 4.28(1 \mathrm{H}, \mathrm{t}, J=6.3), 5.05(1 \mathrm{H}, \mathrm{d}, J$ $=12.6), 5.26(1 \mathrm{H}, \mathrm{d}, J=12.6), 7.19-7.27(2 \mathrm{H}, \mathrm{m}), 7.46-7.51(1 \mathrm{H}, \mathrm{m}), 7.54-7.60(1 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}$) $\delta 17.7,23.2,58.5,59.6,61.4,71.7,78.3$, 110.4, 118.9, 123.2, 123.4, 134.6, 143.0, 152.3; CIMS $259\left[(\mathrm{M})^{+}, 30 \%\right], 260\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, 100%]; CIHRMS m / z found 259.1319 , calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M})^{+}: 259.1321$.

Ethyl N-Benzyloxycarbonyl-2,3,6-trideoxy-3,6-imino-4,5:7,8-di-O-isopropylidene-D-glycero-L-altro and L-allo-octonates (58): To a solution of ethyl 2,3,6-trideoxy-3,6-imino-4,5:7,8-di-O-isopropylidene-D-glicero-L-altro- and L-allo-octonates ${ }^{1}$ (4.07 g, $12.37 \mathrm{mmol})$ in $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(1 / 1,80 \mathrm{~mL}), \mathrm{NaHCO}_{3}(1.76 \mathrm{~g}, 21.05 \mathrm{mmol})$ and CbzCl $(1.92 \mathrm{~mL}, 13.63 \mathrm{mmol})$ were added. After stirring 12 h at r.t., sat. aq. soln. of NaHCO_{3} was added and the mixture was extracted with ethyl acetate. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was used in the next step without further purification.

Ethyl $\quad N$-Benzyloxycarbonyl-2,3,6-trideoxy-3,6-imino-4,5-O-isopropylidene-D-glycero- L-altro and L-allo -octonates (59 and 60): To a solution of 58 ($540 \mathrm{mg}, 1.166$ mmol) in $\mathrm{MeCN}(5.3 \mathrm{~mL}), \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.04 \mathrm{~g}, 3.50 \mathrm{mmol})$ was added. After heating at $50{ }^{\circ} \mathrm{C}$ for 8 h , the solvent was evaporated. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water and brine. The organic phases were dried, filtered and concentrated. Column chromatography (petroleum ether:AcOEt, 1:1 \rightarrow 1:3) afforded $\mathbf{6 0}$ ($10.7 \mathrm{mg}, 9 \%$) and 59 ($160.1 \mathrm{mg}, 66 \%$) as syrups. Data for 60: $[\alpha]_{D}^{22}+39.2$ (c 1.0 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 1.18\left(3 \mathrm{H}, \mathrm{t}, J_{\mathrm{H}, \mathrm{H}}=7.0\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.25,1.32\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.67\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{2 \mathrm{a}, 2 \mathrm{~b}}=15.0, J_{2 \mathrm{a}, 3}=5.0\right.$, $2 \mathrm{a}-\mathrm{H}), 2.82\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{~b}, 3}=10.0,2 \mathrm{~b}-\mathrm{H}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{8 \mathrm{a}, 8 \mathrm{~b}}=11.0, J_{8 \mathrm{a}, 7}=6.5,8 \mathrm{a}-\mathrm{H}\right)$, $3.42\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{8 \mathrm{~b}, 7}=5.0,8 \mathrm{~b}-\mathrm{H}\right), 3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.15(1 \mathrm{H}$, brs, $\mathrm{OH}-8), 4.19\left(1 \mathrm{H}, \mathrm{d}, J_{6,7}=3.5,6-\mathrm{H}\right), 4.23\left(1 \mathrm{H}, \mathrm{ddd}, J_{3,4}=1.7,3-\mathrm{H}\right), 4.48(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{4,5}=5.7,4-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}-7), 5.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.30-7.37$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR ($\left.125.7 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 13.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.7$, $26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 37.3(\mathrm{C}-2), 59.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.7(\mathrm{C}-8), 62.8(\mathrm{C}-3), 65.8(\mathrm{C}-6), 66.1$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 71.5(\mathrm{C}-7), 82.2(\mathrm{C}-5), 84.0(\mathrm{C}-4), 110.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 126.7,127.3,127.9,(\mathrm{C}}\right.$

