A new domino autocatalytic reaction leading to polyfunctionalized spiro[5.5]undecanes and dispiro[4.2.5.2]pentadecanes

Bo Jiang, ${ }^{\text {a,b }}$ Wen-Juan Hao, ${ }^{\text {a }}$ Jin-Peng Zhang, ${ }^{\text {c }}$ Shu-Jiang Tu*a,b and Feng Shi ${ }^{\text {a }}$
${ }^{a}$ School of Chemistry and Chemical Engineering, Xuzhou Normal University, Jiangsu, P. R. China, 221116.
${ }^{\mathrm{b}}$ College of Chemistry and Chemical Engineering, Suzhou University, Suzhou, P. R. China
${ }^{\text {c }}$ Department of Public Health, Xuzhou Medical College, Xuzhou; P. R. China
E-mail: laotu@xznu.edu.cn

Supporting Information

1. General information

Melting points were determined in open capillaries and were uncorrected. IR spectra were taken on a FT-IR-Tensor 27 spectrometer in KBr pellets and reported in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectra were measured on a Bruker DPX 400 MHz spectrometer in DMSO- d_{6} with chemical shift (δ) given in ppm relative to TMS as internal standard. Element analysis was determined by using a Perkin-Elmer 240c elemental analysis instrument. X-ray crystallographic analysis was performed with a Siemens SMART CCD and a Semens P4 diffractometer.

2. General procedure for the synthesis of compounds $2 a-2 k$

General procedure for the reaction of ethanamine 5' with Meldrum's acid 6: In a $25-\mathrm{mL}$ flask, N -arylidene-1-phenylethanamine 5' (2 mmol), Meldrum's acid 6 (5 mmol), and HOAc (4.0 mL) were mixed and stirred at $80^{\circ} \mathrm{C}$ until the disappearance of starting material was confirmed by TLC. Upon completion, the reaction mixture was cooled to room temperature, and introduced into water. The resulting suspension was neutralized with $10 \% \mathrm{NaOH}$. The solid was collected by washing with water. The aqueous layers were then extracted thoroughly with ethylether (3×10 mL), and organic phases were evaporated under reduced pressure to give solid. The combined solid were purified by flash column chromatography (silica gel, mixtures of petroleum ether / acetic ester, 10:1, v/v) to afford the desired pure spirotriones $\mathbf{2 a}(\mathbf{2 b}, \mathbf{2 e}$, and $\mathbf{2 h}$) and by-products acetamides.

General procedure for the reaction of diarylidenehydrazine 8 with Meldrum's acid 6: In a $25-\mathrm{mL}$ flask, 1,2-diarylidenehydrazine 8 (2 mmol), Meldrum's acid 6 (5 mmol), and HOAc (4.0 mL) were mixed and stirred at $80^{\circ} \mathrm{C}$ until the disappearance of starting material was confirmed by TLC. Upon completion, the reaction mixture was cooled to room temperature. The solid was collected by washing with water. The resulting suspension was neutralized with $10 \% \mathrm{NaOH}$. The aqueous layers were then extracted thoroughly with ethylether ($3 \times 10 \mathrm{~mL}$), and organic phases were evaporated under reduced pressure to give solid. The combined solid were purified by flash column chromatography (silica gel, mixtures of petroleum ether / acetic ester, 10:1, v/v) to afford the desired pure spirotriones $\mathbf{2 a}-\mathbf{2 k}$ and by-product acetohydrazide. All organic compounds except $\mathbf{2 a} \mathbf{- 2 e}, \mathbf{2 g} \mathbf{- 2 h}$, and $\mathbf{2 k}$ reported in literature ${ }^{4,9}$ and are fully characterized by spectral analysis.

General procedure for investigation of autocatalyst: In a $25-\mathrm{mL}$ flask, benzylidene-Meldrum’s acid (2
mmol), 4-phenyl-but-3-en-2-one (2 mmol), acetohydrazide(1 mmol), and HOAc (4 mL) were mixed and than stirred at $80{ }^{\circ} \mathrm{C}$ until the disappearance of starting material was confirmed by TLC; Upon completion, the reaction mixture was cooled to room temperature. The subsequent work-up was the same as that of the above preparation of compounds 2a.

