Asymmetric recognition and sequential ring opening of 2-substituted-*N*-nosylaziridines with (DHQD)₂AQN and TMSNu

Supporting Information

Satoshi Minakata*, Yuta Murakami, Masamitsu Satake, Ikumasa Hidaka, Yuriko Okada, and Mitsuo Komatsu Department of Applied Chemistry, Graduate School of Engineering, Osaka University Yamadaoka 2-1, Suita, Osaka 565-0871, Japan

Fax: +81-6-6879-7402

E-mail: minakata@chem.eng.osaka-u.ac.jp

Table of Contents

General methods	S-2
General procedure for preparation of aziridines	S-3
Procedure for recognition of aziridine $1a$ with $(DHQD)_2AQN$	
General procedure for asymmetric recognition and sequential	S-4
ring opening of aziridines	
Transformation of adduct (aziridine $1a - (DHQD)_2AQN$)	
Asymmetric ring opening of <i>n</i> -hexyl-substituted aziridine with TMSNu	· S-5
FAB mass spectrum of aziridine 1a trapped by (DHQD) ₂ AQN	
Spectral data S-6-	S-21
References	S-22

General methods.

Melting points were determined on a Yanagimoto micro melting point apparatus IR spectra were obtained on a Jasco FT/IR-410 infrared and are uncorrected. spectrophotometer. ¹H and ¹³C-NMR spectra were recorded on a JEOL FT-NMR JNM EX 270 spectrometer (1H-NMR, 270 MHz; 13C-NMR, 68 MHz) using tetramethylsilane as an internal standard. Mass spectra were measured with Shimadzu Model GCMS-QP5000 spectrometer and JEOL DX-300 HF mass spectrometer. Highresolution mass spectral data was obtained on a JEOL JMS-DX303HF Spectrometer. Elemental analyses were performed at the Analytical Center, Faculty of Engineering, Osaka University. High performance liquid chlomatography (HPLC) was performed on HITACHI D-7400 (UV-Detector). Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. Flash column chromatography (FCC) was performed using silica gel FL60D (Fuji Silysia Chemical Co.). Preparative gel permeation liquid chromatography (GPLC) was performed on a JAI (Japan Analytical Industry) LC-908 instrument with JAIGEL 1H-2H columns and chloroform as an eluent. Analytical thin layer chromatography was performed using EM reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and spraying with an ethanolic phosphomolybdic acid solution followed by heating.

General procedure for preparation of aziridines.¹ (starting materials)

The alkenes (6 mmol) were added to a solution of *N*-chloro-*N*-sodio-2-nitrobenzesulfonamide² (0.78 g, 3.0 mmol) and iodine (76 mg, 0.35 mmol) in MeCN (10 mL) at room temperature. The solution was stirred in the dark at room temperature under an atmosphere of nitrogen, quenched with 0.5 N aqueous Na₂S₂O₃ (5 mL), extracted with CH₂Cl₂ (25 mL×4). The combined organic layer was dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate).

Procedure for recognition of aziridine 1a with (DHQD)₂AQN. (Figure 1)

A slution of aziridine **1a** (0.1 mmol) and $(DHQD)_2AQN$ (0.05 mmol) in MeCN (0.4 mL) was stirred at room temperature for indicated time under an atmosphere of nitrogen. The reaction mixture was then passed through a 15 cm plag of silica gel with *n*-hexane/AcOEt (1/1, 100 mL). The solvent was removed *in vacuo* to give the crude product which was purified by preparative thin-layer chromatography.

General procedure for asymmetric recognition and sequential ring opening of aziridines. (Schemes 1 and 2, Table 1)

A solution of the aziridine (0.1 mmol) and (DHQD)₂AQN (0.5 mmol) in methylene chloride (0.4 mL) was stirred at room temperature under an atomosphere of nitrogen. After stirring for indicated time, TMSNu was added and the mixture was further stirred for 5 h at the same temperature. The reaction mixture was then passed through a 15 cm plug of silica gel with *n*-hexane/AcOEt (1/1, 100 mL). The solvent was removed *in vacuo* to give the crude product which was purified by preparative thin-layer chromatography.

Transformation of adduct (aziridine 1a-(DHQD)₂AQN). (Scheme 3)

To a solution of aziridine – (DHQD)₂AQN adduct in MeCN (1 mL) was added thiophenol (0.18 mmol, 3 equiv) and K_2CO_3 (0.18 mmol, 3 equiv). The mixture was heated to reflux for 12 h under an atomosphere of argon, and then phenylisocyanate (0.6 mmol, 10 equiv) was added to the reflux solution. The solution was further heated to reflux for 12 h under an atomosphere of argon. The reaction mixture was then passed through a 15 cm plug of silica gel with *n*-hexane/AcOEt (1/1, 100mL). The solvent was removed *in vacuo* to give the crude product which was purified by preparative thin-layer chromatography.