[^0]arom.), 136.5 (Cq arom.), 154.9 ($\mathrm{C}=\mathrm{O}$ of Cbz), 170.1 (COOEt). CIHRMS m/z found 424.1960, cald. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{8}+\mathrm{H}: 424.1971$. Data for 59: $[\alpha]_{\mathrm{D}}^{22}+66.7$ (c 1.6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 1.18\left(3 \mathrm{H}, \mathrm{t}, J_{\mathrm{H}, \mathrm{H}}=7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 1.27, $1.36\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.46\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{2 \mathrm{a}, 2 \mathrm{~b}}=17.0, J_{2 \mathrm{a}, 3}=8.5,2 \mathrm{a}-\mathrm{H}\right), 3.22$ $(1 \mathrm{H}, \mathrm{brs}, 2 \mathrm{~b}-\mathrm{H}), 3.29\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{8 \mathrm{a}, 8 \mathrm{~b}}=11.0, J_{8 \mathrm{a}, 7}=J_{8 \mathrm{a}, \mathrm{OH}}=5.7,8 \mathrm{a}-\mathrm{H}\right), 3.38\left(1 \mathrm{H}, \mathrm{dt}, J_{8 \mathrm{~b}, 7}\right.$ $\left.=J_{8 \mathrm{~b}, \mathrm{OH}}=4.5,8 \mathrm{~b}-\mathrm{H}\right), 3.82(1 \mathrm{H}, \mathrm{brs}, 6-\mathrm{H}), 4.04-4.10\left(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.22-4.25$ $(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{OH}-8), 4.73\left(1 \mathrm{H}, \mathrm{dd}, J_{4,3}=6.0,4-\mathrm{H}\right), 4.77\left(1 \mathrm{H}, \mathrm{t}, J_{5,4}=J_{5,6}=6.5,5-\mathrm{H}\right)$, 5.02, 5.10 (1 H each, $2 \mathrm{~d}, J_{\mathrm{H}, \mathrm{H}^{\prime}}=12.7, \mathrm{CH}_{2} \mathrm{Ph}$), 7.32-7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). ${ }^{13} \mathrm{C}$ NMR (125.7 MHz , DMSO- $\left.d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 13.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 24.4, $25.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $33.6(\mathrm{C}-2)$, $58.0(\mathrm{C}-3), 59.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 62.3(\mathrm{C}-8), 64.8(\mathrm{C}-7), 65.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.2(\mathrm{C}-6), 79.3(\mathrm{C}-$
 ($\mathrm{C}=\mathrm{O}$ of Cbz), 170.3 (COOEt). CIHRMS m / z found 424.1955, cald. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{8}+\mathrm{H}$: 424.1971.
(2S,3R,4S,5S)-N-Benzyloxycarbonyl-2-ethoxycarbonylmethyl-5-formyl-3,4-O-isopropylidene-pyrrolidine-3,4-diol (61): A solution of NaIO_{4} ($356 \mathrm{mg}, 1.65 \mathrm{mmol}$) in water $(6 \mathrm{~mL})$ was added dropwise to a solution of $59(348 \mathrm{mg}, 0.823 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$. After stirring 3 h at r.t., THF was evaporated and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed successively with water, sat. aq. soln. of NaHCO_{3} and brine. The organic phase was dried, filtered and concentrated to give crude aldehyde 61 ($300 \mathrm{mg}, 93 \%$) which was used for the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{-}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 1.18\left(3 \mathrm{H}, \mathrm{t}, J_{\mathrm{H}, \mathrm{H}}=7.0\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.29,1.41\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.60\left(1 \mathrm{H}, \mathrm{dd}^{2}{ }^{2} J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=16.5, J_{1^{\prime} \mathrm{a}, 2}=9.3\right.$, 1'a-H), $3.18(1 \mathrm{H}, \mathrm{m}, 1 ’ \mathrm{~b}-\mathrm{H}), 4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.28(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.46(1 \mathrm{H}$, brs, $5-\mathrm{H}), 4.70\left(1 \mathrm{H}, \mathrm{t}, J_{3,2}=J_{3,4}=6.3,3-\mathrm{H}\right), 4.79\left(1 \mathrm{H}, \mathrm{t}, J_{4,5}=6.3,4-\mathrm{H}\right), 5.08(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 7.31-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.55\left(1 \mathrm{H}, \mathrm{d}, J_{\text {СНО }, 5}=1.5, \mathrm{CHO}\right) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz ,

