# Interactions of Vinca Alkaloid Subunits with Chiral Amido[4]resorcinarenes: A Dynamic, Kinetic, and Spectroscopic Study.

Bruno Botta,\*<sup>a</sup> Caterina Fraschetti,<sup>a</sup> Francesca R. Novara,<sup>b</sup> Andrea Tafi,<sup>c</sup> Fabiola Sacco,<sup>a</sup> Luisa Mannina,<sup>d,e</sup> Anatoli P. Sobolev,<sup>d</sup> Jochen Mattay,<sup>f</sup> Matthias C. Letzel,<sup>f</sup> and Maurizio Speranza,\*<sup>a</sup>

## SUPPORTING INFORMATION

Kinetic plots (**Figures S1-S11**) of the gas-phase reaction between B and  $[MHA]^+$  (A=catharanthine (C) or vindoline (V); **Figure S12**:  $[4_R \cdot H \cdot C]^+$  and  $[4_S \cdot H \cdot C]^+$  low-energy structures. **Tables 1S-3S**: NMR assignments. Docking and Molecular Dynamics Simulations: geometries and partial atomic charges.

**Figure S1.** Kinetic plots of the gas-phase reactions between B and  $[\mathbf{1}_{R} \bullet H \bullet \mathbf{C}]^{+}$  (open circles; [B]=7.0x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[\mathbf{1}_{S} \bullet H \bullet \mathbf{C}]^{+}$  (full circles; [B]=5.9x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S2.** Kinetic plots of the gas-phase reactions between B and  $[2_R \bullet H \bullet C]^+$  (open circles; [B]=1.4x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[2_S \bullet H \bullet C]^+$  (full circles; [B]=1.5x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S3.** Kinetic plots of the gas-phase reactions between B and  $[\mathbf{3}_{R} \bullet H \bullet \mathbf{C}]^{+}$  (open circles; [B]=6.4x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[\mathbf{3}_{S} \bullet H \bullet \mathbf{C}]^{+}$  (full circles; [B]=7.0x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S4.** Kinetic plots of the gas-phase reactions between B and  $[4_R \bullet H \bullet C]^+$  (open circles; [B]=3.1x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[4_S \bullet H \bullet C]^+$  (full circles; [B]=3.1x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S5.** Kinetic plots of the gas-phase reactions between B and  $[\mathbf{5}_{R} \bullet H \bullet \mathbf{C}]^{+}$  (open circles; [B]=1.2x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[\mathbf{5}_{S} \bullet H \bullet \mathbf{C}]^{+}$  (full circles; [B]=2.0x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S6.** Kinetic plots of the gas-phase reactions between B and  $[\mathbf{1}_{R} \bullet H \bullet \mathbf{V}]^{+}$  (open circles; [B]=7.8x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[\mathbf{1}_{S} \bullet H \bullet \mathbf{V}]^{+}$  (full circles; [B]=7.4x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S7.** Kinetic plots of the gas-phase reactions between B and  $[2_R \bullet H \bullet V]^+$  (open circles; [B]=1.8x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[2_S \bullet H \bullet V]^+$  (full circles; [B]=1.6x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S8.** Kinetic plots of the gas-phase reactions between B and  $[\mathbf{3}_{R} \bullet H \bullet \mathbf{V}]^{+}$  (open circles; [B]=7.5x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[\mathbf{3}_{S} \bullet H \bullet \mathbf{V}]^{+}$  (full circles; [B]=7.4x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S9.** Kinetic plots of the gas-phase reactions between B and  $[\mathbf{4_R} \bullet H \bullet \mathbf{V}]^+$  (open circles; [B]=3.3x10<sup>9</sup> molecule cm<sup>-3</sup>) or  $[\mathbf{4_S} \bullet H \bullet \mathbf{V}]^+$  (full circles; [B]=3.0x10<sup>9</sup> molecule cm<sup>-3</sup>)



**Figure S10.** Time dependence of the relative abundance of the reactant and products of the gas-phase reaction between B and  $[\mathbf{5}_{s} \bullet H \bullet \mathbf{V}]^{+}([B]=2.0 \times 10^{9} \text{ molecule cm}^{-3})$ 









12

**Table 1S.** <sup>1</sup>H and <sup>13</sup>C assignments of C in CD<sub>2</sub>Cl<sub>2</sub>. <sup>1</sup>H and <sup>13</sup>C chemical shifts are reported with respect to the residual proton signal of CD<sub>2</sub>Cl<sub>2</sub> ( $\delta$ = 5.33 ppm) and to the carbon signal of CD<sub>2</sub>Cl<sub>2</sub> 1 at ( $\delta$ = 54. 2 ppm), respectively.

|    | Туре            | <sup>1</sup> H (ppm)         | m          | $J_{\mathrm{H-H}}(\mathrm{Hz})$  | <sup>13</sup> C (ppm) |
|----|-----------------|------------------------------|------------|----------------------------------|-----------------------|
| 1  | CH <sub>2</sub> | 1' 1.967<br>1'' 2.891        | dd<br>m    | 13.5;2.2                         | 37.27                 |
| 2  | СН              | 3.069                        | bs         |                                  | 29.83                 |
| 3  | СН              | 6.264                        | m          |                                  | 128.26                |
| 4  | С               |                              |            |                                  | 146.28                |
| 5  | СН              | 4.769                        | S          |                                  | 60.33                 |
| 7  | $CH_2$          | 7' 3.470<br>7'' 4.075        | m<br>m     |                                  | 57.06                 |
| 8  | CH <sub>2</sub> | 8' 3.205<br>8'' 3.404        | ddd<br>ddd | 17.5, 8.1, 3.2<br>17.5, 8.8, 3.2 | 20.00                 |
| 10 | С               |                              |            |                                  | 128.40                |
| 11 | СН              | 7.515                        | d          | 8.0                              | 118.99                |
| 12 | СН              | 7.149                        | ddd        | 8.0, 8.0, 1.0                    | 120.99                |
| 13 | СН              | 7.213                        | ddd        | 8.0,8.2, 1.1                     | 123.81                |
| 14 | СН              | 7.320                        | ddd        | 8.2, 0.8, 0.8                    | 111.70                |
| 15 | С               |                              |            |                                  | 136.13                |
| 16 | NH              | 8.000                        | s          |                                  |                       |
| 18 | С               |                              |            |                                  | 51.73                 |
| 19 | $CH_2$          | 19' 2.891<br>19'' 3.400      | m<br>m     |                                  | 53.21                 |
| 20 | CH <sub>2</sub> | 20°<br>2.210<br>20°<br>2.751 | ddq<br>ddq | 17.2, 2.2, 7.3<br>17.2, 2.2, 7.3 | 27.53                 |
| 21 | CH <sub>3</sub> | 1.137                        | t          | 7.3                              | 10.5                  |
| 22 | СО              |                              |            |                                  | 172.24                |
| 23 | CH <sub>3</sub> | 3.775                        |            |                                  | 54.09                 |

**Table 2S.** Assignment of C in D<sub>2</sub>O at pH = 10.8. <sup>1</sup>H and <sup>13</sup> C chemical shifts are reported with respect to methyl signal of ethanol at 1.131 ppm and 17.1 ppm, respectively.