Asymmetric Ring Opening of *n*-Hexyl-substituted Aziridine with TMSNu

^a Isolated yield based on consumption of half amount of aziridine **1i**. ^b Determined by chiral HPLC.

FAB mass spectrum of aziridine 1a trapped by (DHQD)₂AQN

N-(2-Nitrobenzenesulfonyl)-2-benzylaziridine (1a)

White solid; mp 72-73 °C; IR (KBr, cm⁻¹) 1539, 1369, 1327, 1167; ¹H NMR (270 MHz, CDCl₃) $\delta = 2.36$ (d, 1H, J = 3.2 Hz, H-3,), 2.81 (dd, 1a 1H, J = 4.2, 9.7 Hz, CH₂Ph,), 2.92-2.99 (m, 2H, CH₂Ph and H-3), 3.23-3.28 (m, 1H, H-2), 7.15-7.26 (m, 5H, Ph), 7.64-7.73 (m, 3H, Ar-H), 8.07 (d, 1H, J= 5.4 Hz, Ar-H); ¹³C NMR (68 MHz, CDCl₃) $\delta = 34.95$, 37.40, 42.80, 124.22, 126.83, 128.48, 128.90, 131.10, 131.97, 134.32, 136.44; MS (EI) *m/z* (relative intensity, %) 318 (M⁺, 1), 186 (6), 132 (M⁺-o-NsNH₂, 43), 91 (71), 77 (36), 55 (100); HRMS (CI, isobutane) calcd for C₁₅H₁₄N₂O₄S (M + H)⁺ 319.0754, found 319.0755; HPLC (Daicel Chiralcel OJ, hexane/2-propanol, 7:3, 0.7 mL/min, 254 nm) $t_R = 38.1$ min., $t_S = 52.4$ min.

N-(2-Nitrobenzenesulfonyl)-2-(p-tolylmethyl)aziridine (1b)

14.3 Hz), 2.88-2.96 (m, 2H, Ar-C<u>H</u>₂ and H-3), 2.95-3.25 (m, 1H, H-2), 6.95-7.08 (m, 4H, Ar-<u>H</u>), 7.61-7.77 (m, 3H, Ar-<u>H</u>), 8.06 (d, 1H, J = 7.7 Hz, Ar-<u>H</u>); ¹³C NMR (68

MHz, CDCl₃) $\delta = 21.11$, 35.11, 37.03, 43.04, 124.11, 128.69, 129.06, 131.03, 131.70, 131.82, 133.20, 134.03, 136.20, 148.38; MS (EI) *m/z* (relative intensity, %) 332 (M⁺, 22), 186 (17), 146 (M⁺–*o*-NsNH₂, 100), 119 (96), 105 (78); HRMS (CI, isobutane) calcd for C₁₆H₁₆N₂O₄S (M + H)⁺ 333.0910, found 333.0900; HPLC (Daicel Chiralcel OJ, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) *t* = 43.5 and 48.1 min.

N-(2-Nitrobenzenesulfonyl)-2-(*p*-methoxyphenylmethyl)aziridine (1c)

1H, H-2), 3.77 (s, 3H, O-C<u>H</u>₃), 6.71 (d, 2H, J = 6.5 Hz, Ar-<u>H</u>), 7.06 (d, 2H, J = 8.9 Hz, Ar-<u>H</u>), 7.60-8.04 (m, 3H, Ar-<u>H</u>), 8.06 (d, 1H, J = 8.9 Hz, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 35.04$, 36.55, 43.11, 55.23, 113.78, 124.11, 128.31, 129.83, 131.02, 131.66, 131.83, 134.12, 148.37, 158.25; MS (EI) m/z (relative intensity, %) 348 (M⁺, 20), 186 (8), 162 (M⁺-o-NsNH₂, 71), 135 (38), 121 (100); Anal. Calcd for C₁₆H₁₆N₂O₅S: C, 55.16; H, 4.63; N, 8.04. Found: C, 55.14; H, 4.62; N, 7.87; HPLC (Daicel Chiralpak IA, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) t = 42.2 and 45.6 min.

