Convergent, stereoselective syntheses of the glycosidase inhibitors broussonetines D and M

Celia Ribes,^a Eva Falomir,^a Miguel Carda,^a Juan Murga,^a and J. Alberto Marco^b

^aDepartamento de Química Inorgánica y Orgánica, Universidad Jaume I, E-12080 Castellón, Spain; and ^bDepartamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain

For Senior Author:

J.A. Marco

-Mailing address: as above -Phone No.: 34-96-3544337 -Fax No.: 34-96-3544328 -E-Mail: alberto.marco@uv.es

Supporting Information

Contents:

S-2: General features

S-3/S-4: Reaction schemes

S-5/S-14: Experimental conditions and spectral data of several intermediates

General Features. NMR spectra were recorded at 500 MHz (¹H NMR) and 125 MHz (¹³C NMR) in CDCl₃ solution at 25 °C, if not otherwise indicated, with the solvent signals as internal reference. The spectra of compounds with N-Boc residues were measured at higher temperatures in order to have sharper signals. ¹³C NMR signal multiplicities were determined with the DEPT pulse sequence. Mass spectra were run in the EI (70 eV) or the FAB (m-nitrobenzyl alcohol matrix) mode. IR data, which were measured as films on NaCl plates (oils) or as KBr pellets (solids), are given only when relevant functions (C=O, OH) are present. Optical rotations were measured at 25 °C. Reactions which required an inert atmosphere (all except those involving water in the reaction medium) were carried out under dry N₂ with flame-dried glassware. Commercial reagents were used as received. THF and Et₂O were freshly distilled from sodium-benzophenone ketyl. Dichloromethane was freshly distilled from CaH₂. Toluene was freshly distilled from sodium wire. Tertiary amines were freshly distilled from KOH. Unless detailed otherwise, "work-up" means pouring the reaction mixture into brine, followed by extraction with the solvent indicated in parenthesis. If the reaction medium was acidic, an additional washing of the organic layer with 5% aq NaHCO₃ was performed. If the reaction medium was basic, an additional washing with aq NH₄Cl was performed. Where solutions were filtered through a Celite pad, the pad was additionally washed with the same solvent used, and the washings incorporated to the main organic layer. The latter was dried over anhydrous Na₂SO₄ and the solvent was eliminated under reduced pressure. Column chromatography of the residue on a silica gel column (60-200 µm) was performed with elution with the indicated solvent mixture.

General reaction schemes

Experimental procedures

Tert-butyl (4*R*)-4-[(1*R*,2*S*)-1,2-bis(benzyloxy)-3-oxohept-6-enyl]-2,2-dimethyloxazolidine-3-carboxylate (7). An ice-cooled solution of Weinreb amide 6 (8.46 g, 16 mmol) in THF (50 mL) was treated dropwise (within 10 min) under N_2 with a 0.5 M solution of 3-butenylmagnesium bromide (96 mL, 48 mmol). The reaction mixture was then stirred for 2 h at 0 °C. Work-up (extraction with Et₂O, 3 x 50 mL) and column chromatography on silica gel (hexanes-EtOAc, 8:2) afforded 7 (8.12 g, 97%).

Colorless oil: $[\alpha]_D + 6$ (c 2.2; CHCl₃).

¹H NMR (DMSO-d₆, 70 °C) δ 7.40-7.20 (10H, br m), 5.80-5.70 (1H, ddt, J = 17, 10.3, 6.5 Hz), 4.96 (1H, br dd, J = 17, 1.5 Hz), 4.91 (1H, br dd, J = 10.3, 1.5 Hz), 4.61 (1H, d, J = 11.3 Hz), 4.60 (1H, d, J = 11.3 Hz), 4.47 (1H, d, J = 11.3 Hz), 4.45 (1H, d, J = 11.3 Hz), 4.42 (1H, m), 4.18 (1H, m), 3.98 (1H, d, J = 4 Hz), 3.94-3.87 (2H, m), 2.70-2.60 (2H, br m), 2.25-2.15 (2H, br m), 1.47 (3H, s), 1.46 (9H, s), 1.40 (3H, s).