DMSO- $\left.d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 13.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.4,25.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.3(\mathrm{C}-1$ ' $), 57.7$ $(\mathrm{C}-2), 59.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 66.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 70.8(\mathrm{C}-5), 77.1(\mathrm{C}-4), 78.8(\mathrm{C}-3), 111.2$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 127.1,127.4,127.8$, (C arom. $), 135.8$ (Cq arom.), 154.1 ($\mathrm{C}=\mathrm{O}$ of Cbz$), 169.8$ (COOEt), 197.7 (CHO). CIHRMS m / z found 392.1711, cald. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{7}+\mathrm{H}$: 392.1709.
(2S,3R,4S,5S)-N-Benzyloxycarbonyl-2-ethoxycarbonylmethyl-5-carboxy-3,4-O-isopropylidene-pyrrolidine-3,4-diol (62): To a stirred solution of aldehyde 61 (300 $\mathrm{mg}, 0.767 \mathrm{mmol})$ and 2-methyl-2-butene $(0.85 \mathrm{~mL})$ in t-butanol $(9.4 \mathrm{~mL})$, a solution of $\mathrm{NaClO}_{2}(0.77 \mathrm{~g}, 18.53 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(1.33 \mathrm{mg}, 18.53 \mathrm{mmol})$ in water $(7.5 \mathrm{~mL})$ was added. The reaction mixture was stirred overnight at r.t. Then, the solvent was evaporated, the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, the organic phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated to give $62(272 \mathrm{mg}, 87 \%)$, which was used in the next step without further purification.
(2S,3S,4R,5S)-N-Benzyloxycarbonyl-2-(2-aminophenylcarbamoyl)-5-ethoxycarbonylmethyl-3,4-O-isopropylidene-pyrrolidine-3,4-diol (63): To a solution of $62(250 \mathrm{mg}, 0.614 \mathrm{mmol})$ and o-phenylenediamine ($72.8 \mathrm{mg}, 0.676 \mathrm{mmol}$) in DMF, PyBOP ($350 \mathrm{mg}, 1.35 \mathrm{mmol}$) and DIPEA ($208 \mu \mathrm{~L}, 1.35 \mathrm{mmol}$) were added, and the mixture was stirred at r.t. for 12 h . Then, the solvent was evaporated, the resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with HCl 1 N , sat. aq. soln. of NaHCO_{3} and brine. The resulting crude was purified by column chromatography (petroleum ether:AcOEt, $4: 1 \rightarrow 1: 1$) to give $63(268 \mathrm{mg}, 88 \%) .[\alpha]_{\mathrm{D}}^{22}+44.8\left(c 1.3\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left._{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 1.20\left(3 \mathrm{H}, \mathrm{t}, J_{\mathrm{H}, \mathrm{H}}=7.5, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33$, $1.46\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.57\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=16.5, J_{1^{\prime} \mathrm{a}, 5}=9.5,1 \mathrm{a}-\mathrm{H}\right), 3.23(1 \mathrm{H}$, $\mathrm{m}, 1 ’ \mathrm{~b}-\mathrm{H}), 4.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.44(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.68(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.83-4.87$ $(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 3-\mathrm{H}), 5.05,5.13\left(1 \mathrm{H}\right.$ each, $\left.2 \mathrm{~d}, J_{\mathrm{H}, \mathrm{H}^{\prime}}=14.0, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.53(1 \mathrm{H}, \mathrm{t}, J=7.0$,