General procedure for investigation of reaction mechanism: In a $25-\mathrm{mL}$ flask, benzylidene-Meldrum's acid (2 mmol), N^{\prime}-benzylideneacetohydrazide (2 mmol), acetone (5 mmol) and HOAc (4 mL) were mixed and than stirred at $80^{\circ} \mathrm{C}$ until the disappearance of starting material was confirmed by TLC; Upon completion, the reaction mixture was cooled to room temperature. The subsequent work-up was the same as that of the above preparation of compounds $\mathbf{2 a}$.

X-ray Crystallography Structure of Compound 2h

2h: The single-crystal growth was carried out in ethanol at room temperature. Crystal data for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{9}, M=$ 466.43, Monoclinic, space group P2(1)/c, $a=6.8061$ (8) $\AA, b=22.230(3) \AA, c=14.9656(16) \AA, V=2234.9(4)$ $\AA^{3}, Z=4, T=298(2) \mathrm{K}, \mu=0.106 \mathrm{~mm}^{-1}, 10899$ reflections measured, 3836 unique reflections, $R=0.0943, R_{w}=$ 0.1917 . In the 1,3 -dioxane ring, atoms $\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{10}$, and C_{11} are disordered over two positions. During the refinement process the disordered atoms C_{7} and C_{8} were both refined with occupancies of $0.58(2)$ and $0.42(2)$, respectively, and atoms C_{10} and C_{11} were both refined with occupancies of $0.56(2)$ and $0.44(2)$, respectively. In the cyclohexanone ring, atoms O_{3} and O_{4} are disordered over two positions, During the refinement process the disordered atom O_{3} was refined with occupancies of $0.502(4)$ and $0.498(2)$ whereas atom O_{4} was refined with occupancies of $0.414(4)$ and $0.586(2)$.

7,11-Di-p-tolyl-3,3-dimethyl-2,4-dioxaspiro[5.5]undecane-1,5,9-trione (2f)

White solid, mp: $180-182^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta, \mathrm{ppm}): 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 3.87 (dd, $\left.J_{I}=14.0 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49(\mathrm{t}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 2.46$ (dd, $J_{l}=15.8 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ, ppm): 206.6, 167.6, 164.8, 137.8, 134.4, 129.5, 128.1, 105.9, 60.0, 48.4, 42.4, 27.8, 20.8.

IR (KBr, $v,^{-1} \mathrm{~cm}^{-1}$) 2996, 2920, 1754, 1725, 1513, 1455, 1417, 1314, 1243, 1072, 893, 812, 742.

ESI-MS: m/z 429. 2 [M+Na] ${ }^{+}$(100\%).

Pale yellow solid, mp: 229-231 ${ }^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta, \mathrm{ppm}): 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 3.87 (dd, $J_{1}=14.2 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.48-3.37 (m, 2H, CH), 2.84 (s, $12 \mathrm{H}, \mathrm{NCH}_{3}$), $2.39\left(\mathrm{dd}, J_{l}=15.4 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.61\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ, ppm): 207.3, 168.0, 156.1, 150.3, 128.6, 124.5, 112.4, 105.8, 60.7, 48.1, 42.8, 27.9.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 3044, 2992, 2892, 1754, 1726, 1613, 1523, 1450, 1358, 1195, 1167, 1046, 946, 813, 716.
ESI-MS: m/z $465.1[\mathrm{M}+\mathrm{H}]^{+}$(100\%), $497.2[\mathrm{M}+\mathrm{Na}]^{+}$

7,11-Bis-(3,4,5-trimethoxyphenyl)-3,3-dimethyl-2,4-dioxaspiro[5.5]undecane-1,5,9-trione (2j)