¹³C NMR (DMSO-d₆, 70 °C) δ 208.5, 151.8*, 137.7, 137.2, 92.8, 79.4 (C), 137.1, 128.0 (x 2), 127.8 (x 2), 127.7, 127.4, 127.1 (x 4), 85.8, 78.6*, 58.6 (CH), 114.6, 74.0, 72.6, 62.6, 37.9, 26.2 (CH₂), 27.7 (x 3), 25.7, 23.5* (CH₃) (starred signals are low and/or broad).

IR v_{max} 1700 (br, C=O) cm⁻¹.

HR FABMS m/z 524.3000 (M+H⁺). Calcd. for $C_{31}H_{42}NO_6$, 524.3012.

Tert-butyl (4*R*)-[(1*R*,2*R*,3*S*)-1,2-bis(benzyloxy)-3-hydroxyhept-6-enyl]-2,2-dimethyloxazolidine-3-carboxylate (8). Ketone 7 (7.85 g, 15 mmol) was dissolved under N_2 in THF (45 mL), cooled to −78 °C and treated dropwise with a 1M solution of L-Selectride in THF (37.5 mL, 37.5 mmol). The reaction mixture was then stirred at the same temperature for 3 h. After this time, the reaction was quenched by addition of 10% aq NaOH (35 mL) and 30% H_2O_2 (25 mL), followed by stirring at 0 °C for 20 min.

Work-up (extraction with Et_2O , 3 x 40 mL) and column chromatography on silica gel (hexanes-EtOAc, 9:1) afforded alcohol **8** (6.70 g, 85%).

Colorless oil: $[\alpha]_D$ +48.8 (c 1.28; CHCl₃).

¹H NMR (CDCl₃, 58 °C) δ 7.40-7.25 (10H, br m), 5.80 (1H, m), 5.03 (1H, br dd, J = 17.2, 1.3 Hz), 4.98 (1H, br d, J = 10.3 Hz), 4.84 (1H, d, J = 11.2 Hz), 4.78 (1H, d, J = 11.3 Hz), 4.70 (1H, d, J = 11.3 Hz), 4.60 (1H, d, J = 11.2 Hz), 4.36* (1H, br m), 4.32 (1H, dd, J = 8.8, 3.5 Hz), 4.18* (1H, br m), 4.00 (1H, dd, J = 8.8, 7.3 Hz), 3.72* (1H, m), 3.32* (1H, m), 2.25-2.15 (1H, br m), 2.10-2.05 (1H, br m), 1.70-1.60 (2H, br m), 1.59 (3H, s), 1.54 (9H, s), 1.50 (3H, s) (starred signals are low and/or broad), hydroxyl proton not detected.

¹³C NMR (CDCl₃, 58 °C) δ 153.0*, 138.6, 138.2, 94.0*, 80.4 (C), 138.3, 128.3 (x 4), 128.2 (x 2), 127.9 (x 2), 127.7, 127.5, 81.8*, 78.3*, 70.4, 58.8 (CH), 114.7, 75.0, 74.5*, 63.6, 34.0, 30.2 (CH₂), 28.6 (x 3), 26.5*, 24.5* (CH₃) (starred signals are low and/or broad).

IR v_{max} 3480 (br, OH), 1692 (C=O) cm⁻¹.

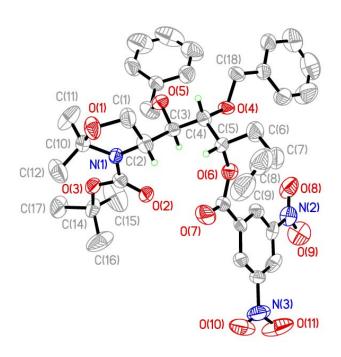
HR FABMS m/z 526.3169 (M+H⁺). Calcd. for C₃₁H₄₄NO₆, 526.3168.