| r  | r               |                         | r          |                                   | 1                     |
|----|-----------------|-------------------------|------------|-----------------------------------|-----------------------|
|    | Туре            | <sup>1</sup> H (ppm)    | m          | $J_{\mathrm{H-H}}$ (Hz)           | <sup>13</sup> C (ppm) |
| 1  | CH <sub>2</sub> | 1' 1.689<br>1'' 2.646   | dd<br>ddd  | 13.5, 2.2<br>13.5, 2.2, 2.8       | 36.7                  |
| 2  | СН              | 2.77                    | bs         |                                   | 30.2                  |
| 3  | СН              | 5.976                   | m          |                                   | 125.04                |
| 5  | СН              | 4.062                   | S          |                                   | 62.20                 |
| 7  | CH <sub>2</sub> | 7' 3.179<br>7'' 3.361   | ddd<br>ddd | 13.3, 8.2, 3.6<br>13.3, 10.1. 3.1 | 52.30                 |
| 8  | CH <sub>2</sub> | 8' 2.958<br>8'' 3.256   | ddd<br>ddd | 16.9, 8.2, 3.9<br>16.9, 10.1, 4.3 |                       |
| 11 | СН              | 7.559                   | d          | 8.0                               | 118.15                |
| 12 | СН              | 7.118                   | ddd        | 8.0, 8.0, 1.0                     | 119.87                |
| 13 | СН              | 7.175                   | ddd        | 8.8, 8,2, 1.1                     | 122.28                |
| 14 | СН              | 7.325                   | ddd        | 8.2, 0.8, 0.8                     | 11.28                 |
| 19 | CH <sub>2</sub> | 19' 2.612<br>19'' 2.826 | ddd<br>bd  | 9.4, 2.8, 2.8<br>9.4              | 48.80                 |
| 20 | CH <sub>2</sub> | 20' 1.968<br>20'' 2.162 | ddq<br>ddq | 17.1, 2.2, 7.3<br>17.1, 2.2, 7.3  | 32.2                  |
| 21 | CH <sub>3</sub> | 0.98                    | t          | 7.4                               | 10.0                  |
| 23 | CH <sub>3</sub> | 3.719                   | S          |                                   | 53.30                 |

.

14

**Table 3S.** <sup>1</sup>H Assignment of C in D<sub>2</sub>O at pH = 5.4. <sup>1</sup>H Chemical shifts are reported with respect to methyl signal of ethanol at 1.131 ppm.

|    | Туре            | <sup>1</sup> H (ppm)  | m   | $J_{\mathrm{H-H}}(\mathrm{Hz})$ |
|----|-----------------|-----------------------|-----|---------------------------------|
| 1  | CH <sub>2</sub> | 1' 1.990<br>1'' 2.798 | dd  | 13.7, 2.1                       |
| 2  | СН              | 3.13                  | bs  |                                 |
| 3  | СН              | 6.366                 | m   |                                 |
| 5  | СН              | 4.967                 | S   |                                 |
| 7  | CH <sub>2</sub> | 7' 3.600              | m   |                                 |
|    |                 | 7" 3.929              | ddd | 13.3, 8.2, 3.6                  |
| 8  | CH <sub>2</sub> | 8' 3.28               | ddd | 17.6, 8.6, 3.7                  |
|    |                 | 8'' 3.42              | ddd | 17.6, 8.6, 3.7                  |
| 11 | СН              | 7.588                 | ddd | 8.0, 0.8, 0.8                   |
| 12 | СН              | 7.162                 | ddd | 8.0, 8.0, 0.8                   |
| 13 | СН              | 7.233                 | ddd | 8.0, 8.2, 0.8                   |
| 14 | СН              | 7.374                 | ddd | 8.2, 0.8, 0.8                   |
| 19 | CH <sub>2</sub> | 3.207                 | m   |                                 |
| 20 | CH <sub>2</sub> | 20' 2.105             | ddq | 17.5, 2.1, 7.4                  |
|    |                 | 20'' 2.283            | ddq |                                 |
| 21 | CH <sub>3</sub> | 1.029                 | t   | 7.4                             |
| 23 | CH <sub>3</sub> | 3.720                 | S   |                                 |



**Figure S12.** Tangles showing representative orientations of catharanthine In populated low-energy (a)  $[4_s \cdot H \cdot C]^+$  (violet, white, and blue) and (b)  $[4_R \cdot H \cdot C]^+$  (yellow, red, and blue) complexes superimposed to the corresponding global minimum (green) shown in Figure 4 (crossed stereo view).

## Cartesian coordinates and charges of $4_8$ (mol2 format).

 $\#\texttt{Name}: \mathbf{4}_S$ 

#### @<TRIPOS>ATOM

| 1 C           | 2.3711  | 6.4675  | 7.0410 C.ar | 1 RES  | -0.0520 |
|---------------|---------|---------|-------------|--------|---------|
| 2 C           | 1.0822  | 6.1766  | 7.5341 C.ar | 1 RES  | 0.0342  |
| 3 C           | 0.1067  | 5.6965  | 6.6379 C.ar | 1 RES  | -0.1304 |
| 4 C           | 0.4430  | 5.5123  | 5.2844 C.ar | 1 RES  | -0.0677 |
| 5 C           | 1.7367  | 5.7678  | 4.7968 C.ar | 1 RES  | -0.1303 |
| 6 C           | 2 7144  | 6 2642  | 5,6870 C ar | 1 RES  | 0 0342  |
| 7 0           | 0 7420  | 6 22042 | 9 9E91 0 2  | 1 000  | 0.0542  |
| 70            | 1 2040  | 6.3308  | 7 1005 0 0  | 1 RES  | -0.1970 |
| 8 C           | -1.2949 | 5.3368  | 7.1225 C.3  | I RES  | 0.1928  |
| 9 C           | 2.0995  | 5.4970  | 3.3376 C.3  | I RES  | 0.1928  |
| 10 0          | 3.9756  | 6.5228  | 5.2022 0.3  | 1 RES  | -0.1971 |
| 11 C          | 1.6784  | 6.9018  | 9.7792 C.3  | 1 RES  | -0.0488 |
| 12 C          | 4.9828  | 7.0721  | 6.0583 C.3  | 1 RES  | -0.0487 |
| 13 C          | -3.4317 | 7.7066  | 4.9883 C.ar | 1 RES  | -0.1489 |
| 14 C          | -2.4309 | 7.2381  | 5.8655 C.ar | 1 RES  | 0.1003  |
| 15 C          | -2.3845 | 5.8632  | 6.1843 C.ar | 1 RES  | -0.0436 |
| 16 C          | -3.3614 | 5.0075  | 5.6376 C.ar | 1 RES  | -0.2435 |
| 17 C          | -4.3703 | 5.4744  | 4.7770 C.ar | 1 RES  | 0.0024  |
| 18 C          | -4.3993 | 6.8427  | 4.4341 C.ar | 1 RES  | 0.0311  |
| 19 0          | -1 4974 | 8 0779  | 6 4267 0 3  | 1 RES  | -0 1893 |
| 19 C          | -1.4974 | 4 5120  | 4 1962 C 2  | 1 DEC  | 0.1000  |
| 20 C          | -5.4020 | 4.5139  | 4.1883 C.3  | I RES  | 0.1031  |
| 21 0          | -5.3694 | 7.2832  | 3.5640 0.3  | I RES  | -0.1/50 |
| 22 C          | -1.3596 | 9.4196  | 5.9489 C.3  | I RES  | -0.0979 |
| 23 C          | -5.3369 | 8.6275  | 3.0747 C.3  | 1 RES  | -0.1273 |
| 24 C          | -5.6254 | 3.6745  | 0.4508 C.ar | 1 RES  | -0.0489 |
| 25 C          | -6.0199 | 3.9800  | 1.7715 C.ar | 1 RES  | 0.0283  |
| 26 C          | -5.0258 | 4.1623  | 2.7535 C.ar | 1 RES  | -0.1269 |
| 27 C          | -3.6740 | 3.9955  | 2.4019 C.ar | 1 RES  | -0.0520 |
| 28 C          | -3.2845 | 3.6608  | 1.0980 C.ar | 1 RES  | -0.1268 |
| 29 C          | -4.2683 | 3.5122  | 0.0983 C.ar | 1 RES  | 0.0282  |
| 30 0          | -7.3382 | 4 0940  | 2 1462 0 3  | 1 RES  | -0.1953 |
| 31 C          | -1.8105 | 3.3874  | 0.8228 C.3  | 1 RES  | 0.1832  |
| 32 0          | -3 8712 | 3 1952  | -1 1788 0 3 | 1 RES  | -0 1953 |
| 32 C          | 0 2755  | 2 0565  | 1 1602 C 2  | 1 000  | 0.1555  |
| 33 C          | -0.3755 | 3.9505  | 1.1692 C.3  | I RES  | -0.0308 |
| 34 C          | -4.8363 | 2.8032  | -2.1585 C.3 | I RES  | -0.0508 |
| 35 C          | -0.3297 | 6.9385  | 0.7034 C.ar | I RES  | -0.1488 |
| 36 C          | 0.7133  | 6.8715  | 1.6565 C.ar | 1 RES  | 0.1003  |
| 37 C          | 0.9329  | 5.6573  | 2.3458 C.ar | 1 RES  | -0.0435 |
| 38 C          | 0.0608  | 4.5834  | 2.0897 C.ar | 1 RES  | -0.2436 |
| 39 C          | -0.9572 | 4.6272  | 1.1198 C.ar | 1 RES  | 0.0025  |
| 40 C          | -1.1549 | 5.8292  | 0.4106 C.ar | 1 RES  | 0.0311  |
| 41 O          | 1.5216  | 7.9502  | 1.9341 0.3  | 1 RES  | -0.1893 |
| 42 O          | -2.1446 | 5.8721  | -0.5427 0.3 | 1 RES  | -0.1750 |
| 43 C          | 1.3426  | 9.1859  | 1.2340 C.3  | 1 RES  | -0.0979 |
| 44 C          | -2.3844 | 7.0732  | -1.2811 C.3 | 1 RES  | -0.1273 |
| 45 H          | -6.3776 | 3 5508  | -0.3085 H   | 1 RES  | 0.0771  |
| 46 H          | -2 8992 | 4 0926  | 3 1483 H    | 1 RES  | 0 1141  |
| 10 H<br>17 U  | -0 3206 | 5 1/10  | 1 6199 U    | 1 DEC  | 0.1227  |
| 47 II<br>40 U | 2 1102  | 6 0201  | 7 7202 11   | 1 DEC  | 0.1227  |
| 40 H          | 3.1102  | 0.0391  | 7.7202 H    | I RES  | 0.0742  |
| 49 H          | -0.4931 | 7.8580  | 0.1716 H    | I RES  | 0.1046  |
| 50 H          | 0.1845  | 3.6870  | 2.6535 H    | I RES  | 0.1677  |
| 51 H          | -3.3358 | 3.9552  | 5.8552 H    | I RES  | 0.1677  |
| 52 H          | -3.4622 | 8.7527  | 4.7426 H    | 1 RES  | 0.1047  |
| 53 H          | -1.4951 | 5.8838  | 8.0441 H    | 1 RES  | 0.0003  |
| 54 H          | 2.7887  | 6.2971  | 3.0742 H    | 1 RES  | 0.0003  |
| 55 H          | 1.9711  | 7.9023  | 9.4580 H    | 1 RES  | 0.0740  |
| 56 H          | 2.5557  | 6.2627  | 9.8843 H    | 1 RES  | 0.0740  |
| 57 H          | 1.1933  | 6.9825  | 10.7520 H   | 1 RES  | 0.0740  |
| 58 H          | 5.8851  | 7.2263  | 5.4665 H    | 1 RES  | 0.0740  |
| 59 H          | 4,6649  | 8.0365  | 6.4566 H    | 1 RES  | 0.0740  |
| 60 H          | 5,2180  | 6.3820  | 6.8693 H    | 1 RES  | 0.0740  |
| 00 11         | 5.2100  | 0.0020  | 0.00000 11  | 1 1000 | 0.0,10  |