N-(2-Nitrobenzenesulfonyl)-2-(p-tert-butoxycarbonyloxyphenylmethyl)aziridine

(1d)

BocO
$$\longrightarrow$$
 N
Hz, H-3), 2.82-2.94 (m, 3H, Ar-CH₂ and H-3), 3.13-3.24 (m, 3H, Ar-CH₂

1H, H-2), 6.96 (d, 2H, J = 6.8 Hz, Ar-<u>H</u>), 7.13 (d, 2H, J = 8.4 Hz, Ar-<u>H</u>), 7.59-8.00 (m, 3H, Ar-<u>H</u>), 8.00 (d, 1H, J = 6.8 Hz, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 27.72$, 34.68, 36.73, 42.75, 83.50, 121.13, 124.11, 129.69, 130.88, 131.20, 131.88, 133.83, 134.36, 148.24, 149.68, 151.61; MS (CI, isobutane) m/z (relative intensity, %) 435 ([M + H]⁺, 3), 379 (100), 335 (41), 215 (64); HRMS (CI, isobutane) calcd for C₂₀H₂₃N₂O₇S (M + H)⁺ 435.1226, found 435.1217; HPLC (Daicel Chiralpak AS, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) t = 124.6 and 156.0 min.

N-(2-Nitrobenzenesulfonyl)-2-(*p*-bromophenylmethyl)aziridine (1e)

(m, 2H, Ar-CH₂ and H-3), 3.10-3.22 (m, 1H, H-2), 7.00 (d, 2H, *J* = 8.4 Hz, Ar-H), 7.24

(d, 2H, J = 9.2 Hz, Ar-<u>H</u>), 7.58-7.95 (m, 3H, Ar-<u>H</u>), 7.98 (d, 1H, J = 7.8 Hz, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 34.64$, 36.70, 42.57, 120.58, 123.96, 130.44, 130.86, 131.07, 131.23, 131.68, 134.14, 135.26, 148.20; MS (EI) m/z (relative intensity, %) 396 (M+, 5), 210 (M⁺–o-NsNH₂, 8), 123 (68), 103 (100); Anal. Calcd for C₁₅H₁₃BrN₂O₄S: C, 45.35; H, 3.30; N, 7.05. Found: C, 45.61; H, 3.29; N, 6.94.; HPLC (Daicel Chiralpak IA, hexane/2-propanol, 95:5, 0.5 mL/min, 254 nm) t = 66.9 and 70.4 min.

N-(2-Nitrobenzenesulfonyl)-2-(1-naphthylmethyl)aziridine (1f)

Colorless oil; IR (neat, cm⁻¹) 1543, 1335, 1167; ¹H NMR (270 MHz, CDCl₃) $\delta = 2.38$ (d, 1H, J = 4.1 Hz, H-3,), 2.91 (d, 1H, J = 6.2 Hz, H-3), 3.27-3.36 (m, 3H, Ar-CH₂ and H-2), 7.27-7.49 (m, 7H, Ar-H), 7.61-7.64 (m, 1H, Ar-H), 7.74-7.76 (m, 2H, Ar-H), 7.91-7.95 (m, 1H, Ar-H); ¹³C NMR (68 MHz, CDCl₃) $\delta = 34.16$, 34.73, 42.47, 123.42, 123.71, 125.19, 125.44, 125.94, 127.02, 127.44, 128.41, 130.46, 130.70, 131.42, 131.45, 132.55, 133.38, 134.08, 147.87; MS (EI) m/z (relative intensity, %) 368 (M⁺, 23), 182 (27), 141 (86), 127 (11); HRMS (EI) calcd for C₁₉H₁₆N₂O₄S (M)⁺ 368.0832, found 368.0836; HPLC (Daicel Chiralpak IA, hexane/2-propanol, 95:5, 0.5 mL/min, 254 nm) t = 50.1 and 56.0 min. N-(2-Nitrobenzenesulfonyl)-2-(1-H-3-indolylmethyl)aziridine (1g)