8 Arcocl
$$Et_3N$$

OBn OCOAr
 $NBoc OBn$
 NO_2

Tert-butyl (*4R*)-[(*1R*,*2R*,*3S*)-1,2-bis(benzyloxy)-3-(3,5-dinitrobenzoyloxy)hept-6-enyl]-2,2-dimethyl-oxazolidine-3-carboxylate (9a). A solution of alcohol 8 (105 mg, 0.2 mmol) in dry CH₂Cl₂ (2 mL), was cooled to 0 °C and treated with 3,5-dinitrobenzoyl chloride (70 mg, 0.3 mmol), Et₃N (56 μL, 0.4 mmol) and DMAP (3 mg, ca. 0.02 mmol). The reaction mixture was then stirred at 0 °C for 5 h. Work-up (extraction with CH₂Cl₂, 3 x 10 mL) and column chromatography on silica gel (hexanes-EtOAc, 8:2) provided ester 9a (130 mg, 90%) as a yellowish oil. Slow crystallization from Et₂O at low temperature gave yellowish crystals (see ORTEP image below). The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre. Deposition number: CCDC-711360.

Mp 105-106 °C; $[\alpha]_D$ +19.8 (*c* 0.8; CHCl₃).


¹H NMR (CDCl₃, 58 °C) δ 9.15 (1H, br s), 9.01 (2H, br s), 7.40-7.25 (10H, br m), 5.80-5.70 (1H, m), 5.44* (1H, br m), 5.05-4.95 (2H, br m), 4.85-4.80* (1H, br m), 4.70* (1H, br m), 4.63 (1H, br d, J = 11.8 Hz), 4.61 (1H, d, J = 11.7 Hz), 4.40* (1H, br m), 4.35* (1H, br m), 4.05* (1H, br m), 3.95-3.90

(1H, m), 3.70-3.65 (1H, m), 2.10-2.05 (2H, br m), 1.95-1.85* (2H, br m), 1.55* (3H, s), 1.46* (3H, s), 1.44* (9H, s) (starred signals are low and/or broad).

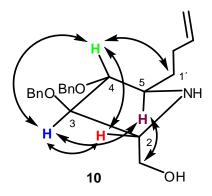
¹³C NMR (CDCl₃, 58 °C) δ 162.4, 153.0*, 148.7 (x 2), 138.3*, 138.1*, 134.6*, 94.2*, 80.5 (C), 137.1, 129.4 (x 2), 128.3 (x 3), 128.0 (x 2), 127.7 (x 2), 127.5 (x 2), 121.8 (x 2), 81.5*, 78.0*, 76.4, 59.5 (CH), 115.6, 75.2, 75.0*, 63.3*, 30.2, 29.8 (CH₂), 28.4* (x 3), 26.5*, 24.7* (CH₃) (starred signals are low and/or broad).

IR v_{max} 1733, 1684 (C=O) cm⁻¹.

HR FABMS *m/z* 719.3084 (M⁺). Calcd. for C₃₈H₄₅N₃O₁₁, 719.3054.

(2*R*,3*R*,4*R*,5*R*)-[3,4-Bis(benzyloxy)-5-(but-3-enyl)pyrrolidin-2-yl)]methanol (10). Alcohol 8 (5.25 g, 10 mmol) was dissolved in dry CH₂Cl₂ (40 mL), cooled to 0 °C and treated sequentially with Et₃N (4.2 mL, 30 mmol), mesyl chloride (1.55 mL, 20 mmol) and DMAP (12 mg, 0.1 mmol). The reaction mixture was stirred for 2 h at 0 °C, and then for 1 h at room temperature Work-up (extraction with

CH₂Cl₂, 3 x 30 mL) and solvent removal under reduced pressure gave crude mesylate **9**, which was used as such in the next reaction.


The crude mesylate from above was dissolved in dry CH₂Cl₂ (30 mL), cooled to 0 °C ands treated with trifluoroacetic acid (30 mL). After stirring the reaction mixture at 0 °C for 2 h, all volatiles were removed under reduced pressure. The residue was dissolved in MeOH (20 mL) and added 30% aq ammonia until basic pH. Removal of all volatiles under reduced pressure and column chromatography on silica gel (CH₂Cl₂-MeOH, 95:5) furnished pyrrolidine **10** (2.68 g, 73% overall from **8**) as colorless crystals (from CH₂Cl₂).