White solid, mp: 230-231 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR (400 MHz) $(\delta, \mathrm{ppm}): 6.43(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 3.99\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.57\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49(\mathrm{t}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}$, CH),.2.53-2.48 (m, 2H, CH2 $), 0.71\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right)$: 206.5, 167.9, 167.8, 165.1, 153.0, 137.7, 132.8, 106.0, 60.2, 60.0, 55.9, 49.0, 42.3, 27.7.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 3006, 2940, 2841, 1763, 1729, 1589, 1509, 1427, 1350, 1246, 1130, 1001, 900.9, 839.5.
ESI-MS: m/z $557.8[\mathrm{M}-\mathrm{H}]^{-}$(100\%), $558.8[\mathrm{M}]^{-}$

3. General procedure for the synthesis of compounds $3 \mathrm{a}-3 \mathrm{j}$

In a $25-\mathrm{mL}$ flask, 1,2 -diarylidenehydrazine 8 (2 mmol), Meldrum's acid 6 (5 mmol), HOAc (4 mL) and ethane-1,2-diol (8 mL)were mixed and than stirred at $80^{\circ} \mathrm{C}$ until the disappearance of starting material was confirmed by TLC. Upon completion, the reaction mixture was cooled to room temperature, and introduced into water. The solid was collected by washing with water. The aqueous layers were extracted thoroughly with ethylether ($3 \times 10 \mathrm{~mL}$), and organic phases were evaporated under reduced pressure to give solid. The combined solid were purified by flash column chromatography (silica gel, mixtures of petroleum ether / acetic ester, 10:1, v/v) to afford the desired pure dispiro[4.2.5.2]pentadecane-9,13-diones 3

X-ray Crystallography Structure of Compound 3e

Supplementary Material (ESI) for Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2009
3e: The single-crystal growth was carried out in ethanol at room temperature. Crystal data for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{8}, M=$ 482.51, Monoclinic, space group P2(1)/n, $a=9.977$ (5) $\AA, b=20.162$ (9) \AA, $c=12.508$ (6) \AA, $V=2507$ (2) $\AA^{3}, Z=$ $4, T=298(2) \mathrm{K}, \mu=0.094 \mathrm{~mm}^{-1}, 11754$ reflections measured, 4126 unique reflections, $R=0.0535, R_{w}=0.1330$. Atom O5 is restrained with effective standard deviation 0.01 so that their Uij components approximate to isotropic behavior

X-ray Crystallography Structure of Compound 3g

3g: The single-crystal growth was carried out in ethanol at room temperature. Crystal data for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{6}, M=$ 458.44, Triclinic, space group P-1, $a=8.146$ (4) $\AA, b=10.714$ (5) $\AA, c=13.580$ (7) $\AA, V=1104.6$ (9) $\AA^{3}, Z=2, T$ $=298(2) \mathrm{K}, \mu=0.109 \mathrm{~mm}^{-1}$, 5811 reflections measured, 3845 unique reflections, $R=0.0535, R_{w}=0.1330$.

7,14-Bis-(4-chlorophenyl)-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione (3a)
White solid, mp: 270-271 ${ }^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta, \mathrm{ppm}): 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 3.99-3.96 (m, 4H, CH2), 3.86-3.81 (m, 2H, CH2), $2.76(\mathrm{t}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH})$, 1.87-1.83 (m, 2H, CH ${ }_{2}$), $0.56\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right): 168.5,164.3,137.2,133.2,130.4,129.2,107.0,105.9$, 64.3, 60.2, 47.6, 35.5, 28.0.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 3049, 2983, 1759, 1731, 1599, 1518, 1462, 1403, 1388, 1346, 1286, 1214, 1156, 1101, 1025, 968, 891, 769.
Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{6}, \mathrm{C}, 61.11$; $\mathrm{H}, 4.92$; found $\mathrm{C}, 61.09$; $\mathrm{H}, 4.84$.