| 61         | н        | -6 3170 | 5 1053    | 4 1501 F    | I 1               | RES        | 0 0062  |
|------------|----------|---------|-----------|-------------|-------------------|------------|---------|
| 62         | U U      | 0.4872  | 0 9601    | 6 4200 1    | <br>. 1           | DEC        | 0.0002  |
| 62         | п        | -0.4872 | 9.0021    | 6.4290 5    | 1 I               | RES        | 0.0836  |
| 63         | Н        | -2.2364 | 10.0128   | 6.2097 F    | 1 1               | RES        | 0.0836  |
| 64         | Н        | -1.1981 | 9.4259    | 4.8699 H    | I 1               | RES        | 0.0836  |
| 65         | Η        | -5.5119 | 9.3358    | 3.8850 H    | I 1               | RES        | 0.0932  |
| 66         | Η        | -6.1334 | 8.7405    | 2.3394 H    | H 1               | RES        | 0.0932  |
| 67         | Н        | -4.3843 | 8.8322    | 2.5842 H    | H 1               | RES        | 0.0932  |
| 68         | н        | -1.6662 | 3.1893    | -0.2388 H   | Ŧ 1               | RES        | 0.0062  |
| 69         | н        | -8 2716 | 4 7141    | 0 3912 1    | - –<br>I 1        | REG        | 0 0740  |
| 70         | U U      | 0.2710  | 4 1040    | 1 6654 1    | 1 1<br>1 1        | DEC        | 0.0740  |
| 70         | п        | -9.3340 | 4.1040    | 1.0054 6    | 1 I               | RES        | 0.0740  |
| /1         | н        | -8.3643 | 2.95/6    | 0./315 F    | 1 I               | RES        | 0.0740  |
| 72         | Н        | -5.4272 | 1.9610    | -1.7966 H   | 4 1               | RES        | 0.0740  |
| 73         | Η        | -4.2987 | 2.4854    | -3.0517 H   | H 1               | RES        | 0.0740  |
| 74         | Η        | -5.4806 | 3.6420    | -2.4220 H   | I 1               | RES        | 0.0740  |
| 75         | Η        | 0.3523  | 9.5982    | 1.4300 H    | H 1               | RES        | 0.0835  |
| 76         | Н        | 1.4940  | 9.0449    | 0.1630 H    | H 1               | RES        | 0.0835  |
| 77         | н        | 2.0883  | 9.8934    | 1.5960 H    | Ŧ 1               | RES        | 0.0835  |
| 78         | н        | -2 6784 | 7 8814    | -0 6111 F   | - –<br>I 1        | RES        | 0 0932  |
| 70         | U U      | 2.0,01  | 6 0022    | 1 0742 1    | <br>. 1           | DEC        | 0.0000  |
| 79         | п        | -3.2035 | 0.0032    | -1.9/42 5   | 1 I               | RES        | 0.0932  |
| 80         | н        | -1.5014 | 7.3509    | -1.85/5 F   | 1 I               | RES        | 0.0932  |
| 81         | C        | 2.3550  | 2.8863    | 3.3145 0    | 2.2 1             | RES        | 0.4622  |
| 82         | 0        | 2.2050  | 2.1837    | 2.3192 0    | 0.2 1             | RES        | -0.5509 |
| 83         | С        | 3.0078  | 4.2587    | 3.1529 0    | 2.3 1             | RES        | -0.1508 |
| 84         | С        | -0.7337 | 2.9076    | 6.5085 0    | 2.2 1             | RES        | 0.4816  |
| 85         | 0        | -1.1692 | 2.8398    | 5.3618 0    | 0.2 1             | RES        | -0.5321 |
| 86         | C        | -1.3558 | 3 8575    | 7 5368 0    | 13 1              | RES        | -0.1583 |
| 87         | N        | 1 9395  | 2 4985    | 4 5302 1    | ປັດກັບ 1          | REG        | -0 2594 |
| 00         | NT       | 1.5555  | 2.400     | C 02E1 N    | Jom 1             | DEC        | 0.2004  |
| 00         | 11       | 0.3030  | 2.1754    | 6.9351 N    |                   | RES        | -0.3848 |
| 89         | C        | 0.9313  | 1.0384    | 6.2655 (    | 2.3 1             | RES        | -0.0372 |
| 90         | С        | -1.2413 | -2.6229   | 7.1936 0    | C.ar 1            | RES        | -0.1108 |
| 91         | С        | -1.9315 | -1.5049   | 6.7004 0    | C.ar 1            | RES        | -0.2107 |
| 92         | С        | -1.2348 | -0.3241   | 6.3906 0    | C.ar 1            | RES        | -0.0351 |
| 93         | С        | 0.1601  | -0.2358   | 6.5860 0    | C.ar 1            | RES        | -0.0117 |
| 94         | С        | 0.8409  | -1.3665   | 7.0819 0    | C.ar 1            | RES        | -0.1216 |
| 95         | C        | 0.1482  | -2 5524   | 7 3815 0    | lar 1             | RES        | -0.1830 |
| 96         | н        | -1 7763 | -3 5344   | 7 4210 1    | I 1               | REG        | 0 1372  |
| 07         | 11<br>TT | 2.0000  | 1 5405    | C E4E1 T    | <br>T 1           | DEC        | 0.1372  |
| 97         | п        | -3.0000 | -1.5465   | 6.3431 F    | 1 I               | RES        | 0.1458  |
| 98         | н        | -1.7937 | 0.5102    | 5.993/ F    | 1 I               | RES        | 0.1442  |
| 99         | Н        | 1.9113  | -1.3373   | 7.2236 H    | 4 1               | RES        | 0.1161  |
| 100        | Η        | 0.6874  | -3.4127   | 7.7520 H    | i 1               | RES        | 0.1467  |
| 101        | Η        | 0.5881  | 2.3277    | 7.8900 H    | I 1               | RES        | 0.2917  |
| 102        | Η        | 3.8474  | 4.3134    | 3.8445 H    | H 1               | RES        | 0.0501  |
| 103        | Н        | 3.4164  | 4.3049    | 2.1424 H    | H 1               | RES        | 0.0501  |
| 104        | н        | -0.7943 | 3.7730    | 8.4673 H    | H 1               | RES        | 0.0581  |
| 105        | н        | 1 9086  | 0 9389    | 6 7381 F    | ı 1               | RES        | 0 1190  |
| 106        | ц        | -2 3770 | 3 5531    | 7 7627 1    | <br>J 1           | DEC        | 0.1190  |
| 107        |          | 1 21/2  | 1 2454    | 1 7 6 4 9 6 |                   | DEC        | 0.0301  |
| 107        | c        | 1.2162  | 1.2454    | 4.7648 (    |                   | RES        | -0.0371 |
| 108        | C        | 3.2515  | -2.2410   | 3.1397 0    | Lar I             | RES        | -0.1297 |
| 109        | С        | 3.9396  | -1.3567   | 3.9873 0    | C.ar 1            | RES        | -0.1850 |
| 110        | С        | 3.2859  | -0.2231   | 4.5019 0    | C.ar 1            | RES        | -0.0429 |
| 111        | С        | 1.9393  | 0.0395    | 4.1798 0    | C.ar 1            | RES        | 0.0344  |
| 112        | С        | 1.2624  | -0.8508   | 3.3221 0    | C.ar 1            | RES        | -0.0817 |
| 113        | С        | 1.9113  | -1.9852   | 2.8067 0    | C.ar 1            | RES        | -0.1903 |
| 114        | Н        | 3.7519  | -3.1101   | 2.7367 H    | H 1               | RES        | 0.1356  |
| 115        | Н        | 4 9734  | -1.5439   | 4.2379 F    |                   | RES        | 0.1417  |
| 116        | Н        | 3 8251  | 0.4518    | 5.1486 8    |                   | RES        | 0,0989  |
| 117        | н        | 0 0200  | -0 6680   | 3 0511 1    | <br>I 1           | PFC        | 0.0505  |
| ⊥⊥/<br>110 | LI<br>LI | 1 1000  | -2 6522   | 2.UJII F    | . 1<br>1 1        |            | 0.0/4/  |
| 110        | 11       | 1.3/39  | -2.0523   | 2.14/1 F    | · 1               | C C C C    | 0.1434  |
| TTA        | H        | 2.0096  | 3.1510    | 5.2960 H    | 1 l               | RES        | 0.2327  |
| 120        | Н        | 0.2715  | 1.3217    | 4.2273 H    | 1 1               | RES        | 0.1560  |
| 121        | С        | -2.3831 | 0.9706    | 1.3519 0    | 2.2 1             | RES        | 0.4622  |
| 122        | 0        | -2.5500 | 0.4315    | 0.2591 0    | 0.2 1             | RES        | -0.5509 |
| 123        | С        | -1.3707 | 2.0930    | 1.5320 0    | 2.3 1             | RES        | -0.1508 |
| 124        | С        | -5.0574 | 2.0032    | 4.7888 0    | 2.2 1             | RES        | 0.4816  |
| 125        | 0        | -4.1525 | 1.6477    | 5.5399 0    | 0.2 1             | RES        | -0.5321 |
| 126        | С        | -5.8180 | 3.3058    | 5.0478 0    | C.3 1             | RES        | -0,1583 |
| 127        | N        | -3 1011 | 0.6462    | 2 4322 1    | J.am <sup>1</sup> | RES        | -0 2594 |
| 128        | N        | -5 4683 | 1 2458    | 3 7643 1    | Jam 1             | RES        | -0 3848 |
| 100        | C 11     | -3.4003 | 1 1 5 7 0 | 2 F000 C    | ⊥<br>1 2 1        |            | -0.3040 |
| 120        | C        | -5.099/ | -0.15/8   | 3.3099 (    |                   | AES<br>DEC | -0.03/2 |
| 130        | Ċ        | -8.7569 | -2.4725   | 3.2144 C    | .ar l             | KES<br>DE- | -0.1108 |
| 131        | C        | -7.8455 | -2.7565   | 4.2447 0    | 2.ar 1            | RES        | -0.2107 |
| 132        | С        | -6.6630 | -2.0059   | 4.3667 0    | 2.ar 1            | RES        | -0.0351 |
| 133        | С        | -6.3783 | -0.9638   | 3.4627 0    | C.ar 1            | RES        | -0.0117 |
| 134        | С        | -7.2985 | -0.6879   | 2.4309 0    | C.ar 1            | RES        | -0.1216 |
| 135        | С        | -8.4814 | -1.4368   | 2.3066 0    | C.ar 1            | RES        | -0.1830 |
| 136        | Η        | -9.6654 | -3.0511   | 3.1188 H    | H 1               | RES        | 0.1372  |
| 137        | Н        | -8.0504 | -3.5551   | 4.9435 H    | H 1               | RES        | 0.1458  |
| 138        | Н        | -5.9671 | -2.2387   | 5.1600 H    |                   | RES        | 0.1442  |
|            | -        | 2.2071  |           |             | -                 |            |         |