Mp 54-55 °C; $[\alpha]_D$ +18.7 (c 0.9; CHCl₃).

¹H NMR δ 7.40-7.25 (10H, br m, aromatic), 5.82 (1H, ddt, J = 17.2, 10.2, 6.5 Hz; H-3′), 5.05 (1H, br dd, J = 17.2, 1.5 Hz; H-4′_E), 5.00 (1H, br d, J = 10.2 Hz; H-4′_Z), 4.57 (1H, d, J = 11.8 Hz; benzyl), 4.56 (1H, d, J = 11.6 Hz; benzyl), 4.55 (1H, d, J = 11.6 Hz; benzyl), 4.53 (1H, d, J = 11.8 Hz; benzyl), 3.82 (1H, t, J = 3 Hz; H-3), 3.72 (1H, dd, J = 5.3, 3 Hz; H-4), 3.60-3.55 (2H, m; C H_2 OH), 3.38 (1H, m; H-2), 3.15 (1H, dt, J = 8, 5.3 Hz; H-5), 2.65 (2H, br s; OH, NH), 2.25-2.05 (2H, br m; H-2′_a/2′_b), 1.80-1.70 (1H, m; H-1′_a), 1.65-1.55 (1H, m; H-1′_b).

NOE measurements

Irradiation at	NOE enhancement at
H-2	H-3,4, C <i>H</i> ₂ OH
H-3	Benzyl CH ₂ , H-2,4,5
H-4	Benzyl CH ₂ , H-2,3,1'
H-5	Benzyl CH ₂ , CH ₂ OH, H-3

Note the absence of NOE between H-2 and H-5

¹³C NMR δ 138.0 (x 2) (C), 137.9, 128.5 (x 2), 128.4 (x 2), 127.8, 127.7 (x 5), 89.4, 86.1, 63.6, 61.5 (CH), 115.0, 71.9, 71.8, 61.8, 33.1, 30.9 (CH₂).

IR v_{max} 3400, 3320 (br, OH, NH) cm⁻¹.

HR EIMS m/z (% rel. int.) 367.2153 (M⁺, 1), 336 (M⁺–CH₂OH, 18), 276 (M⁺–CH₂Ph, 10), 91 (100). Calcd. for C₂₃H₂₉NO₃, 367.2147. Anal. Calcd. for C₂₃H₂₉NO₃: C, 75.17; H, 7.95. Found: C, 75.01; H, 8.03.

(5R,6R,7R,7aR)-6,7-Bis(benzyloxy)-5-(but-3-enyl)tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (11).

Pyrrolidine **10** (2.57 g, 7 mmol) was dissolved under N_2 in dry toluene (200 mL), treated with DMAP (9 mg, 0.07 mmol) and CDI (2.27 g, 14 mmol) and heated at reflux for 3 h. After cooling, work-up (extraction with EtOAc, 3 x 60 mL) and column chromatography on silica gel (hexanes-EtOAc, 8:2) yielded oxazolidinone **11** (2.59 g, 94%) as colorless crystals (from hexane-EtOAc):

Mp 37-38 °C; $[\alpha]_D$ +2 (c 1.55; CHCl₃).

¹H NMR δ 7.40-7.25 (10H, br m, aromatic), 5.85 (1H, ddt, J = 17.1, 10.3, 6.5 Hz; H-3′), 5.08 (1H, br d, J = 17.1 Hz; H-4′_E), 5.02 (1H, br d, J = 10.3 Hz; H-4′_Z), 4.62 (1H, d, J = 11.6 Hz; benzyl), 4.61 (1H, d, J = 11.9 Hz; benzyl), 4.49 (1H, d, J = 11.9 Hz; benzyl), 4.46 (1H, d, J = 11.6 Hz; benzyl), 4.43 (1H, t, J = 9 Hz; CHOCON), 4.10 (1H, dd, J = 9, 4.2 Hz; CHOCON), 4.04 (1H, m; H-5), 3.95-3.90 (2H, m; H-2, H-4), 3.86 (1H, dd, J = 5.3, 3 Hz; H-3), 2.25-2.15 (2H, br m; H-2′_a/2′_b), 1.75-1.60 (2H, m; H-1′_a/1′_b) (see atom numbering above).