7,14-Bis-(4-bromophenyl)-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione (3b)

White solid, mp: 285-286 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm): 7.59 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$), 7.06 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 3.98-3.95 (m, 4H, CH2), 3.81 (dd, $J=13.6 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $2.75(\mathrm{t}, J=$ $13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$), 1.86-1.83 (m, 2H, CH2 $), 0.56\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right): 168.5,164.3,137.6,132.1,130.7,121.7,107.0,105.9,64.3$, 30.1, 47.6, 35.5, 27.9.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 1758, 1724, 1487, 1392, 1377, 1287, 1254, 1233, 1153, 1093, 1068, 1010, 959, 896, 827.
Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{O}_{6}, \mathrm{C}, 51.75$; $\mathrm{H}, 4.17$; found C, 51.85; H, 4.11.

White solid, mp: 290-291 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm): 8.26 (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{ArH}$), $7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 4.01-3.99 (m, 6H, CH2), 2.91-2.84 (m, 2H, CH), 1.97-1.91 (m, 2H, CH2), 0.51 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right): 175.6,163.9,159.5,149.8,147.5,132.4,126.5,108.9$, 108.5, 66.6, 61.8, 59.1, 50.3, 38.3, 37.5, 30.3.

IR (KBr, $v \mathrm{~cm}^{-1}$):1771, 1733, 1558, 1540, 1395, 1378, 1290, 1272, 1206, 1158, 1093, 1065, 1038, 998, 951, 899, 766.
Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10}$, C, 58.59; H, 4.72; N, 5.47; found C, 58.67; H, 4.79; N, 5.39.

7,14-Bis-(3,4-dichlorophenyl)-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione
 (3d)
White solid, mp: 267-268 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm): 7.69 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH})$, 7.15-7.11 (m, 2H, ArH), 3.98-3.97 (m, 4H, CH2), 3.85 (dd, $J=13.4 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), $2.63(\mathrm{t}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 1.92-1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.64\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ, ppm): 168.8, 164.6, 139.5, 132.2, 131.9, 131.8, 130.9, 129.3, 107.1, 106.6, 64.8, 60.4, 47.8, 40.8, 39.5, 35.7, 28.4.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 2948, 2874, 1762, 1729, 1560, 1471, 1393, 1359, 1228, 1233, 1205, 1153, 1096, 1066, 1030, 1005, 964, 909, 823, 747, 715, 669.
Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Cl}_{4} \mathrm{O}_{6}, \mathrm{C}, 53.60$; $\mathrm{H}, 3.96$; found C, 53.54 ; H, 3.93.

7,14-Bis-(4-methoxyphenyl)-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione (3e)

White solid, mp: $206{ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta, \mathrm{ppm}): 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 3.97-3.95 (m, 4H, CH2), 3.76 (dd, $J=13.4 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.70 (s, 6H, OCH_{3}), $2.75(\mathrm{t}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 1.79\left(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.53(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ, ppm): 169.4, 165.1, 159.7, 130.9, 130.6, 114.9, 107.9, 106.0, 64.7, 64.6, 61.3, 55.8, 47.8, 36.4, 28.4.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 2932, 1759, 1728, 1610, 1514, 1457, 1442, 1375, 1292, 1249, 1183, 1152, 1097, 1072, 1034, 999, 961, 900, 836.

Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{8}, \mathrm{C}, 67.21$; $\mathrm{H}, 6.27$; found $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{8}, \mathrm{C}, 67.09$; $\mathrm{H}, 6.35$.

7,14-Bis-(2-chlorophenyl)-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione (3f)

White solid, mp: $221{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm): 7.49 (d, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.35-7.31 (m, 4H, ArH), 4.02-3.95 (m, 4H, CH 2), $3.84-3.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72(\mathrm{t}, J=13.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}), 1.83-1.78$ (m, 2H, CH2), 0.51 (s, 6H, CH3 $)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right): 166.2,165.8,136.3,133.6,130.5,129.9,129.1,128.1,114.7$, 106.6, 106.0, 64.3, 57.0, 43.7, 39.0, 37.3, 28.1.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 1770, 1733, 1475, 1437, 1378, 1290, 1272, 1206, 1158, 1126, 1093, 1065, 1038, 998, 951, 766.