Yellow solid; mp 119-121 °C (decomp.); IR (KBr, cm⁻¹) 3435 o-Ns (NH), 1543, 1362, 1327, 1169; ¹H NMR (270 MHz, CDCl₃) $\delta =$ 1g 2.39 (d, J = 4.9 Hz, 1H, H-3), 2.92 (d, J = 9.7 Hz, 1H, H-3), 3.00-3.08 (m, 2H, Ar-CH₂), 3.28-3.38 (m, 1H, H-2), 7.01-7.10 (m, 2H, Ar-H), 7.12-7.19 (ddd, 1H, J = 1.1, 7.0, 7.0 Hz, Ar-H), 7.25-7.33 (m, 1H, Ar-H), 7.48-7.55 (m, 2H, Ar-H), 7.62-7.98 (m, 2H, Ar-H), 7.98-8.02 (m, 2H, Ar-H and NH); ¹³C NMR (68 MHz, CDCl₃) $\delta = 27.17$, 35.44, 42.45, 110.61, 111.03, 118.56, 119.45, 121.99, 122.52, 123.93, 127.08, 130.85, 131.52, 131.62, 133.98, 135.89; MS (EI) *m/z* (relative intensity, %) 357 (M⁺, 15), 186 (20), 171 (M⁺-*o*-NsNH₂, 33), 130 (80), 64 (100); HRMS (CI, isobutane) calcd for C₁₇H₁₆N₃O₄S (M + H)⁺ 358.0862, found 358.0858; HPLC (Daicel Chiralpak AD, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) $t_R = 162.2$ min, $t_S = 187.5$ min.

N-(2-Nitrobenzenesulfonyl)-2-(2-thienylmethyl)aziridine (1h)

Colorless oil; IR (neat, cm⁻¹) 1545, 1367, 1335, 1167; ¹H NMR (270 N o-Ns 1h MHz, CDCl₃) $\delta = 2.39$ (d, 1H, J = 4.1 Hz, H-3), 2.93-3.10 (m, 2H,

Ar-CH2 and H-3), 3.19-3.30 (m, 2H, Ar-CH2 and H-2), 6.83-6.90 (m, 2H, Ar-H), 7.11

(dd, 1H, J = 1.4, 4.9 Hz, Ar-<u>H</u>), 7.60-8.15 (m, 3H, Ar-<u>H</u>), 8.14 (m, 1H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 31.53$, 34.95, 42.28, 124.10, 124.25, 125.88, 126.79, 130.93, 131.63, 131.88, 134.16, 137.66, 148.22; MS (EI) m/z (relative intensity, %) 324 (M⁺, 10), 186 (22), 138 (M⁺–o-NsNH₂, 73), 111 (67), 97 (100); HRMS (CI, isobutane) calcd for C₁₃H₁₃N₂O₄S₂ (M + H)⁺ 325.0318, found 325.0322; HPLC (Daicel Chiralpak AS, hexane/2-propanol, 95:5, 0.25 mL/min, 254 nm) t = 188.9 and 193.8 min.

N-(2-Nitrobenzenesulfonyl)-2-n-hexylaziridine (1i)

colorless oil; IR (neat, cm⁻¹) 2929, 2858, 1547, 1462, 1367, 1335, 1167; n-hex n i colorless oil; IR (neat, cm⁻¹) 2929, 2858, 1547, 1462, 1367, 1335, 1167; ¹H NMR (270 MHz, CDCl₃) $\delta = 0.86$ (t, 3H, J = 4.6 Hz, n-C₅H₁₀CH₃), 1.15-1.59 (m, 10H, n-C₅H₁₀CH₃), 2.29 (d, 1H, J = 4.6 Hz, H-3), 2.86-2.88 (d, 1H, J = 7.3 Hz, H-3), 2.97-3.06 (m, 1H, H-2), 7.71-7.81 (m, 3H, Ar-H), 8.18-8.22 (m, 1H, Ar-H); ¹³C NMR (68 MHz, CDCl₃) $\delta = 13.94$, 22.38, 26.34, 28.61, 31.25, 31.45, 36.01, 42.11, 124.13, 131.01, 131.99, 134.35, 148.45; MS (EI) m/z(relative intensity, %); HRMS (CI, isobutane) calcd for C₁₃H₁₃N₂O₄S₂ (M + H)⁺; HPLC (Daicel Chiralcel OJ, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm, 30 °C) t = 26.2 and 30.3 min. *N*-(2-Cyano-1-benzylethyl)-2-nitrobenzenesulfonamide (2a)

Pale yellow oil; IR (neat, cm⁻¹) 2252 (CN); ¹H NMR (270 MHz, CN CDCl₃) $\delta = 2.76-2.86$ (m, 3H, CH₂CN and CH₂Ph), 3.02-3.07 (dd, 1H, CH₂Ph, J = 3.9, 9.6 Hz), 3.88-3.96 (m, 1H, N-CH), 5.70 (d, 1H, NH, J = 4.0Hz, D₂O exchangeable), 6.99-7.07 (m, 5H, Ph), 7.68-7.79 (m, 3H, Ar-H), 7.97-7.99 (m, 1H, Ar-H); ¹³C NMR (68 MHz, CDCl₃) $\delta = 25.28$, 39.83, 53.08, 116.62, 125.83, 127.29, 128.65, 128.82, 130.31, 133.10, 133.27, 133.57, 134.78, 146.94; MS (CI, isobutane) m/z (relative intensity, %) 346 ([M + H]⁺, 100); HRMS (CI, isobutane) m/zcalcd for C₁₆H₁₆N₃O₄S (M + H)⁺ 346.0861, found 346.0865; [α]²⁴_D = -43.0 (c = 4.40, CHCl₃) (75% ee) HPLC (Daicel Chiralcel OJ, hexane/2-propanol, 7:3, 0.7 mL/min, 254 nm, 30 °C) $t_S = 42.2$ min, $t_R = 55.8$ min.