¹³C NMR δ 161.3, 137.3, 137.2 (C), 137.4, 128.6 (x 2), 128.5 (x 2), 128.2, 127.9, 127.8 (x 2), 127.7 (x 2), 88.8, 87.8, 62.8, 62.3 (CH), 115.4, 72.7, 71.6, 67.2, 31.5, 30.4 (CH₂).

IR v_{max} 1753 (C=O) cm⁻¹.

HR EIMS m/z (% rel. int.) 393.1945 (M⁺, 1), 338 (M⁺-C₄H₇, 8), 302 (M⁺-CH₂Ph, 10), 91 (100). Calcd. for C₂₄H₂₇NO₄, 393.1940. Anal. Calcd. for C₂₄H₂₇NO₄: C, 73.26; H, 6.92. Found: C, 73.11; H, 7.05.

5-(*Tert***-butyldiphenylsilyloxy)-N-methoxy-N-methylpentanamide** (**13**). A solution of Weinreb amide **12** (1.61 g, 10 mmol) in dry DMF (35 mL) was treated under N₂ with imidazole (1.36 g, 20 mmol) and TPSCl (2.86 mL, 11 mmol). The reaction mixture was stirred at room temperature for 16 h. Work-up (extraction with CH₂Cl₂, 3 x 30 mL) and column chromatography on silica gel (hexanes-EtOAc, from 8:2 to 1:1) yielded compound **13** (3.40 g, 85%).

Colorless oil.

¹H NMR δ 7.70 (4H, br d, $J \sim 7.5$ Hz), 7.45-7.35 (6H, m), 3.72 (2H, t, J = 6.3 Hz), 3.66 (3H, s), 3.20 (3H, s), 2.45 (2H, br t, J = 7.5 Hz), 1.80-1.75 (2H, m), 1.75-1.65 (2H, m), 1.07 (9H, s).

¹³C NMR δ 174.5*, 134.0 (x 2), 19.2 (C), 135.5 (x 4), 129.5 (x 2), 127.5 (x 4) (CH), 63.6, 32.2 (x 2), 21.1 (CH₂), 61.1, 31.6, 26.9 (x 3) (CH₃) (the starred signal is low and broad).

IR v_{max} 1670 (C=O) cm⁻¹.

HR EIMS m/z (% rel. int.) 399.2239 (M⁺, 1), 384 (M⁺–Me, 3), 342 (M⁺–tBu, 100). Calcd. for $C_{23}H_{33}NO_3Si$, 399.2229.

1-(*Tert*-butyldiphenylsilyloxy)undec-10-en-5-one (14). A 1.7 M pentane solution of *tert*-butyllithium (11.8 mL, ca. 20 mmol) was added under N₂ to THF (10 mL) cooled to −78 °C. Subsequently, a solution of 6-bromo-1-hexene (1.34 mL, 10 mmol) in dry THF (6 mL) was added dropwise. The mixture was stirred for 3 h at the same temperature Weinreb amide **13** (2 g, 5 mmol) was dissolved in dry THF (8 mL) and added dropwise during 10 min. The cooling bath was then removed and the solution was left to reach room temperature and stirred for further 30 min. Work-up (extraction with EtOAc, 3 x 25 mL) and column chromatography on silica gel (hexanes-EtOAc, from 95:5) gave ketone **14** (1.69 g, 80%).

Colorless oil.

¹H NMR δ 7.70 (4H, br d, $J \sim 7.5$ Hz), 7.45-7.35 (6H, m), 5.80 (1H, ddt, J = 17.3, 10.2, 6.5 Hz), 5.02 (1H, br dd, J = 17.3, 1.5 Hz), 4.97 (1H, br d, J = 10.2 Hz), 3.67 (2H, t, J = 6.3 Hz), 2.40-2.35 (4H, m), 2.07 (2H, br q, $J \sim 7$ Hz), 1.70-1.65 (2H, m), 1.60-1.50 (4H, m), 1.38 (2H, br quint, $J \sim 7.5$ Hz), 1.06 (9H, s).