| B. Botta et al., "Int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eractions of Vinca Alk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | caloid Subunits",                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 139 H<br>140 H<br>141 H<br>142 H<br>143 H<br>144 H<br>145 H<br>146 H<br>147 C<br>148 C<br>149 C<br>150 C<br>151 C<br>152 C<br>153 C<br>154 H<br>155 H<br>156 H<br>157 H<br>158 H<br>158 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -7.0976<br>-9.1784<br>-6.1776<br>-0.3992<br>-1.3025<br>-5.7441<br>-4.5746<br>-6.8695<br>-4.1402<br>-2.3277<br>-3.3940<br>-3.9755<br>-3.5015<br>-2.4315<br>-1.8456<br>-1.8756<br>-3.7660<br>-4.7941<br>-2.0470<br>-1.0205<br>-2.9551<br>-4.6794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1013<br>-1.2185<br>1.6281<br>1.7708<br>2.2573<br>3.5667<br>-0.4918<br>3.1022<br>-0.3651<br>-4.3192<br>-4.0412<br>-2.7607<br>-1.7447<br>-2.0365<br>-3.3126<br>-5.3010<br>-4.8096<br>-2.5594<br>-1.2714<br>-3.5089<br>1.1491<br>-0.2392 | 1.7212 H<br>1.5097 H<br>3.1569 H<br>1.1546 H<br>2.6055 H<br>6.1037 H<br>4.4876 H<br>4.4876 H<br>4.4875 H<br>2.4091 C.3<br>2.4524 C.ar<br>1.5612 C.ar<br>3.24524 C.ar<br>1.5612 C.ar<br>3.3049 C.ar<br>3.3049 C.ar<br>3.3049 C.ar<br>2.4637 H<br>0.9182 H<br>0.8860 H<br>3.9370 H<br>3.2977 H<br>1.4683 H | 1 RES<br>1 RES | 0.1161<br>0.2917<br>0.0501<br>0.0501<br>0.0581<br>0.1190<br>0.0581<br>-0.0371<br>-0.1297<br>-0.1850<br>-0.0429<br>0.0344<br>-0.0817<br>-0.1903<br>0.1356<br>0.1417<br>0.0989<br>0.0747<br>0.1434<br>0.2327<br>0.1560 |
| @ <tripos>BOND         1       1         2       1         3       1         4       2         5       2         6       3         7       3         8       4         9       4         10       5         12       6         13       7         14       8         15       8         16       8         17       9         18       9         19       9         20       10         21       11         22       11         23       11         24       12         25       12         26       12         27       13         28       13         29       13         30       14         32       15         33       16         34       16         35       17         36       17         37       18         38       19         39</tripos> | 2 ar<br>6 ar<br>48 1<br>3 ar<br>7 1<br>4 ar<br>8 1<br>5 ar<br>47 1<br>6 ar<br>9 1<br>10 1<br>11 1<br>15 1<br>53 1<br>86 1<br>37 1<br>54 1<br>13 1<br>55 1<br>56 1<br>57 1<br>58 1<br>59 1<br>60 1<br>14 ar<br>18 ar<br>59 1<br>60 1<br>14 ar<br>18 ar<br>59 1<br>60 1<br>14 ar<br>18 ar<br>59 1<br>60 1<br>14 ar<br>18 ar<br>59 1<br>16 ar<br>17 ar<br>51 1<br>18 ar<br>20 1<br>21 1<br>22 1<br>26 1<br>11 1<br>18 ar<br>20 1<br>21 1<br>22 1<br>26 1<br>11 1<br>23 1<br>26 1<br>21 1<br>22 1<br>26 1<br>27 1<br>28 ar<br>29 ar<br>45 1<br>27 ar<br>28 ar<br>27 ar<br>28 ar<br>27 ar<br>28 ar |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      |