Ar), $6.75(1 \mathrm{H}, \mathrm{d}, J=6.9, \mathrm{Ar}), 6.93(1 \mathrm{H}, \mathrm{t}, J=6.8, \operatorname{Ar}), 7.11(1 \mathrm{H}, \mathrm{d}, J=7.0, \mathrm{Ar}), 7.27-$ $7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.43(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz , DMSO- $\mathrm{d}_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}$) $\delta 13.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.4,25.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.0\left(\mathrm{C}-1\right.$ '), $58.4(\mathrm{C}-5), 59.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $66.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 66.3(\mathrm{C}-2), 78.9,81.1(\mathrm{C}-4, \mathrm{C}-3), 110.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 115.5,115.8,122.2 \text {, }}\right.$ 125.1, 125.8, 126.9, 127.3, 127.8, 135.9, 141.6 (C arom.), 154.8 (C=O of Cbz), 168.2 (CONH), 170.0 (COOEt). CIHRMS m / z found 497.2157, cald. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{7}$: 497.2162.
(2S,3S,4R,5S)-N-Benzyloxycarbonyl-2-(1H-benzoimidazol-2-yl)-5-
ethoxycarbonylmethyl-3,4-O-isopropylidene-pyrrolidine-3,4-diol (64): Compound $63(250 \mathrm{mg}, 0.503 \mathrm{mmol})$ was disolved in glacial $\mathrm{AcOH}(8.5 \mathrm{~mL})$ and the mixture was stirred for 5 h at $50^{\circ} \mathrm{C}$. Then, the solvent was evaporated and the resulting residue was purified by column chromatography (petroleum ether:AcOEt 1:1) to give pure 64 (231 $\mathrm{mg}, 96 \%$). $[\alpha]_{\mathrm{D}}^{22}+98.4$ (c 1.3 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 363 \mathrm{~K}, \delta$ ppm) $\delta 1.21\left(3 \mathrm{H}, \mathrm{t}, J_{\mathrm{H}, \mathrm{H}}=7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.30,1.48\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.66(1 \mathrm{H}$,
 $4.68(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.81\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=5.8,3-\mathrm{H}\right), 4.97\left(1 \mathrm{H}, \mathrm{t}, J_{4,5}=5.8,4-\mathrm{H}\right), 4.91,4.99$ (1 H each, $\left.2 \mathrm{~d}, J_{\mathrm{H}, \mathrm{H}^{\prime}}=12.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.21(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.06-7.55(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 12.29(1 \mathrm{H}$, brs, NH$).{ }^{13} \mathrm{C}$ NMR ($\left.125.7 \mathrm{MHz}, \mathrm{DMSO}_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 13.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.4$, $25.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 33.7\left(\mathrm{C}-1\right.$ '), $58.1(\mathrm{C}-5), 59.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.2(\mathrm{C}-2), 65.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$, 79.0 (C-4), $82.0(\mathrm{C}-3), 110.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 118.3-135.9(\mathrm{Ar}), 152.2(\mathrm{C}=\mathrm{N}), 154.4(\mathrm{C}=\mathrm{O} \text { of } \mathrm{f}}\right.$ Cbz), 170.1 (COOEt). CIHRMS m / z found 480.2125 , cald. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}+\mathrm{H}$: 480.2135.
(2S,3S,4R,5S)-N-tert-Butoxycarbonyl-2-(1H-benzoimidazol-2-yl)-5-
ethoxycarbonylmethyl-3,4-O-isopropylidene-pyrrolidine-3,4-diol (65): To a solution of compound $64(310 \mathrm{mg}, 0.647 \mathrm{mmol})$ in THF (2 mL) and a few drops of $\mathrm{MeOH}, \mathrm{Pd} / \mathrm{C}$
$(38.7 \mathrm{mg})$ and $(\mathrm{Boc})_{2} \mathrm{O}(155 \mathrm{mg}, 0.711 \mathrm{mmol})$ were added. The mixture was hydrogenated overnight. After filtration through celite, the filtrate was purified by column chromatography (petroleum ether:AcOEt 2:1) to give 65 ($230.2 \mathrm{mg}, 80 \%$). $[\alpha]_{\mathrm{D}}^{22}$ $+73.2\left(c 0.9\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.\mathrm{d}_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 1.11(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.29,1.49\left(3 \mathrm{H}\right.$ each, $\left.2 \mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.60$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \mathrm{a}, 1^{\prime} \mathrm{b}}=16.5, J_{1^{\prime} \mathrm{a}, 5}=4.5,1^{\prime} \mathrm{a}-\mathrm{H}\right), 3.29\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{`} \mathrm{~b}, 5}=10.0, \mathrm{H}-1^{\prime} \mathrm{b}\right), 4.12(2 \mathrm{H}$, $\left.\mathrm{q}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.62\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,4}=6.2,5-\mathrm{H}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=6.2,3-\mathrm{H}\right), 4.95(1 \mathrm{H}, \mathrm{t}$, $4-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.15-7.51(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 12.25(1 \mathrm{H}$, brs, NH$) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, DMSO- $\left.d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 13.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.4,25.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.3$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.9(\mathrm{C}-1 '), 57.8(\mathrm{C}-5), 59.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.4(\mathrm{C}-2), 78.8(\mathrm{C}-4), 79.2$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 82.1(\mathrm{C}-3), 111.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 111.1-121.2(\mathrm{Ar}), 153.1(\mathrm{C}=\mathrm{N}), 154.0(\mathrm{C}=\mathrm{O}$ of Cbz), 170.3 (COOEt). CIHRMS m / z found 446.2294, cald. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6}+\mathrm{H}$: 446.2291 .
(2S,3S,4R,5S)-N-tert-Butoxycarbonyl-2-(1H-benzoimidazol-2-yl)-5-(2-
hydroxyethyl)-3,4-O-isopropylidene-pyrrolidine-3,4-diol (66): To a cooled solution of $\mathbf{6 5}(100 \mathrm{mg}, 0.215 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL}), \mathrm{LiAlH}_{4}(74 \mathrm{mg})$ was added. After 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ and $1 \mathrm{M} \mathrm{NaOH}(200 \mu \mathrm{~L})$. The reaction mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography (petroleum ether:AcOEt 1:4) to give $66(87 \mathrm{mg}, 96 \%) .[\alpha]_{\mathrm{D}}^{22}+61.0\left(c 1.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 1.12\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31,1.50(3 \mathrm{H}$ each, 2s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.94(1 \mathrm{H}, \mathrm{m}, 1 ’ \mathrm{a}-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{m}, 1$ 'b-H), 3.55-3.64(2H, m, 2'a-H, $2 ’$ b-H), $4.26(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.73\left(1 \mathrm{H}, \mathrm{d}, J_{3,4}=6.0,3-\mathrm{H}\right), 4.86\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{4,5}=5.5,4-\mathrm{H}\right)$, $5.00(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.14(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.50(2 \mathrm{H}, \mathrm{brs}, \mathrm{Ar}), 12.25(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, DMSO-d $\left.d_{6}, 363 \mathrm{~K}, \delta \mathrm{ppm}\right) \delta 24.5$, $25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.4$