¹³C NMR δ 211.1, 134.0 (x 2), 19.2 (C), 138.5, 135.5 (x 4), 129.5 (x 2), 127.6 (x 4) (CH), 114.6, 63.5, 42.5 (x 2), 33.5, 32.0, 28.5, 23.3, 20.3 (CH₂), 26.9 (x 3) (CH₃).

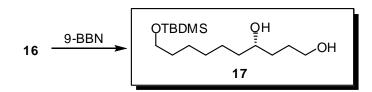
IR v_{max} 1714 (C=O) cm⁻¹.

HR FABMS m/z 423.2730 (M+H⁺). Calcd. for $C_{27}H_{39}O_2Si$, 423.2719.

(4*S*)-10-(*Tert*-butyldimethylsilyloxy)dec-1-en-4-ol (16). DMSO (1.4 mL, 20 mmol) was dissolved under N_2 in dry CH_2Cl_2 (20 mL), cooled to -78 °C and treated with oxalyl chloride (875 μ L, 10 mmol). After stirring at this temperature for 5 min., a solution of 7-(*tert*-butyldimethylsilyloxy)heptanol (2 g, ca. 8 mmol) in dry CH_2Cl_2 (6 mL) was added dropwise, followed by triethyl amine (5.6 mL, 40 mmol). The reaction mixture was stirred for 15 min. at -78 °C and then for further 40 min. at 0 °C. Work-up (extraction with CH_2Cl_2 , 3 x 25 mL) and removal of all volatiles under reduced pressure provided crude aldehyde 15, which was directly used in the next step.

Allylmagnesium bromide (commercial 1M solution in Et₂O, 10 mL, 10 mmol) was added dropwise under N₂ via syringe to a solution of (+)-DIP-Cl (3.85 g, 12 mmol) in dry Et₂O (50 mL) cooled to -78 °C. The mixture was then placed in an ice bath, stirred for 1 h and allowed to stand, which caused precipitation of magnesium chloride. The supernatant solution was then carefully transferred to another flask via cannula. After cooling this flask to -78 °C, a solution of aldehyde **15** from above in dry Et₂O (20 mL) was added dropwise via syringe. The resulting solution was further stirred at the same temperature for 1 h. The reaction mixture was then quenched through addition of phosphate pH 7 buffer solution (50 mL), MeOH (50 mL) and 30% H₂O₂ (25 mL). After stirring for 30 min. at room temperature, the mixture was poured onto satd. aq NaHCO₃ and worked up (extraction with EtOAc). Removal of all volatiles under reduced pressure and column chromatography of the residue on silica gel (hexanes-EtOAc, 95:5) afforded homoallylic alcohol **16** (1.74 g, 76% overall from the starting primary alcohol).

Colorless oil: $[\alpha]_D$ –4 (c 1.1; CHCl₃).


¹H NMR δ 5.84 (1H, ddt, J = 17, 10, 6.5 Hz), 5.15-5.10 (2H, m), 3.65 (1H, m), 3.60 (1H, t, J = 6.6 Hz), 2.30 (1H, br dt, J = 14, 5.5 Hz), 2.14 (1H, dt, J = 14, 8 Hz), 1.58 (1H, m), 1.55-1.45 (6H, br m), 1.40-1.30 (5H, m), 0.90 (9H, s), 0.04 (6H, s).

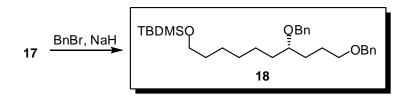
¹³C NMR δ 18.4 (C), 134.9, 70.7 (CH), 118.0, 63.3, 42.0, 36.8, 32.8, 29.5, 25.8, 25.7 (CH₂), 26.0 (x 3), -5.3 (x 2) (CH₃).

IR v_{max} 3360 (br, OH) cm⁻¹.