Supplementary Material (ESI) for Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2009
Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{6}, \mathrm{C}, 61.11$; $\mathrm{H}, 4.92$; found C, 61.18; H, 4.86.

7,14-Bis-(4-fluorophenyl)-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione (3g)

White solid, mp: $259{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta, \mathrm{ppm})$: 7.24-7.20 (m, 4H, ArH), 7.17-7.13 (m, 4H, ArH), 4.01-3.97 (m, 4H, CH $)_{2}$, 3.84 (dd, $J=13.4 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.77 (t, $J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$), 1.84 (dd, $J=15.2 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $0.55\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ, ppm): 169.1, 164.9, 163.7, 161.2, 135.1, 131.0, 116.5, 107.6, 106.2, 64.7, 61.0, 47.9, 40.8, 39.5, 36.2, 28.4.

IR (KBr, v, cm^{-1}): 3054, 2971, 2934, 1761, 1728, 1605, 1508, 1422, 1393, 1379, 1366, 1300, 1226, 1160, 1143, 1092, 1064, 1014, 963, 898, 843, 763.
Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{6}, \mathrm{C}, 65.50$; $\mathrm{H}, 5.28$; found C, 65.63; H, 5.21.

7,14-Diphenyl-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione (3h)

White solid, mp: 275-276 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta, \mathrm{ppm}): 7.36-7.32(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH})$, 3.99-3.97 (m, 4H, CH2 $), 3.86-3.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.82(\mathrm{t}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 1.88-1.83$ (m, 2H, CH2 $), 0.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right)$: 168.7, 164.5, 138.4, 129.1, 128.5, 128.4, 107.3, 105.7, 64.3, 60.5, 48.2, 35.7, 27.9.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 2932, 1761, 1730, 1558, 1493, 1455, 1379, 1281, 1153, 1091, 1060, 959, 896, 765, 703
Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{6}, \mathrm{C}, 71.07$; $\mathrm{H}, 6.20$; found $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{6}, \mathrm{C}, 71.25$; $\mathrm{H}, 6.26$.

7,14-Bis-(3,4-dimethoxyphenyl)-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione

(3i)
White solid, mp: $201{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm): 6.93 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}$), 6.65 (s, 2H, ArH), 6.62-6.61 (m, 2H, ArH), 3.99-3.96 (m, 4H, CH2), 3.75 (dd, $J=13.8 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.77(\mathrm{t}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH})$, $1.81\left(\mathrm{dd}, J=13.6 \mathrm{~Hz} J=3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.57\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right): 169.5,165.4,149.4,149.3,131.3,121.1,112.8,112.7$, 107.9, 106.0, 64.7, 61.3, 56.2, 56.1, 48.2, 40.8, 39.5, 36.5, 28.4.

IR (KBr, $v, \mathrm{~cm}^{-1}$):1761, 1730, 1590, 1519, 1466, 1449, 1377, 1271, 1245, 1166, 1144, 1095, 1068, 1025, 938, 767.

Anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{10}$, C, 64.20; H, 6.32; found C, 64.34; H, 6.41.

7,14-Dithiophen-2-yl-11,11-dimethyl-1,4,10,12-tetraoxadispiro[4.2.5.2]pentadecane-9,13-dione (3j)

Pale yellow solid, mp: $250-252{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})(\delta, \mathrm{ppm}): 7.47$ (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$, Thienyl-H), 7.01 (d, $J=3.6 \mathrm{~Hz}$, 2H, Thienyl-H), 6.85 (d, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}$, Thienyl-H), 4.06 (dd, $J=13.6 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.98-3.97 (m, 4H, CH2), $2.67(\mathrm{t}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 1.97(\mathrm{dd}, J=12.8 \mathrm{~Hz}$, $\left.J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.71\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.
IR (KBr, $v, \mathrm{~cm}^{-1}$): 3054, 2998, 2888, 1753, 1730, 1618, 1529, 1451, 1328, 1201, 1161, 1043, 927, 851, 774.

Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}_{2}$, C, 58.05; H, 5.10; S, 14.76; found C, 58.05; H, 5.10; S, 14.76.

4. General procedure for the synthesis of compounds $\mathbf{4 a} \mathbf{a} \mathbf{4 b}$

In a $25-\mathrm{mL}$ flask, 1,2-diarylidenehydrazine 8 (2 mmol), Meldrum's acid 6 (5 mmol), HOAc (4 mL) and (S)-1,2-propanediol (8 mL)were mixed and than stirred at $80^{\circ} \mathrm{C}$ until the disappearance of starting material was confirmed by TLC. Upon completion, the reaction mixture was cooled to room temperature, and introduced into water. The solid was collected by washing with water. The aqueous layers were extracted thoroughly with ethylether ($3 \times 10 \mathrm{~mL}$), and organic phases were evaporated under reduced pressure to give solid. The combined solid were purified by flash column chromatography (silica gel, mixtures of petroleum ether / acetic ester, 10:1, v/v) to afford the desired pure dispiro[4.2.5.2]pentadecane-9,13-diones 4.

X-ray Crystallography Structure of Compound 4b

4b The single-crystal growth was carried out in ethanol at room temperature. Crystal data for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{6}$, $M=$ 594.29, Triclinic, space group P-1, $a=7.356$ (3) $\AA, b=12.590(5) \AA, c=14.852$ (6) $\AA, V=1267.8$ (8) $\AA^{3}, Z=2, T$ $=193(2) \mathrm{K}, \mu=3.236 \mathrm{~mm}^{-1}, 6454$ reflections measured, 4330 unique reflections, $R=0.0728, R_{w}=0.1245$. In the bromophenyl ring $\left(\mathrm{C}_{18}-\mathrm{C}_{23}\right)$, atom Br_{2} was disordered over two positions. During the refinement process the disordered atom Br_{2} was refined with occupancies of 0.51 (4) and 0.49(4). In the 1,3-dioxolane ring, atoms C_{25} and C_{26} are disordered over two positions. During the refinement process the disordered atoms C_{25} and C_{26} were refined with occupancies of $0.320(18)$ and $0.680(18), 0.320(18)$ and $0.680(18)$, respectively. During refinement, atoms C_{25} and C_{25} are constrained to have the same x, y and z parameters and anisotropic displacement parameters. All of the atoms of $\mathrm{C}, \mathrm{O}, \mathrm{Br}$ closer than $3.8 \AA$ are restrained with an s . u. value of $0.02 \AA^{2}$ to have the same Uij components. If (according to the connectivity table, i.e. ignoring attached hydrogens) one or both of the two atoms involved is terminal (or not bonded at all), 0.04 is used instead as 0.02 . The distance between $\mathrm{C}_{24}, \mathrm{C}_{26}$ and $\mathrm{C}_{24}, \mathrm{C}_{26}{ }^{\prime}$ is restrained to $2.54 \AA$ with an estimated standard deviation 0.02 . The distance of $\mathrm{C}_{25}-\mathrm{C}_{26}$, $\mathrm{C}_{24}-\mathrm{C}_{25}$ and $\mathrm{C}_{25}-\mathrm{C}_{26}$ ' are restrained to $1.53 \AA$ Å with an estimated standard deviation 0.02 . The distance of $\mathrm{O}_{5}-\mathrm{C}_{7}$, $\mathrm{O}_{5}-\mathrm{C}_{24}, \mathrm{O}_{6}-\mathrm{C}_{7}, \mathrm{O}_{6}-\mathrm{C}_{25}$ are restrained to $1.43 \AA$ with an estimated standard deviation 0.02 .