| 56           | 27  | 46  | 1       |                            |
|--------------|-----|-----|---------|----------------------------|
| 57           | 28  | 29  | ar      |                            |
| 58           | 28  | 31  | 1       |                            |
| 59           | 29  | 32  | 1       |                            |
| 60           | 3.0 | 33  | 1       |                            |
| 61           | 31  | 30  | 1       |                            |
| C2           | 21  |     | 1       |                            |
| 62           | 21  | 100 | 1       |                            |
| 63           | 31  | 123 | T       |                            |
| 64           | 32  | 34  | 1       |                            |
| 65           | 33  | 69  | 1       |                            |
| 66           | 33  | 70  | 1       |                            |
| 67           | 33  | 71  | 1       |                            |
| 68           | 34  | 72  | 1       |                            |
| 69           | 34  | 73  | 1       |                            |
| 70           | 34  | 74  | 1       |                            |
| 70           | 25  | 26  | -<br>~~ |                            |
| 71           | 25  | 10  | ar      |                            |
| 72           | 35  | 40  | ar      |                            |
| /3           | 35  | 49  | T       |                            |
| 74           | 36  | 37  | ar      |                            |
| 75           | 36  | 41  | 1       |                            |
| 76           | 37  | 38  | ar      |                            |
| 77           | 38  | 39  | ar      |                            |
| 78           | 38  | 50  | 1       |                            |
| 79           | 39  | 40  | ar      |                            |
| 80           | 40  | 42  | 1       |                            |
| 81           | 41  | 43  | 1       |                            |
| 80<br>21     | 40  | 1 J | 1       |                            |
| 02<br>07     | 12  |     | ⊥<br>1  |                            |
| ده           | 43  | 15  | 1       |                            |
| 84           | 43  | /6  | T       |                            |
| 85           | 43  | 77  | 1       |                            |
| 86           | 44  | 78  | 1       |                            |
| 87           | 44  | 79  | 1       |                            |
| 88           | 44  | 80  | 1       |                            |
| 89           | 81  | 82  | 2       |                            |
| 90           | 81  | 83  | 1       |                            |
| 91           | 81  | 87  | am.     | BACKBONE                   |
| 92           | 83  | 102 | 1       |                            |
| 02           | 03  | 102 | 1       |                            |
| 93           | 03  | 103 | Ť       |                            |
| 94           | 84  | 85  | 2       |                            |
| 95           | 84  | 86  | T       |                            |
| 96           | 84  | 88  | am      | BACKBONE   DICT   INTERRES |
| 97           | 86  | 104 | 1       |                            |
| 98           | 86  | 106 | 1       |                            |
| 99           | 87  | 107 | 1       |                            |
| 100          | 87  | 119 | 1       |                            |
| 101          | 88  | 89  | 1       |                            |
| 102          | 88  | 101 | 1       |                            |
| 102          | 80  | 707 | 1       |                            |
| 101          | 00  | 105 | 1       |                            |
| 104          | 09  | 105 | 1       |                            |
| 105          | 89  | 107 | Т       |                            |
| 106          | 90  | 91  | ar      |                            |
| 107          | 90  | 95  | ar      |                            |
| 108          | 90  | 96  | 1       |                            |
| 109          | 91  | 92  | ar      |                            |
| 110          | 91  | 97  | 1       |                            |
| 111          | 92  | 93  | ar      |                            |
| 112          | 92  | 98  | 1       |                            |
| 113          | 93  | 94  | ar      |                            |
| 114          | 94  | 95  | ar      |                            |
| 115          | 94  | 90  | 1       |                            |
| 110          | 21  | 100 | ⊥<br>1  |                            |
| 117          | 107 | 111 | 1       |                            |
| 110          | 107 | 111 | 1       |                            |
| 118          | 107 | 120 | T       |                            |
| 119          | 108 | 109 | ar      |                            |
| 120          | 108 | 113 | ar      |                            |
| 121          | 108 | 114 | 1       |                            |
| 122          | 109 | 110 | ar      |                            |
| 123          | 109 | 115 | 1       |                            |
| 124          | 110 | 111 | ar      |                            |
| 125          | 110 | 116 | 1       |                            |
| 126          | 111 | 112 | ar      |                            |
| 127          | 112 | 113 | ar      |                            |
| 100          | 110 | 117 | 1       |                            |
| ⊥∠0<br>1 0 0 | 117 | 110 | ⊥<br>1  |                            |
| 122          | 101 | 100 | T<br>T  |                            |
| 130          | 121 | 122 | 2       |                            |
| 131          | 121 | 123 | T       |                            |
| 132          | 121 | 127 | am      | BACKBONE   DICT   INTERRES |
|              |     | -   |         |                            |