HR EIMS m/z (% rel. int.) 245.1939 (M⁺-C₃H₅, 20), 229 (M⁺-tBu, 2), 95 (100), 75 (96). Calcd. for $C_{16}H_{34}O_2Si-C_3H_5$, 245.1937.

The enantiomeric purity of **16** was determined as 92% (e.r. 96:4) by means of HPLC on a chiral, analytical column (Chiralcel OD-H, 4.6 mm $\emptyset \times 25$ cm). Elution was made with hexane/*iso* propanol 99:1 at 0.25 mL/min. The retention times of the enantiomers were 11.38 min. for the major enantiomer and 12.37 min. for the minor one.

(4*S*)-10-(*Tert*-butyldimethylsilyloxy)decane-1,4-diol (17). An ice-cooled solution of olefin 16 (1.72 g, 6 mmol) in dry THF (30 mL) was treated under N₂ with a 0.5 M solution of 9-BBN in THF (30 mL, 15 mmol). The reaction mixture was then stirred at room temperature for 3 h in an ultrasound bath. After re-cooling to 0 °C, the reaction was quenched through sequential addition of MeOH (10 mL), 6M aq NaOH (4 mL) and 30% H₂O₂ (1.5 mL). After stirring at 50 °C for 1 h, work-up (extraction with EtOAc, 3 x 25 mL) and column chromatography on silica gel (hexanes-EtOAc, 7:3 to 1:1), diol 17 (1.55 g, 85%) was obtained.


Colorless oil: $[\alpha]_D + 0.8$ (c 2; CHCl₃).

¹H NMR δ 3.70-3.55 (5H, br m), 3.30 (2H, br s, 2 OH), 1.70-1.55 (3H, m), 1.50-1.40 (6H, br m), 1.35-1.25 (5H, m), 0.88 (9H, s), 0.02 (6H, s).

¹³C NMR δ 18.3 (C), 71.7 (CH), 63.2, 62.7, 37.5, 34.4, 32.8, 29.5, 29.1, 25.8, 25.7 (CH₂), 25.9 (x 3), -5.3 (x 2) (CH₃).

IR v_{max} 3330 (br, OH) cm⁻¹.

HR FABMS m/z 305.2517 (M+H⁺). Calcd. for C₁₆H₃₇O₃Si, 305.2512.

(4*S*)-1,4-Bis(benzyloxy)-10-(*tert*-butyldimethylsilyloxy)decane (18). Sodium hydride (600 mg of a 60% suspension in mineral oil, 15 mmol) was suspended under N₂ in dry THF (12 mL) and cooled to 0 °C. A solution of diol 17 (1.52 g, 5 mmol) in THF (8 mL) was then added, after which the mixture was stirred for 1 h at room temperature, followed by addition of TBAI (20 mg, ca. 0.05 mmol) and benzyl bromide (1.9 mL, 16 mmol). The mixture was then heated at reflux for 6 h. Work-up (extraction with EtOAc, 3 x 20 mL) and column chromatography on silica gel (hexanes-EtOAc, 98:2 to 95:5) afforded 18 (2.04 g, 84%).

Colorless oil: $[\alpha]_D$ –2.7 (c 1.58; CHCl₃).

¹H NMR δ 7.40-7.30 (10H, br m), 4.55-4.50 (4H, two overlapped AB systems, $J \sim 11.5$ Hz), 3.64 (2H, t, J = 6.5 Hz), 3.50 (2H, m), 3.43 (1H, quint, J = 5.8 Hz), 1.85-1.50 (8H, br m), 1.45-1.30 (6H, m), 0.94 (9H, s), 0.09 (6H, s).

¹³C NMR δ 139.1, 138.7, 18.3 (C), 128.3 (x 2), 128.2 (x 2), 127.7 (x 2), 127.6 (x 2), 127.5, 127.4, 78.7 (CH), 72.8, 70.7, 70.5, 63.3, 33.8, 32.8, 30.4, 29.6, 25.8, 25.6, 25.3 (CH₂), 26.0 (x 3), -5.3 (x 2) (CH₃). HR FABMS m/z 485.3469 (M+H⁺). Calcd. for C₃₀H₄₉O₃Si, 485.3451.