Supplementary Material (ESI) for Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2009

7,14-Bis-(4-chlorophenyl)-2,11,11-trimethyl-1,4,10,12-tetraoxa-dispiro[4.2.5.2]pentadecane-9,13-dione (4a and 4a')

${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm, mixture): 7.46-7.44 (m, 8H, ArH), 7.14-7.11 (m, 8H, ArH), 4.31-4.25 (m, 2H, CH), 4.15-4.10 (m, 2H, CH), 3.87-3.78 (m, 4H, CH2), 3.49-3.47 (m, 2H, CH2), $2.84(\mathrm{q}, J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$), 2.73-2.64 (m, 2H, CH), 1.92-1.89 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.83-1.79 (m, 2H, CH ${ }_{2}$), 1.25 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.21(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $0.56\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right)$: 168.9, 164.6, 137.5, 133.5, 130.7, $130.6,129.5,129.4,107.6,107.5,106.2,72.5,72.3,70.6,60.6,60.5$, 47.9, 47.8, 47.7, 37.6, 37.0, 36.2, 35.9, 38.3, 28.2, 18.9, 18.8.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 3032, 1762, 1728, 1586, 1509, 1468, 1412, 1363, 1340, 1281, 1223, 1167, 1135, 1027, 969, 894, 771.
Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{O}_{6}$; C, 61.79; H, 5.19; found C, 61.79; H, 5.19.

7,14-Bis-(4-bromophenyl)-2,11,11-trimethyl-1,4,10,12-tetraoxa-dispiro[4.2.5.2]pentadecane-9,13-dione ($\mathbf{4 b}$ and $\mathbf{4 b}$ ')

$\mathbf{4 b}+4 \mathbf{b}^{\mathbf{\prime}}$
${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm, mixture): 7.58-7.56 (m, 8H, ArH), 7.06-7.04 (m, 8H, ArH), 4.28-4.26 (m, 2H, CH), 4.25-4.10 (m, 2H, CH), 3.83-3.76 (m, 4H, CH and CH_{2}), $2.83(\mathrm{q}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 2.74-2.63 (m, 2H, CH2), 1.91-1.87 (m, 2H, CH2), 1.81-1.77 (m, 2H, CH2), $1.24\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $0.55\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) ($\left.\delta, \mathrm{ppm}\right): 168.9,164.6,164.5,137.9,132.4$, $131.0,130.9,122.0,121.9,107.6,107.5,106.2,72.5,72.3,70.6$,
60.0, 37.5, 36.9, 36.2, 35.8, 28.2, 18.9, 18.8.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 1760, 1726, 1577, 1491, 1437, 1337, 1214, 1133, 1083, 1071, 1004, 956, 898, 824.
Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{6}$; C, 52.55; H, 4.41; found C, 52.68; H, 4.47.

7,14-Biphenyl-2,11,11-trimethyl-1,4,10,12-tetraoxa-dispiro[4.2.5.2]pentadecane-9,13-dione (4c and 4c')

${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm, mixture): 7.38-7.30 (m, 12H, ArH), 7.12-7.11 (m, 8H, ArH), 4.29-4.26 (m, 2H, CH), 4.14-4.11 (m, 2H, CH_{2}), 3.87-3.79 (m, 4H, CH2), 3.50-3.48 (m, 2H, CH2), 2.93-2.88 (m, 2H, CH), 2.78-2.74 (m, 2H, CH), 1.92-1.79 (m, 4H, CH $)_{2}$, $1.26\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.44$ (s, 12H, CH_{3}).
${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ, ppm): 169.1, 169.0, 164.8, 164.7, 138.7, $129.5,129.4,128.8,128.7,107.9,107.8,106.0,72.4,72.2,70.6$,
60.8, 60.7, 48.5, 48.3, 37.7, 37.1, 36.4, 36.0, 28.1, 19.0, 18.8.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 2952, 1760, 1732, 1561, 1501, 1467, 1323, 1279, 1151, 1103, 1015, 960, 897, 764.
Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{6} ; \mathrm{C}, 71.54$; $\mathrm{H}, 6.47$; found $\mathrm{C}, 71.41 ; \mathrm{H}, 6.54$.

