SUPPLEMENTARY INFORMATION

4-O-Allyl-myo-inositol 1,3,5-O-orthobenzoate. myo-Inositol $(5.00 \mathrm{~g}, 27 \mathrm{mmol})$ was taken up in DMSO $(23 \mathrm{~mL})$. To the 5 suspension was added trimethylorthobenzoate ($6.01 \mathrm{~mL}, 33.3$ mmol) and p-toluene sulfonic acid ($56 \mathrm{mg}, 0.29 \mathrm{mmol}$). The suspension was stirred at $100{ }^{\circ} \mathrm{C}$ for 5 h . The reaction was quenched with methylamine (0.9 mL) and the solvent removed under high vacuum. Crude myo-inositol 1,3,5-O10 orthobenzoate ($2,7.6 \mathrm{~g}$) was taken up in DMF (50 mL). The reaction mixture was cooled to $-15^{\circ} \mathrm{C}$ and sodium hydride (60 $\%$ dispersion in mineral oil, $1.08 \mathrm{~g}, 27 \mathrm{mmol}$) added portion wise. The mixture was stirred at $-15^{\circ} \mathrm{C}$ for 15 min , allowed to warm to rt and stirred for a further 30 min . Allyl bromide ${ }_{15}(2.34 \mathrm{~mL}, 27 \mathrm{mmol})$ was then added drop-wise and the reaction stirred for 24 h . The reaction was quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the volume reduced under high vacuum. The residue was taken up in EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}(\times 3)$ and then brine. The combined aqueous layers 20 were back-extracted with EtOAc, and this solution was washed with $\mathrm{H}_{2} \mathrm{O}(\times 3)$ and brine. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure. The crude material was fractionated by chromatography on flash silica. Elution with hexane-EtOAc ${ }_{25}(7: 3 \rightarrow 0: 1 \mathrm{v} / \mathrm{v})$ yielded the title compound $(6.03 \mathrm{~g}, 73 \%$ over 2 steps) as a pale yellow oil; $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.72 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 3570, 3495, 3054, 2957, 2926, 2856 and 1452; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 7.66-7.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \boldsymbol{H}$), 7.42-7.26 $(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \boldsymbol{H})$, $5.90\left(1 \mathrm{H}, \mathrm{ddt}, J 16.3,10.3,5.9, \mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right), 5.36(1 \mathrm{H}, \mathrm{dq}$, $\left.{ }_{30} J 15.7,1.2, \mathrm{OCH}_{2} \mathrm{CHCH}_{a} \mathrm{H}\right), 5.32(1 \mathrm{H}, \mathrm{dq}, J 10.3,1.2$, $\left.\mathrm{OCH}_{2} \mathrm{CHCH}_{b} \mathrm{H}\right), 4.61(1 \mathrm{H}$, dtd, $J 10.0,4.1,1.2$, Ins $6-\mathrm{H})$, 4.52-4.47 ($2 \mathrm{H}, \mathrm{m}, 2 \times \operatorname{Ins} \boldsymbol{H}$), 4.45-4.39 ($2 \mathrm{H}, \mathrm{m}, 2 \times \operatorname{Ins} \boldsymbol{H}$), 4.21-4.16 (3H, m, Ins $\left.\boldsymbol{H}+\mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right), 3.73(1 \mathrm{H}, \mathrm{bd}, J$ 10.3, Ins $\mathbf{O H}$), $3.19(1 \mathrm{H}, \mathrm{bd}, J 11.8$, Ins $\mathbf{O H}) \mathrm{ppm} ; \delta_{\mathrm{C}}(100$ $\left.{ }_{35} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.52(\mathrm{Ar} \mathbf{C}), 132.64\left(\mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right), 129.70$, $128.07 \quad(2 \mathrm{C}), \quad 125.17$ (2C) $(5 \times \mathrm{Ar} \quad \mathrm{CH}), \quad 119.56$ $\left(\mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right), 107.37\left(\mathrm{PhCO}_{3}\right), 76.02,74.04,73.53(3 \times \mathrm{Ins}$ $\boldsymbol{C H}), 71.99\left(\mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right), 68.16,67.69,59.93(3 \times$ Ins $\boldsymbol{C H})$ ppm ; HRMS (CI+) m/z (\%) found $[\mathrm{M}+\mathrm{H}]^{+} 307.1189$ (100), ${ }_{40} \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{6}$ requires 307.1182.