(7*S*)-7,10-Bis(benzyloxy)decan-1-ol (19). A solution of compound 18 (1.94 g, 4 mmol) in dry THF (15 mL) was treated with solid TBAF trihydrate (1.57 g, 5 mmol). The reaction mixture was stirred at room temperature for 2 h and quenched by addition of water (0.5 mL). Removal of all volatiles under reduced pressure and column chromatography of the residue on silica gel (hexanes-EtOAc, 1:1) furnished alcohol 19 (1.26 g, 85%).

Colorless oil: $[\alpha]_D + 1.2$ (c 1.54; CHCl₃).

¹H NMR δ 7.40-7.25 (10H, br m), 4.53 (4H, br s), 3.63 (2H, t, J = 6.5 Hz), 3.48 (2H, m), 3.41 (1H, quint, J = 5.8 Hz), 1.80-1.50 (8H, br m), 1.45-1.30 (6H, m) (hydroxyl signal not detected).

¹³C NMR δ 139.0, 138.6 (C), 128.3 (x 2), 128.2 (x 2), 127.7 (x 2), 127.6 (x 2), 127.5, 127.4, 78.7 (CH), 72.8, 70.7, 70.5, 62.9, 33.7, 32.7, 30.3, 29.6, 25.7, 25.6, 25.3 (CH₂).

IR v_{max} 3400 (br, OH) cm⁻¹.

HR FABMS *m/z* 371.2573 (M+H⁺). Calcd. for C₂₄H₃₄O₃, 371.2580.

(4S)-1,4-Bis(benzyloxy)undec-10-ene (21). A solution of alcohol 19 (1.11 g, 3 mmol) in dry CH₂Cl₂ (20 mL) was treated under N₂ with Dess-Martin periodinane (2.55 g, 6 mmol). The reaction mixture was stirred for 45 min. at room temperature, quenched by addition of 10% aq Na₂S₂O₈ (70 mL) and stirred for further 15 min. Work-up (extraction with CH₂Cl₂, 3 x 25 mL) and removal of all volatiles under reduced pressure provided crude aldehyde 20, which was directly used in the next step.

Methyl triphenylphosphonium bromide (1.61 g, 4.5 mmol) was suspended under N_2 in dry THF (7 mL) and treated with *n*BuLi (1.6 M solution in hexanes, 2.25 mL, 3.6 mmol). The mixture was stirred for 1 h at room temperature and then cooled to -78 °C. A solution of the crude aldehyde **20** from above in dry THF (1.5 mL) was then added via syringe. The reaction mixture was stirred for 5 min. at -78 °C and then for further 90 min. at room temperature Work-up (extraction with EtOAc, 3 x 20 mL) and column chromatography on silica gel (hexanes-EtOAc, 9:1) yielded olefin **21** (715 mg, 65% overall from **19**).

Colorless oil: $[\alpha]_D$ +2.2 (c 1.1; CHCl₃).

¹H NMR δ 7.40-7.30 (10H, br m), 5.84 (1H, ddt, J = 17.2, 10.2, 6.6 Hz), 5.03 (1H, br d, J = 17.2 Hz), 4.97 (1H, br d, J = 10.2 Hz), 4.53 (4H, br s), 3.50 (2H, m), 3.43 (1H, quint, J = 5.8 Hz), 2.08 (2H, br q, $J \sim 7$ Hz), 1.80-1.50 (6H, br m), 1.45-1.30 (6H, m).

¹³C NMR δ 139.0, 138.6 (C), 139.1, 128.3 (x 2), 128.2 (x 2), 127.7 (x 2), 127.6 (x 2), 127.4, 127.3, 78.7 (CH), 114.2, 72.8, 70.7, 70.5, 33.7, 33.6, 30.3, 29.3, 28.8, 25.6, 25.1 (CH₂).

HR EIMS m/z (% rel. int.) 366.2548 (M⁺, 1), 91 (100). Calcd. for $C_{25}H_{34}O_2$, 366.2558.