Supplementary Information

## Supramolecular Chiral Dendritic Monophosphites Assembled by Hydrogen Bonding and Their Use in the Rh-Catalyzed Asymmetric Hydrogenation

Yong Li, Yan-Mei He, Zhi-Wei Li, Feng Zhang, Qing-Hua Fan\*

Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China

Email Address: fanqh@iccas.ac.cn; Fax 86-10-62554449

### **Table of Contents**

| 1. | General Method                                                                 | S2 |
|----|--------------------------------------------------------------------------------|----|
| 2. | Synthesis and Characterization of the Supramolecular Dendritic Chiral          |    |
|    | Monophosphite Ligands                                                          | S2 |
| 3. | Representative <sup>1</sup> H, <sup>13</sup> C and <sup>31</sup> P NMR Spectra | S6 |

#### 1. General Method

Unless otherwise noted, all experiments were carried out under an inert atmosphere of dry nitrogen by using standard Schlenk-type techniques, or performed in a nitrogen-filled glovebox. <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra were recorded on a Bruker Model Avance DMX 300 or 400 Spectrometer (<sup>1</sup>H 300 MHz, <sup>13</sup>C 75 MHz and <sup>31</sup>P 162 MHz, respectively). Chemical shifts ( $\delta$ ) are given in ppm and are referenced to residual solvent peaks (<sup>1</sup>H and <sup>13</sup>C NMR) or to an external standard (85% H<sub>3</sub>PO<sub>4</sub>, <sup>31</sup>P NMR). MALDI-TOF mass spectra were obtained on a BIFLEX III instrument with  $\alpha$ -cyano-4-hydroxycinnamic acid (CCA) as the matrix. All enantiomeric excess values were obtained from GC analysis with a Chrompack CHIR-L-VAL column. All solvents were dried using standard, published methods and were distilled under a nitrogen atmosphere before use. All other chemicals were used as received from Aldrich or Acros without further purification.

# 2. Synthesis and Characterization of the Supramolecular Dendritic Chiral Monophosphite Ligands



Figure S1: Supramolecular dendritic chiral monophosphite ligands

**DGnL:** The complexation between **DGn** and **L**<sub>1</sub> or **L**<sub>2</sub> was observed when an equal amount of **DGn** and **L**<sub>1</sub> or **L**<sub>2</sub> was mixed in CDCl<sub>3</sub>. The formation of **DGnL** was confirmed by <sup>1</sup>H, <sup>31</sup>P NMR. As shown in **Figure S2-7**, it was noted that the signals of

NH protons of **DGn** and **L** shifted significantly downfield. In the <sup>31</sup>P NMR spectrum, only one new peak at ca. 139 ppm was observed without appearing the signals of the free ligands. These results revealed the formation of supramolecular chiral dendritic monophosphite ligands.



Figure S2. Partial <sup>1</sup>H NMR Spectra (CDCl<sub>3</sub>, 300 MHz, 295k, 8.0 mM) of (a) free receptor  $DG_1$ (in DMSO-d<sub>6</sub>), (b)  $DG_1$  and  $L_1$ , (c) free ligand  $L_1$ .



**Figure S3.** Partial <sup>1</sup>H NMR Spectra (CDCl<sub>3</sub>, 300 MHz, 295k, 8.0 mM) of (a) free receptor  $DG_2$ , (b)  $DG_2$  and  $L_1$ , (c) free ligand  $L_1$ .



Figure S4. Partial <sup>1</sup>H NMR Spectra (CDCl<sub>3</sub>, 300 MHz, 295k, 8.0 mM) of (a) free receptor  $DG_3$ , (b)  $DG_3$  and  $L_1$ , (c) free ligand  $L_1$ .



Figure S5. Partial <sup>1</sup>H NMR Spectra (CDCl<sub>3</sub>, 300 MHz, 295k, 8.0 mM) of (a) free receptor  $DG_1$  (in DMSO-d<sub>6</sub>), (b)  $DG_1$  and  $L_2$ , (c) free ligand  $L_2$ .



Figure S6. Partial <sup>1</sup>H NMR Spectra (CDCl<sub>3</sub>, 300 MHz, 295k, 8.0 mM) of (a) free receptor  $DG_2$ , (b)  $DG_2$  and  $L_2$ , (c) free ligand  $L_2$ .



Figure S7. Partial <sup>1</sup>H NMR Spectra (CDCl<sub>3</sub>, 300 MHz, 295k, 8.0 mM) of (a) free receptor DG<sub>3</sub>, (b) DG<sub>3</sub> and L<sub>2</sub>, (c) free ligand L<sub>2</sub>.

#### 3. Representative NMR Spectra

## <sup>1</sup>H and <sup>13</sup>C NMR of **DG**<sub>1</sub>



ppm



<sup>1</sup>H and <sup>13</sup>C NMR of **DG**<sub>2</sub>





<sup>1</sup>H and <sup>13</sup>C NMR of **DG**<sub>3</sub>







<sup>1</sup>H and <sup>13</sup>C NMR of **5**a











<sup>1</sup>H, <sup>13</sup>C and <sup>31</sup>P NMR of  $L_1$ 





 $L_1$  in CDCl3



#### $L_1$ in DMSO-d<sub>6</sub>







 $L_2$  in DMSO-d<sub>6</sub>



 $L_2$  in CDCl3





<sup>31</sup>P NMR of supramolecular chiral dendritic monophosphite ligands DGnL:



<sup>31</sup>P NMR of  $DG_1L_1$  in CDCl<sub>3</sub>

ppm Hz ppm Hz

## <sup>31</sup>P NMR of $DG_2L_1$ in CDCl<sub>3</sub>



<sup>31</sup>P NMR of  $DG_3L_1$  in CDCl<sub>3</sub>



## $^{31}P$ NMR of $\mathbf{DG_1L_2}$ in $\mathsf{CDCl}_3$



## <sup>31</sup>P NMR of $DG_2L_2$ in CDCl<sub>3</sub>



## <sup>31</sup>P NMR of $DG_3L_2$ in $CDCl_3$