 $\left[(\mathrm{M}+\mathrm{H})^{+}, 98 \%\right]$; CIHRMS m / z found 404.2201, cald. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{H}: 404.2185$. (2S,3S,4R,5S)-2-(1H-benzoimidazol-2-yl)-5-(2-hydroxyethyl)-pyrrolidine-3,4-diol (18c): Compound $66(49.3 \mathrm{mg}, 0.122 \mathrm{mmol})$ was treated with $4 \mathrm{~N} \mathrm{HCl}(4 \mathrm{~mL})$ and stirred for 2 h at r.t. After evaporation of the solvent, the residue was treated with sat. aq. soln. of $\mathrm{NH}_{4} \mathrm{OH}$ for 1 h . Then, elimination of the solvent and purification through chromatography column $\left(\mathrm{DCM} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}\right.$ 10:1:0.1 \rightarrow 2:1:0.1) afforded 18c (30 $\mathrm{mg}, 92 \%) .[\alpha]_{\mathrm{D}}^{22}-23.0\left(c 1.0\right.$ in MeOH). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}$) $\delta 2.01$ $(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{\prime} \mathrm{a}-\mathrm{H}, 1 \mathrm{l} \mathrm{b}-\mathrm{H}), 3.75\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime} \mathrm{a}-\mathrm{H}, 2{ }^{\prime} \mathrm{b}-\mathrm{H}\right), 4.06\left(1 \mathrm{H}, \mathrm{td}, J_{5,1^{\prime} \mathrm{a}}=J_{5,1^{\prime} \mathrm{b}}=6.9, J_{5,4}\right.$ $=3.0,5-\mathrm{H}), 4.29\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}_{4,3}=3.0,4-\mathrm{H}\right), 4.67-4.75(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125.7 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{ppm}\right) \delta 31.6(\mathrm{C}-1$ '), $59.4(\mathrm{C}-2), 59.9(\mathrm{C}-2$ '), $62.2(\mathrm{C}-5), 73.2(\mathrm{C}-4)$, 78.8 (C-3), 116.8, 120.7, 125.9, 140.1 (C arom.), 150.3 ($\mathrm{C}=\mathrm{N}$). CIHRMS m / z found 264.1353, cald. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{H}: 264.1348$.

39

39

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\begin{aligned} & \mathbb{\infty} \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \text { Nָ } \end{aligned}$		－ON犬Nドツ		N ケフ8 	
11			11		111	111	

$\begin{aligned} & \stackrel{0}{2} \\ & \dot{+} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \text { ஸ゙ } \end{aligned}$		$\stackrel{\bar{\sim}}{\stackrel{+}{+}}$	ल̄으N	 	$\stackrel{\infty}{\infty}$
\|		$1 / 1$		V		

为

$\begin{aligned} & \bar{n} \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{M} \\ & \underset{\sim}{9} \end{aligned}$	$\stackrel{\circ}{\circ}$

 ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz , DMSO- $\mathrm{d}_{6}, 363 \mathrm{~K}$)

[^0]: ${ }^{1}$ Wightman, H. et al. Tetrahedron 1993, 49, 3827-3840.