Supplementary Material (ESI) for Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2009

4d')

${ }^{1} \mathrm{H}$ NMR (400 MHz) (δ, ppm, mixture): 7.46 (d, $J=3.2 \mathrm{~Hz}, 4 \mathrm{H}$, Thiophenyl-H), 7.01 (t, $J=4.2 \mathrm{~Hz}, 4 \mathrm{H}$, Thiophenyl-H), 6.85-6.84 (m, 4H, Thiophenyl-H), 4.28-4.26 (m, 2H, CH), 4.15-4.03 (m, 6H, CH and CH_{2}), $2.75\left(\mathrm{q}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.61(\mathrm{q}, J=14.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.05-1.92 (m, 4H, CH2), $1.24\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.20\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.71\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz) (δ, ppm): 171.3, 171.2, 166.6, 143.0, 129.6, 129.0, 128.9, 182.2, 108.8, 108.4, 74.4, 72.6, 72.5, 63.6, 63.5, 45.8, 45.7, 45.6, 40.7, 39.9, 39.6, 30.3, 20.8, 20.6.

IR (KBr, $v, \mathrm{~cm}^{-1}$): 1763, 1735, 1588, 1543, 1471, 1354, 1280, 1125, 1104, 1072, 967, 881.
Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S}_{2}$; C, 58.91; H, 5.39; S, 14.30; found C, 58.74; H, 5.30; S, 14.43.

Supplementary Material (ESI) for Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2009

Appendix. NMR spectra of new compounds

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathrm{MHz}$, DMSO- \boldsymbol{d}_{6}) of Compound 2 i

Supplementary Material (ESI) for Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2009

${ }^{13} \mathrm{C}$ NMR Spectrum (100 MHz , DMSO- \boldsymbol{d}_{6}) of Compound $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) of Compound $\mathbf{2 j}$

Supplementary Material (ESI) for Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2009

MS of Compound 2i

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz , DMSO- \boldsymbol{d}_{6}) of Compound 3a

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}) of Compound 3b

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz , DMSO- \boldsymbol{d}_{6}) of Compound 3c

Supplementary Material (ESI) for Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2009

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO- d_{6}) of Compound 3d

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz, DMSO- \boldsymbol{d}_{6}) of Compound 3e

Supplementary Material (ESI) for Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2009

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz , DMSO- \boldsymbol{d}_{6}) of Compound 3 f

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz , DMSO- \boldsymbol{d}_{6}) of Compound 3 g

Supplementary Material (ESI) for Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2009

${ }^{13} \mathrm{C}$ NMR Spectrum (100 MHz, DMSO- \boldsymbol{d}_{6}) of Compound 3 g

DEPT 135 Spectrum of Compound 3g

Supplementary Material (ESI) for Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2009

H-H COSY Spectrum of Compound 3g

C-H COSY Spectrum of Compound 3g

Supplementary Material (ESI) for Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2009

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathbf{~ M H z , ~ D M S O - ~} \boldsymbol{d}_{6}$) of Compound 3h

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz , DMSO- d_{6}) of Compound $3 i$

Supplementary Material (ESI) for Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2009

${ }^{1}$ H NMR Spectrum (400 MHz , DMSO- \boldsymbol{d}_{6}) of Compound 3 j

${ }^{1} \mathrm{H}$ NMR Spectrum (400 MHz , DMSO- \boldsymbol{d}_{6}) of Compounds 4 a and 4 a ,

Supplementary Material (ESI) for Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2009

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathrm{MHz}$, DMSO- \boldsymbol{d}_{6}) of Compounds 4 b and 4 b ,

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathrm{MHz}$, DMSO- \boldsymbol{d}_{6}) of Compounds 4 c and $4 \mathrm{c}^{\text {' }}$

Supplementary Material (ESI) for Org. Biomol. Chem. This journal is © The Royal Society of Chemistry 2009

${ }^{1} \mathrm{H}$ NMR Spectrum ($\mathbf{4 0 0} \mathrm{MHz}$, DMSO- \boldsymbol{d}_{6}) of Compounds 4 d and $4 \mathrm{~d}{ }^{\text {' }}$