| 134                                                                                                                                   | 123    | 143  | 1     |          |      |      |      |      |   |      |
|---------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------|----------|------|------|------|------|---|------|
| 135                                                                                                                                   | 124    | 125  | 2     |          |      |      |      |      |   |      |
| 136                                                                                                                                   | 124    | 126  | 1     |          |      |      |      |      |   |      |
| 137                                                                                                                                   | 124    | 128  | am    | BACKBONE | DICT | INTE | RRES |      |   |      |
| 138                                                                                                                                   | 126    | 144  | 1     |          |      |      |      |      |   |      |
| 139                                                                                                                                   | 126    | 146  | 1     |          |      |      |      |      |   |      |
| 140                                                                                                                                   | 127    | 147  | 1     |          |      |      |      |      |   |      |
| 141                                                                                                                                   | 127    | 159  | 1     |          |      |      |      |      |   |      |
| 142                                                                                                                                   | 128    | 129  | 1     |          |      |      |      |      |   |      |
| 143                                                                                                                                   | 128    | 141  | 1     |          |      |      |      |      |   |      |
| 144                                                                                                                                   | 129    | 133  | 1     |          |      |      |      |      |   |      |
| 145                                                                                                                                   | 129    | 145  | 1     |          |      |      |      |      |   |      |
| 146                                                                                                                                   | 129    | 147  | 1     |          |      |      |      |      |   |      |
| 147                                                                                                                                   | 130    | 131  | ar    |          |      |      |      |      |   |      |
| 148                                                                                                                                   | 130    | 135  | ar    |          |      |      |      |      |   |      |
| 149                                                                                                                                   | 130    | 136  | 1     |          |      |      |      |      |   |      |
| 150                                                                                                                                   | 131    | 132  | ar    |          |      |      |      |      |   |      |
| 151                                                                                                                                   | 131    | 137  | 1     |          |      |      |      |      |   |      |
| 152                                                                                                                                   | 132    | 133  | ar    |          |      |      |      |      |   |      |
| 153                                                                                                                                   | 132    | 138  | 1     |          |      |      |      |      |   |      |
| 154                                                                                                                                   | 133    | 134  | ar    |          |      |      |      |      |   |      |
| 155                                                                                                                                   | 134    | 135  | ar    |          |      |      |      |      |   |      |
| 156                                                                                                                                   | 134    | 139  | 1     |          |      |      |      |      |   |      |
| 157                                                                                                                                   | 135    | 140  | 1     |          |      |      |      |      |   |      |
| 158                                                                                                                                   | 147    | 151  | 1     |          |      |      |      |      |   |      |
| 159                                                                                                                                   | 147    | 160  | 1     |          |      |      |      |      |   |      |
| 160                                                                                                                                   | 148    | 149  | ar    |          |      |      |      |      |   |      |
| 161                                                                                                                                   | 148    | 153  | ar    |          |      |      |      |      |   |      |
| 162                                                                                                                                   | 148    | 154  | 1     |          |      |      |      |      |   |      |
| 163                                                                                                                                   | 149    | 150  | ar    |          |      |      |      |      |   |      |
| 164                                                                                                                                   | 149    | 155  | 1     |          |      |      |      |      |   |      |
| 165                                                                                                                                   | 150    | 151  | ar    |          |      |      |      |      |   |      |
| 166                                                                                                                                   | 150    | 156  | 1     |          |      |      |      |      |   |      |
| 167                                                                                                                                   | 151    | 152  | ar    |          |      |      |      |      |   |      |
| 168                                                                                                                                   | 152    | 153  | ar    |          |      |      |      |      |   |      |
| 169                                                                                                                                   | 152    | 157  | 1     |          |      |      |      |      |   |      |
| 170                                                                                                                                   | 153    | 158  | 1     |          |      |      |      |      |   |      |
| @ <tripo< td=""><td>DS&gt;SUB</td><td>STRU</td><td>CTURE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tripo<> | DS>SUB | STRU | CTURE |          |      |      |      |      |   |      |
| 1                                                                                                                                     | RES    |      | 1 (   | GROUP    |      | C    | )    | **** | 0 | ROOT |

### Cartesian coordinates and charges of C (mol2 format).

# Name: C

@<TRIPOS>MOLECULE
catharanthine
49 53 2
SMALL
NO\_CHARGES

#### @<TRIPOS>ATOM

| 1  | N1    | -5.8096  | -4.3862  | -13.3362 | N.ar | 1 | UNK     | -0.2452 |
|----|-------|----------|----------|----------|------|---|---------|---------|
| 2  | C2    | -6.6175  | -5.0589  | -12.4346 | C.ar | 1 | UNK     | -0.0700 |
| 3  | C3    | -7.1277  | -4.1587  | -11.5637 | C.ar | 1 | UNK     | -0.1052 |
| 4  | C4    | -6.6010  | -2.8512  | -11.9315 | C.ar | 1 | UNK     | 0.0574  |
| 5  | C5    | -6.7333  | -1.5331  | -11.4402 | C.ar | 1 | UNK     | -0.2130 |
| 6  | C6    | -6.0698  | -0.4504  | -12.0455 | C.ar | 1 | UNK     | -0.1736 |
| 7  | C7    | -5.2511  | -0.6586  | -13.1667 | C.ar | 1 | UNK     | -0.1542 |
| 8  | C8    | -5.0963  | -1.9544  | -13.6823 | C.ar | 1 | UNK     | -0.2437 |
| 9  | C9    | -5.7604  | -3.0305  | -13.0716 | C.ar | 1 | UNK     | 0.1141  |
| 10 | C10   | -8.0720  | -4.4260  | -10.4145 | C.3  | 1 | UNK     | 0.0168  |
| 11 | H11   | -7.3599  | -1.3506  | -10.5806 | Н    | 1 | UNK     | 0.1583  |
| 12 | H12   | -6.1918  | 0.5471   | -11.6463 | H    | 1 | UNK     | 0.1360  |
| 13 | H13   | -4.7434  | 0.1762   | -13.6300 | Н    | 1 | UNK     | 0.1440  |
| 14 | H14   | -4.4684  | -2.1209  | -14.5449 | H    | 1 | UNK     | 0.1625  |
| 15 | C15   | -6.8457  | -6.5761  | -12.4666 | C.3  | 1 | UNK     | -0.0590 |
| 16 | H16   | -5.3276  | -4.8196  | -14.1120 | Н    | 1 | UNK     | 0.2925  |
| 17 | C17   | -7.7348  | -7.1094  | -11.3049 | C.3  | 1 | UNK     | -0.0331 |
| 18 | N18   | -7.1639  | -6.7241  | -10.0065 | N.3  | 1 | UNK     | -0.2636 |
| 19 | C19   | -7.5606  | -5.4388  | -9.3877  | C.3  | 1 | UNK     | 0.1724  |
| 20 | H20   | -8.2409  | -3.4902  | -9.8823  | Н    | 1 | UNK     | 0.0233  |
| 21 | H21   | -9.0369  | -4.7373  | -10.8129 | H    | 1 | UNK     | 0.0233  |
| 22 | C22   | -7.6715  | -8.6378  | -11.3249 | C.2  | 1 | UNK     | -0.0942 |
| 23 | C23   | -7.5146  | -6.9001  | -13.8177 | C.2  | 2 | * * * * | 0.9134  |
| 24 | 024   | -6.6608  | -6.6793  | -14.8292 | 0.3  | 2 | ****    | -0.4793 |
| 25 | 025   | -8.6465  | -7.2741  | -13.9727 | 0.2  | 2 | * * * * | -0.6640 |
| 26 | C26   | -7.2195  | -6.9298  | -16.1269 | C.3  | 2 | ****    | -0.0245 |
| 27 | H27   | -8.3613  | -5.6353  | -8.6741  | H    | 1 | UNK     | 0.0144  |
| 28 | H28   | -7.5415  | -7.9701  | -16.2063 | Н    | 2 | ****    | 0.0951  |
| 29 | H29   | -8.0786  | -6.2782  | -16.2998 | H    | 2 | * * * * | 0.0951  |
| 30 | H30   | -6.4668  | -6.7332  | -16.8893 | H    | 2 | ****    | 0.0951  |
| 31 | C31   | -5.7291  | -7.1019  | -9.9047  | C.3  | 1 | UNK     | -0.0407 |
| 32 | C32   | -6.4408  | -9.1277  | -11.1748 | C.2  | 1 | UNK     | -0.1847 |
| 33 | C33   | -5.3568  | -8.0648  | -11.0494 | C.3  | 1 | UNK     | 0.0596  |
| 34 | H34   | -6.7186  | -5.0077  | -8.8450  | H    | 1 | UNK     | 0.0144  |
| 35 | H35   | -5.0923  | -6.2182  | -9.9669  | Н    | 1 | UNK     | 0.0357  |
| 36 | H36   | -5.5623  | -7.5906  | -8.9442  | H    | 1 | UNK     | 0.0357  |
| 37 | C37   | -5.4512  | -7.2627  | -12.3534 | C.3  | 1 | UNK     | -0.0303 |
| 38 | H38   | -4.6405  | -6.5337  | -12.3698 | H    | 1 | UNK     | 0.0319  |
| 39 | H39   | -5.2892  | -7.9573  | -13.1793 | Н    | 1 | UNK     | 0.0319  |
| 40 | H40   | -8.7730  | -6.7997  | -11.4264 | H    | 1 | UNK     | 0.1186  |
| 41 | C41   | -8.9097  | -9.5198  | -11.4792 | C.3  | 1 | UNK     | 0.0315  |
| 42 | C42   | -9.8317  | -9.3602  | -10.2687 | C.3  | 1 | UNK     | -0.0640 |
| 43 | H43   | -9.4477  | -9.2395  | -12.3851 | Н    | 1 | UNK     | 0.0329  |
| 44 | H44   | -8.6141  | -10.5666 | -11.5586 | H    | 1 | UNK     | 0.0329  |
| 45 | H45 - | -10.1783 | -8.3296  | -10.1906 | Н    | 1 | UNK     | 0.0182  |
| 46 | H46 - | -10.6946 | -10.0167 | -10.3825 | Н    | 1 | UNK     | 0.0182  |
| 47 | H47   | -9.2951  | -9.6298  | -9.3585  | Н    | 1 | UNK     | 0.0182  |
| 48 | H48   | -6.2245  | -10.1857 | -11.1480 | Н    | 1 | UNK     | 0.1167  |
| 49 | H49   | -4.3661  | -8.5011  | -10.9146 | H    | 1 | UNK     | 0.0527  |