N-[2-Cyano-1-(*p*-tolylmethyl)ethyl]-2-nitrobenzenesulfonamide (2b)

 CH_2CN , J = 5.2, 14.0 Hz), 3.80-3.90 (m, 1H, N-CH), 5.69 (d, 1H, NH, J = 5.2 Hz, D_2O exchangeable), 6.80-6.89 (m, 4H, Ar-H), 7.64-7.80 (m, 3H, Ar-H), 7.93-7.97 (m, 1H,

Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 21.08$, 25.50, 39.51, 53.32, 116.49, 125.70, 128.63, 129.26, 130.32, 131.48, 132.99, 133.15, 133.43, 136.78, 146.83; MS (EI) *m/z* (relative intensity, %) 359 (M⁺, 1), 254 (M⁺CH₂C₆H₄CH₃, 15), 186 (100), 157 (M⁺-*o*-NsNH₂, 33), 105 (93); HRMS (CI, isobutane) calcd for C₁₇H₁₇N₃O₄S (M + H)⁺ 360.1019, found 360.1021; $[\alpha]^{27}_{D} = -65.1$ (c = 0.61, CHCl₃) (87% ee); HPLC (Daicel Chiralpak AS, hexane/2-propanol, 7:3, 0.5 mL/min, 254 nm) *t* = 43.6 and 61.8 min.

N-[2-Cyano-1-(*p*-methoxyphenylmethyl)ethyl]-2-nitrobenzenesulfonamide (2c)

C<u>H</u>₂CN), 3.71 (s, 1H, O-C<u>H</u>₃), 3.78-3.92 (m, 1H, N-C<u>H</u>), 5.67 (d, 1H, J = 5.3 Hz, N<u>H</u>, D₂O exchangeable), 6.53 (d, 2H, J = 8.4 Hz, Ar-<u>H</u>), 6.86 (d, 2H, J = 8.4 Hz, Ar-<u>H</u>), 7.63-7.72 (m, 2H, Ar-<u>H</u>), 7.74-7.81 (m, 1H, Ar-<u>H</u>), 7.91-7.98 (m, 1H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 25.51$, 39.07, 53.41, 55.17, 113.93, 116.52, 125.80, 126.48, 129.79, 130.32, 133.01, 133.34, 133.40, 146.80, 158.44; MS (EI) m/z (relative intensity, %) 375 (M⁺, 2), 186 (7), 173 (M⁺–o-NsNH₂, 2), 121 (100); HRMS (CI, isobutane) calcd for $C_{17}H_{17}N_3O_5S (M + H)^+$ 376.0968, found 376.0964; $[\alpha]^{28}{}_D = -230.4$ (c = 0.909, CHCl₃) (80% ee); HPLC (Daicel Chiralpak AS, hexane/2-propanol, 7:3, 0.5 mL/min, 254 nm) t = 69.8 and 101.2 min.

N-[2-Cyano-1-(*p-tert*-butoxycarbonyloxyphenylmethyl)ethyl]-2-nitrobenzenesulfon amide (2d)

1H, J = 5.1, 14.3 Hz, CH₂CN), 3.80-3.95 (m, 1H, N-CH), 5.66 (d, 1H, J = 5.9 Hz, NH, D₂O exchangeable), 6.84 (d, 2H, J = 8.4 Hz, Ar-H), 6.98 (d, 2H, J = 8.4 Hz, Ar-H), 7.63-7.85 (m, 3H, Ar-H,), 7.91-7.98 (m, 1H, Ar-H,); ¹³C NMR (68 MHz, CDCl₃) $\delta =$ 25.41, 27.62, 39.16, 52.99, 83.69, 116.27, 121.40, 125.98, 129.54, 129.91, 131.93, 132.71, 132.74, 133.51, 146.86, 149.93, 151.23; MS (CI) m/z (relative intensity, %) 362 (M⁺ + H –Boc, 100); HRMS (FAB) calcd for C₂₁H₂₄N₃O₇S (M + H)⁺ 462.1336, found 462.1338; [α]³⁰_D = -56.2 (c = 0.973, CHCl₃) (81% ee); HPLC (Daicel Chiralpak IA, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) t = 53.2, 64.2 min. *N*-[2-Cyano-1-(*p*-bromophenylmethyl)ethyl]-2-nitrobenzenesulfonamide (2e)

o-NsNH Br CN 2e Ar-CH₂), 2.98-3.01 (dd, 1H, J = 4.6, 14.0 Hz, CH₂CN,

3.83-3.98 (m, 1H, N-C<u>H</u>), 5.71 (brs, 1H, N<u>H</u>, D₂O exchangeable), 6.87 (d, 2H, J = 8.4 Hz, Ar-<u>H</u>), 7.07 (d, 2H, J = 8.4 Hz, Ar-<u>H</u>), 7.76-7.80 (m, 4H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 29.13$, 39.38, 53.55, 116.3, 121.36, 125.79,129.99, 130.46, 131.51, 133.01, 133.24, 133.47, 133.92, 146.77; MS (CI, isobutane) m/z (relative intensity, %) 426 ([M+1]⁺, 100), 424 ([M + H]⁺, 98), 254 (15), 224 ([M + H]⁺ –o-NsNH₂, 11), 222 ([M + H]⁺ –o-NsNH₂, 10), 186 (31); HRMS (CI, isobutane) m/z calcd for C₁₆H₁₅BrN₃O₄S (M + H)⁺ 423.9968, found 423.9978; [α]³¹_D = -76.7 (c = 0.64, CHCl₃) (86% ee); HPLC (Daicel Chiralpak AS, hexane/2-propanol, 7:3, 0.25 mL/min, 254 nm) t = 137.2 and 180.6 min.

N-[2-Cyano-1-(1-naphtylmethyl)ethyl]-2-nitrobenzenesulfonamide (2f)

S-15

C<u>H</u>₂CN), 4.06-4.12 (m, 1H, N-C<u>H</u>), 5.76 (d, 1H, J = 5.7 Hz, N<u>H</u>, D₂O exchangeable), 7.10-7.74 (m, 11 H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 26.3$, 37.7, 51.8, 116.6, 122.7, 125.1, 125.3, 125.7, 126.6, 128.4, 128.5, 129.0, 129.4, 130.4, 130.7, 132.2, 132.5, 133.0, 133.4, 145.9; MS (EI) m/z (relative intensity, %) 395 (M⁺, 6), 193 (M⁺-o-NsNH₂, 6), 186 (51), 141 (100); HRMS (CI, isobutane) m/z calcd for C₂₀H₁₈N₃O₄S (M + H)⁺ 396.1019, found 396.1029; $[\alpha]^{31}_{D} = -46.1$ (c = 0.84, CHCl₃) (82% ee); HPLC (Daicel Chiralpak AS, hexane/2-propanol, 7:3, 0.5 mL/min, 254 nm) t= 44.8 and 66.7 min.

N-[2-Cyano-1-(1-*H*-3-indolylmethyl)ethyl]-2-nitrobenzenesulfonamide (2g)

exchangeable), 6.84 (dd, 1H₂ J = 7.6, 7.6 Hz, Ar-<u>H</u>), 6.96-7.03 (m, 2H, Ar-<u>H</u>), 7.13 (d, 1H, Ar-<u>H</u>, J = 8.1 Hz), 7.19-7.27 (m, 2H, Ar-<u>H</u>), 7.38-7.51 (m, 3H, Ar-<u>H</u>), 8.82 (brs, 1H, N<u>H</u>, D₂O exchangeable); ¹³C NMR (68 MHz, CD₃CN) δ = 26.30, 30.49, 52.91, 109.63, 112.38, 118.43, 118.83, 119.82, 122.17, 125.30, 125.63, 127.34, 130.17, 132.89, 133.26, 134.33, 137.04, 146.97; MS (EI) *m/z* (relative intensity, %) 384 (M⁺, 3), 186 (2), 182 (M⁺–*o*-NsNH₂, 2), 130 (100); Anal. Calcd for C₁₈H₁₈N₄O₄S: C, 56.24; H, 4.20; N, 14.57. Found: C, 55.96; H, 4.46; N, 14.71.; $[\alpha]^{23}{}_{D} = -17.3$ (c = 0.51, acetone) (75% ee); HPLC (Daicel Chiralpak IA, hexane/2-propanol, 9:1, 0.7 mL/min, 254 nm, 30 °C) $t_{S} = 111.4$ min, $t_{R} = 140.3$ min.