@<TRIPOS>BOND

| 14                                                                                              | 7      | 8 ar    |         |   |      |        |
|-------------------------------------------------------------------------------------------------|--------|---------|---------|---|------|--------|
| 15                                                                                              | 7      | 13 1    |         |   |      |        |
| 16                                                                                              | 8      | 9 ar    |         |   |      |        |
| 17                                                                                              | 8      | 14 1    |         |   |      |        |
| 18                                                                                              | 10     | 19 1    |         |   |      |        |
| 19                                                                                              | 10     | 20 1    |         |   |      |        |
| 20                                                                                              | 10     | 21 1    |         |   |      |        |
| 21                                                                                              | 15     | 17 1    |         |   |      |        |
| 22                                                                                              | 15     | 23 1    |         |   |      |        |
| 23                                                                                              | 15     | 37 1    |         |   |      |        |
| 24                                                                                              | 17     | 18 1    |         |   |      |        |
| 25                                                                                              | 17     | 22 1    |         |   |      |        |
| 26                                                                                              | 17     | 40 1    |         |   |      |        |
| 27                                                                                              | 18     | 19 1    |         |   |      |        |
| 28                                                                                              | 18     | 31 1    |         |   |      |        |
| 29                                                                                              | 19     | 27 1    |         |   |      |        |
| 30                                                                                              | 19     | 34 1    |         |   |      |        |
| 31                                                                                              | 22     | 32 2    |         |   |      |        |
| 32                                                                                              | 22     | 41 1    |         |   |      |        |
| 33                                                                                              | 23     | 24 1    |         |   |      |        |
| 34                                                                                              | 23     | 25 2    |         |   |      |        |
| 35                                                                                              | 24     | 26 1    |         |   |      |        |
| 36                                                                                              | 26     | 28 1    |         |   |      |        |
| 37                                                                                              | 26     | 29 1    |         |   |      |        |
| 38                                                                                              | 26     | 30 1    |         |   |      |        |
| 39                                                                                              | 31     | 33 1    |         |   |      |        |
| 40                                                                                              | 31     | 35 1    |         |   |      |        |
| 41                                                                                              | 31     | 36 1    |         |   |      |        |
| 42                                                                                              | 32     | 48 1    |         |   |      |        |
| 43                                                                                              | 32     | 33 1    |         |   |      |        |
| 44                                                                                              | 33     | 37 1    |         |   |      |        |
| 45                                                                                              | 33     | 49 1    |         |   |      |        |
| 46                                                                                              | 37     | 38 1    |         |   |      |        |
| 47                                                                                              | 37     | 39 1    |         |   |      |        |
| 48                                                                                              | 41     | 42 1    |         |   |      |        |
| 49                                                                                              | 41     | 43 1    |         |   |      |        |
| 50                                                                                              | 41     | 44 1    |         |   |      |        |
| 51                                                                                              | 42     | 45 1    |         |   |      |        |
| 52                                                                                              | 42     | 46 1    |         |   |      |        |
| 53                                                                                              | 42     | 47 1    |         |   |      |        |
| @ <trip< td=""><td>US&gt;SUB</td><td>STRUCTU</td><td>RE</td><td></td><td></td><td></td></trip<> | US>SUB | STRUCTU | RE      |   |      |        |
| 1                                                                                               | UNK    |         | 1 GROUP | 0 | **** | U ROOT |
| 2                                                                                               | ****   | 2       | 3 GROUP | 0 | **** | U ROOT |