N-[2-Cyano-1-(2-thienylmethyl)ethyl]-2-nitrobenzenesulfonamide (2h)

6.74-6.77 (m, 2H, Ar-<u>H</u>), 6.99 (d, 1H, J = 4.9 Hz, Ar-<u>H</u>), 7.70-7.87 (m, 3H, Ar-<u>H</u>), 8.04-8.08 (m, 1H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 24.92$, 34.17, 52.88, 116.21, 125.40, 125.85, 127.16, 127.54, 130.50, 133.13, 133.19, 133.68, 136.11, 147.07; MS (EI) m/z (relative intensity, %) 351 (M⁺, 1), 186 (80), 149 (M⁺–o-NsNH₂, 27), 97 (100); HRMS (CI, isobutane) m/z calcd for C₁₄H₁₄N₃O₄S₂ (M + H)⁺ 352.0427, found 352.0432; [α]³¹_D = -37.6 (c = 0.87, CHCl₃) (95% ee); HPLC (Daicel Chiralpak AS, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) t = 82.5 and 108.4 min.

o-NsNH Colorless oil; IR (neat, cm⁻¹) 2108 (N₃); ¹H NMR (270 MHz, N₃ CDCl₃) $\delta = 2.97$ -3.15 (m, 2H), 3.35 (d, 2H, J = 5.1 Hz), 3.72-3.88 3h (m, 1H, N-CH), 5.75 (brs, 1H, NH, D₂O exchangeable), 6.75-6.79

(m, 2H, Ar-<u>H</u>), 7.01 (dd, 1H, J = 1.8, 4.9 Hz, Ar-<u>H</u>), 7.63-7.80 (m, 2H, Ar-<u>H</u>), 7.80-7.91 (m, 1H, Ar-<u>H</u>), 8.04-8.09 (m, 1H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 32.81$, 54.31, 55.69, 124.89, 125.62, 126.99, 127.02, 130.34, 133.01, 133.38, 134.09, 137.37, 147.20; MS (EI) m/z (relative intensity, %); HRMS (CI, isobutane) m/z calcd for C₁₃H₁₄N₅O₄S₂ (M + H)⁺ 368.0489, found 368.0482; $[\alpha]^{23}_{D} = -12.0$ (c = 1.22, CHCl₃) (81% ee); HPLC (Daicel Chiralpak IA, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) t = 46.3 and 54.7 min.

N-[2-Iode-1-(2-thienylmethyl)ethyl]-2-nitrobenzenesulfonamide (4h)

(m, 2H, Ar-<u>H</u>), 7.03 (dd, 1H, J = 1.4, 4.9 Hz, Ar-<u>H</u>), 7.68-7.77 (m, 2H, Ar-<u>H</u>), 7.80-7.89 (m, 1H, Ar-<u>H</u>), 8.05-8.10 (m, 1H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) $\delta = 11.62$, 35.51,

55.27, 124.94, 125.65, 127.02, 130.24, 133.07, 133.45, 134.25, 137.11, 147.24; MS (EI) m/z (relative intensity, %); HRMS (CI, isobutane) m/z calcd for C₁₃H₁₄IN₂O₄S₂ (M + H)⁺ 452.9441, found 452.9440; $[\alpha]^{23}_{D} = -9.9$ (c = 1.64, CHCl₃) (82% ee); HPLC (Daicel Chiralpak IA, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) t = 40.8 and 49.2 min

N-(1-Cyanooct-2-yl)-2-nitrobenzenesulfonamide (2i)

Pale yellow oil; IR (neat, cm⁻¹) 2252 (CN); ¹H NMR (270 MHz, CDCl₃) $\delta = 0.82$ (t, 3H, J = 6.2 Hz, $n-C_5H_{10}CH_3$), 0.88-1.67 (m, 10H, $n-C_5H_{10}CH_3$), 2.61-2.76 (m, 2H, CH₂CN), 3.65-3.68 (m, 1H, N-CH), 5.48 (br d, 1H, J = 7.3 Hz, NH, D₂Oexchangeable), 7.63-7.93 (m, 3H, Ar-H), 8.09-8.17 (m, 1H, Ar-H); ¹³C NMR (68 MHz, CDCl₃) $\delta = 14.03$, 22.42, 25.29, 25.43, 28.43 31.42, 34.07, 51.41, 116.45, 125.52, 130.41, 133.00, 133.85, 147.55; MS (CI, methane) m/z (relative intensity, %) 340 ([M + H]⁺, 100); HRMS (CI, methane) m/zcalcd for C₁₅H₂₂N₃O₄S (M + H)⁺ 340.1331, found 340.1328; [α]²³_D = -22.2 (c = 1.15, CHCl₃) (59% ee); HPLC (Daicel Chiralcel OJ, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) t = 57.2 and 72.3 min. N-(1-Azideoct-2-yl)-2-nitrobenzenesulfonamide (3i)

o-NsNH n-hex 3i $n-c_5\underline{H}_{10}CH_3$), 3.36-3.38 (m, 2H, C<u>H</u>₂N₃), 3.53-3.63 (m, 1H, N-C<u>H</u>),