23

## Cartesian coordinates and charges of protonated catharanthine $CH^+$ (mol2 format).

 $\# \texttt{Name: CH}^+$ 

@<TRIPOS>MOLECULE
protonated catharanthine
50 54 2
SMALL
NO\_CHARGES

| 1  | Nl  | -10.3743 | 4.9800  | -6.5035  | N.ar | 1 | UNK     | -0.3666 |
|----|-----|----------|---------|----------|------|---|---------|---------|
| 2  | C2  | -10.6792 | 4.3724  | -7.7116  | C.ar | 1 | UNK     | -0.1968 |
| 3  | C3  | -10.1473 | 5.1171  | -8.7058  | C.ar | 1 | UNK     | -0.0428 |
| 4  | C4  | -9.4919  | 6.2646  | -8.0922  | C.ar | 1 | UNK     | 0.0374  |
| 5  | C5  | -8.7775  | 7.3908  | -8.5596  | C.ar | 1 | UNK     | -0.2243 |
| 6  | C6  | -8.2497  | 8.3476  | -7.6734  | C.ar | 1 | UNK     | -0.1699 |
| 7  | C7  | -8.4225  | 8.2017  | -6.2877  | C.ar | 1 | UNK     | -0.1121 |
| 8  | C8  | -9.1267  | 7.0951  | -5.7886  | C.ar | 1 | UNK     | -0.2825 |
| 9  | C9  | -9.6529  | 6.1462  | -6.6785  | C.ar | 1 | UNK     | 0.2285  |
| 10 | C10 | -10.2003 | 4.8355  | -10.1858 | C.3  | 1 | UNK     | -0.0172 |
| 11 | H11 | -8.6240  | 7.5233  | -9.6197  | Н    | 1 | UNK     | 0.1609  |
| 12 | H12 | -7.7037  | 9.1990  | -8.0589  | Н    | 1 | UNK     | 0.1606  |
| 13 | H13 | -8.0120  | 8.9380  | -5.6091  | Н    | 1 | UNK     | 0.1583  |
| 14 | H14 | -9.2595  | 6.9771  | -4.7233  | Н    | 1 | UNK     | 0.1845  |
| 15 | C15 | -11.4906 | 3.0746  | -7.8344  | C.3  | 1 | UNK     | -0.0461 |
| 16 | H16 | -10.6053 | 4.6133  | -5.5881  | Н    | 1 | UNK     | 0.3285  |
| 17 | C17 | -11.8150 | 2.6739  | -9.3029  | C.3  | 1 | UNK     | -0.0042 |
| 18 | N18 | -12.5069 | 3.7963  | -10.0680 | N.4  | 1 | UNK     | 0.0143  |
| 19 | C19 | -11.6141 | 4.7544  | -10.7661 | C.3  | 1 | UNK     | -0.0336 |
| 20 | H20 | -9.6803  | 5.6401  | -10.7065 | Н    | 1 | UNK     | 0.0597  |
| 21 | H21 | -9.6403  | 3.9231  | -10.3892 | Н    | 1 | UNK     | 0.0597  |
| 22 | C22 | -12.9231 | 1.6160  | -9.2801  | C.2  | 1 | UNK     | -0.0920 |
| 23 | C23 | -10.6857 | 1.9350  | -7.1793  | C.2  | 2 | * * * * | 0.9022  |
| 24 | 024 | -10.5899 | 2.1261  | -5.8571  | 0.3  | 2 | * * * * | -0.4827 |
| 25 | 025 | -10.2001 | 1.0071  | -7.7676  | 0.2  | 2 | * * * * | -0.6471 |
| 26 | C26 | -9.8225  | 1.1197  | -5.1787  | C.3  | 2 | ****    | -0.0451 |
| 27 | H27 | -11.5142 | 4.4341  | -11.8045 | Н    | 1 | UNK     | 0.0902  |
| 28 | H28 | -8.8016  | 1.0973  | -5.5661  | Н    | 2 | ****    | 0.1111  |
| 29 | H29 | -9.7901  | 1.3428  | -4.1127  | Н    | 2 | * * * * | 0.1111  |
| 30 | H30 | -10.2746 | 0.1358  | -5.3202  | Н    | 2 | ****    | 0.1111  |
| 31 | C31 | -13.5227 | 4.4283  | -9.1820  | C.3  | 1 | UNK     | -0.1500 |
| 32 | C32 | -14.0607 | 2.0346  | -8.7215  | C.2  | 1 | UNK     | -0.2289 |
| 33 | C33 | -13.9865 | 3.4276  | -8.1064  | C.3  | 1 | UNK     | -0.0765 |
| 34 | H34 | -12.0588 | 5.7511  | -10.7686 | Н    | 1 | UNK     | 0.0902  |
| 35 | H35 | -13.1131 | 5.3084  | -8.6791  | Н    | 1 | UNK     | 0.1577  |
| 36 | H36 | -14.3782 | 4.7432  | -9.7821  | Н    | 1 | UNK     | 0.1108  |
| 37 | C37 | -12.8401 | 3.3043  | -7.0915  | C.3  | 1 | UNK     | -0.0514 |
| 38 | H38 | -12.8151 | 4.1975  | -6.4671  | Н    | 1 | UNK     | 0.0700  |
| 39 | H39 | -13.0616 | 2.4607  | -6.4338  | Н    | 1 | UNK     | 0.0395  |
| 40 | H40 | -10.9426 | 2.2696  | -9.8180  | H    | 1 | UNK     | 0.1242  |
| 41 | C41 | -12.7392 | 0.2019  | -9.8339  | C.3  | 1 | UNK     | -0.0012 |
| 42 | C42 | -12.5405 | 0.2230  | -11.3509 | C.3  | 1 | UNK     | -0.0780 |
| 43 | H43 | -11.8715 | -0.2628 | -9.3631  | H    | 1 | UNK     | 0.0524  |
| 44 | H44 | -13.6171 | -0.4050 | -9.6066  | Н    | 1 | UNK     | 0.0524  |
| 45 | H45 | -11.6373 | 0.7754  | -11.6095 | Н    | 1 | UNK     | 0.0516  |
| 46 | H46 | -12.4393 | -0.8014 | -11.7119 | Н    | 1 | UNK     | 0.0516  |
| 47 | H47 | -13.4031 | 0.6835  | -11.8334 | Н    | 1 | UNK     | 0.0516  |
| 48 | H48 | -14.9368 | 1.4043  | -8.6215  | Н    | 1 | UNK     | 0.1635  |
| 49 | H49 | -14.9196 | 3.7224  | -7.6202  | Н    | 1 | UNK     | 0.0940  |
| 50 | H50 | -13.0387 | 3.3289  | -10.7900 | н    | 1 | UNK     | 0.2790  |

@<TRIPOS>BOND

| 15                    | 7                | 13    | 1               |       |   |      |        |
|-----------------------|------------------|-------|-----------------|-------|---|------|--------|
| 16                    | 8                | 9     | ar              |       |   |      |        |
| 17                    | 8                | 14    | 1               |       |   |      |        |
| 18                    | 10               | 19    | 1               |       |   |      |        |
| 19                    | 10               | 20    | 1               |       |   |      |        |
| 20                    | 10               | 21    | 1               |       |   |      |        |
| 21                    | 15               | 17    | 1               |       |   |      |        |
| 22                    | 15               | 23    | 1               |       |   |      |        |
| 23                    | 15               | 37    | 1               |       |   |      |        |
| 24                    | 17               | 18    | 1               |       |   |      |        |
| 25                    | 17               | 22    | 1               |       |   |      |        |
| 26                    | 17               | 40    | 1               |       |   |      |        |
| 27                    | 18               | 19    | 1               |       |   |      |        |
| 28                    | 18               | 31    | 1               |       |   |      |        |
| 29                    | 18               | 50    | 1               |       |   |      |        |
| 30                    | 19               | 27    | 1               |       |   |      |        |
| 31                    | 19               | 34    | 1               |       |   |      |        |
| 32                    | 22               | 32    | 2               |       |   |      |        |
| 33                    | 22               | 41    | 1               |       |   |      |        |
| 34                    | 23               | 24    | 1               |       |   |      |        |
| 35                    | 23               | 25    | 2               |       |   |      |        |
| 36                    | 24               | 26    | 1               |       |   |      |        |
| 37                    | 26               | 28    | 1               |       |   |      |        |
| 38                    | 26               | 29    | 1               |       |   |      |        |
| 39                    | 26               | 30    | 1               |       |   |      |        |
| 40                    | 31               | 33    | 1               |       |   |      |        |
| 41                    | 31               | 35    | 1               |       |   |      |        |
| 42                    | 31               | 36    | 1               |       |   |      |        |
| 43                    | 32               | 48    | 1               |       |   |      |        |
| 44                    | 32               | 33    | 1               |       |   |      |        |
| 45                    | 33               | 37    | 1               |       |   |      |        |
| 46                    | 33               | 49    | 1               |       |   |      |        |
| 4 /                   | 3/               | 38    | 1               |       |   |      |        |
| 40                    | 37               | 39    | 1               |       |   |      |        |
| 49                    | 41               | 42    | 1               |       |   |      |        |
| 50                    | 41               | 43    | 1               |       |   |      |        |
| 51                    | 41               | 44    | 1               |       |   |      |        |
| 52                    | 42               | 40    | 1<br>1          |       |   |      |        |
| 53<br>E 4             | 42               | 40    | 1<br>1          |       |   |      |        |
| 54<br>0 - T T T T - 0 | 42<br>20 - 01 TD | 4 /   | יייניניים.<br>ד |       |   |      |        |
| SILING 1              | NINI             | DIRUC | 1 U.K.          |       | 0 | **** |        |
| 1                     | ****             |       | ⊥<br>22         | GROUP | 0 | **** | 0 ROOT |
| 2                     |                  |       | 23              | GRUUP | U |      | U ROUI |