5.41 (br d, 1H, J = 8.1 Hz, N<u>H</u>, D₂O exchangeable), 7.72-7.79 (m, 2H, Ar-<u>H</u>), 7.87-7.92 (m, 1H, Ar-<u>H</u>), 8.12-8.17 (m, 1H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) δ = 14.07, 22.49, 25.46, 28.74, 31.53, 31.74, 54.60, 55.31, 125.38, 130.25, 132.86, 133.43, 134.75, 147.53; MS (CI, methane) *m/z* (relative intensity, %) 340 ([M + H]⁺, 100); HRMS (CI, methane) *m/z* calcd for C₁₅H₂₂N₃O₄S (M + H)⁺ 340.1331, found 340.1328; [α]²³_D = -22.2 (c = 1.15, CHCl₃) (59% ee); HPLC (Daicel Chiralcel OJ, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) *t* = 57.2 and 72.3 min.

N-(1-iodeoct-2-yl)-2-nitrobenzenesulfonamide (4i)

7.6 Hz, N<u>H</u>, D₂O exchangeable), 7.75-7.79 (m, 2H, Ar-<u>H</u>), 7.90-7.93 (m, 1H, Ar-<u>H</u>), 8.11-8.17 (m, 1H, Ar-<u>H</u>); ¹³C NMR (68 MHz, CDCl₃) δ = 13.02, 13.98, 22.40, 25.17, 28.57, 31.45, 35.46, 54.34, 125.38, 130.03, 132.83, 133.37, 134.86, 147.48; MS (CI, methane) m/z (relative intensity, %) 340 ([M + H]⁺, 100); HRMS (CI, methane) m/z calcd for C₁₅H₂₂N₃O₄S (M + H)⁺ 340.1331, found 340.1328; $[\alpha]^{23}_{D} = -22.2$ (c = 1.15, CHCl₃) (59% ee); HPLC (Daicel Chiralcel OJ, hexane/2-propanol, 9:1, 0.5 mL/min, 254 nm) t = 57.2 and 72.3 min.

5-Benzyl-2-oxo-3-phenylimidazolidine-1-(N-phenylcarboxamide) (5)

Ph-NH O
Pale yellow solid; IR (KBr, cm⁻¹) 1722, 1681, 1599, 1556, 1500;
Ph-NH O
N Ph
S
1H NMR (270 MHz, CD₃CN)
$$\delta = 2.92$$
 (dd, 1H, $J = 8.9, 13.2$ Hz),
3.42 (dd, 1H, $J = 3.1, 13.2$ Hz), 3.58 (dd, 1H, $J = 2.3, 9.6$ Hz), 3.92

(dd, 1H, J = 9.0, 9.0 H), 4.72-4.80 (m, 1H), 7.05-7.19 (m, 2H), 7.21-7.39 (m, 11H), 7.58 (dd, 2H, J = 0.9, 8.5 H), 10.46 (brs, 1H, N<u>H</u>, D₂O exchangeable); ¹³C NMR (68 MHz, CDCl₃) $\delta = 38.89, 48.01, 52.89, 121.18, 123.39, 123.91, 127.00, 127.31, 127.91, 128.76, 129.14, 129.47, 129.59, 129.67, 130.50, 132.53, 143.26, 135.08, 135.87, 150.15, 155.06; MS (EI) <math>m/z$ (relative intensity, %) 371 (M⁺, 14), 186 (80), 161 (100); Anal. ; $[\alpha]^{31}_{D} = +14.8$ (c = 0.48, CHCl₃) (83% ee); HPLC (Daicel Chiralpak IA, hexane/2-propanol, 95:5, 0.5 mL/min, 254 nm) t = 37.0, 62.4 min.

References

- 1. T. Ando, D. Kano, S. Minakata, I. Ryu, M. Komatsu, *Tetrahedron* 1998, **54**, 13485-13494.
- 2. G. Li, H.-X. Wei, S. H. Kim, Tetrahedron 2001, 57, 8407-8411.