2,6-O-Dibenzyl-4-O-allyl-myo-inositol
orthobenzoate. 4-O-Allyl-myo-inositol 1,3,5-Oorthobenzoate ($11.30 \mathrm{~g}, 36.9 \mathrm{mmol}$) was evaporated from ${ }_{45} \mathrm{MeCN}(3 \times 10 \mathrm{~mL})$, taken up in DMF $(100 \mathrm{~mL})$ and cooled to $-15^{\circ} \mathrm{C}$. Sodium hydride (60% dispersion in mineral oil, 4.25 $\mathrm{g}, 111 \mathrm{mmol}$) was added portion-wise, the reaction stirred at $15^{\circ} \mathrm{C}$ for 30 min then warmed to rt and benzyl bromide (13.2 $\mathrm{mL}, 111 \mathrm{mmol}$) was added drop-wise. The reaction was ${ }_{50}$ stirred at $60^{\circ} \mathrm{C}$ for 12 h then quenched by drop-wise addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and stirred for 30 min . The solvent volume was reduced under high vacuum, the residue dissolved in EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}(\times 3)$ then brine. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under ${ }_{55}$ reduced pressure. The crude material was fractionated by chromatography on flash silica in a large sinter funnel. Elution with hexane-EtOAc (9:1 $\rightarrow 7: 3 \mathrm{v} / \mathrm{v})$ afforded the title compound ($17.30 \mathrm{~g}, 97 \%$) as a yellow oil; R_{f} (hexane-EtOAc
$1: 1 \mathrm{v} / \mathrm{v}) 0.76 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3054,2957,2927,2856$ and ${ }_{60} 1454 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.66-7.22(15 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \boldsymbol{H}), 5.82$ $\left(1 \mathrm{H}\right.$, ddt, $\left.J 17.1,10.7,5.6, \mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right), 5.24(1 \mathrm{H}, \mathrm{dq}, J$ 17.2, 1.5, $\left.\mathrm{OCH}_{2} \mathrm{CHCHH}\right), 5.18(1 \mathrm{H}, \mathrm{dq}, J 10.5,1.2$, $\left.\mathrm{OCH}_{2} \mathrm{CHCHH}\right), 4.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.67(1 \mathrm{H}, \mathrm{d}, J 11.8$ OCHHPh $), 4.51(1 \mathrm{H}, \mathrm{d}, J 11.8$, OCHHPh $), 4.55-4.52(2 \mathrm{H}, \mathrm{m}$, $\left.{ }_{65} 2 \times \operatorname{Ins} \boldsymbol{H}\right), 4.50(1 \mathrm{H}, \mathrm{dq}, J 3.8,1.7$, Ins $\boldsymbol{H}), 4.47(1 \mathrm{H}, \mathrm{dt}, J 3.5$, 1.6, Ins $\boldsymbol{H}), 4.43(1 \mathrm{H}, \mathrm{dt}, J 3.7,1.6$, Ins $\boldsymbol{H}), 4.13(1 \mathrm{H}, \mathrm{ddt}, J$ 12.7, 5.7, 1.7, ОСННСНCH 2), $4.10(1 \mathrm{H}, \mathrm{t}, J 1.4$, Ins $2-\boldsymbol{H})$, $4.04\left(1 \mathrm{H}, \mathrm{ddt}, J 12.7,5.7,1.7\right.$, ОСННСНCH ${ }_{2}$) ppm; $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.13,137.77,137.18(3 \times \mathrm{Ar} \mathrm{C}), 134.13$ ${ }_{70}\left(\mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right), 129.39,128.42$ (4C), 128.00 (2C), 127.94 (2C), 127.84, 127.75, 127.54 (2C), 125.39 (2C) ($15 \times \mathrm{Ar} \mathrm{CH}$), $117.56\left(\mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right), 107.85\left(\mathrm{PhCO}_{3}\right), 73.83,72.06,71.92$ $(3 \times$ Ins $\boldsymbol{C H}), 71.49,71.29,70.71\left[\left(2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right)+\right.$ $\left.\mathrm{OCH}_{2} \mathrm{CHCH}_{2}\right], 69.05,66.34,60.41(3 \times$ Ins $\boldsymbol{C H}) \mathrm{ppm}$; HRMS $75(\mathrm{CI}+) \mathrm{m} / \mathrm{z}(\%)$ found $[\mathrm{M}+\mathrm{H}]^{+} 487.2130(100), \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{O}_{6}$ requires 487.2121 .

2,6-O-Dibenzyl-4-O-(prop-1-enyl)-myo-inositol 1,3,5-Oorthobenzoate. 2,6-O-Dibenzyl-4- O-allyl-myo-inositol 1,3,5${ }_{80} O$-orthobenzoate $(5.40 \mathrm{~g}, 11.1 \mathrm{mmol})$ was evaporated from MeCN $(3 \times 5 \mathrm{~mL})$, dissolved in DMSO (11 mL) and potassium t-butoxide ($2.50 \mathrm{~g}, 22.2 \mathrm{mmol}$) added. The solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h . The reaction was cooled, diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc. The ${ }_{85}$ organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(\times 4)$, then brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure. The title compound ($5.40 \mathrm{~g}, 100 \%$) was isolated as a yellow oil and used without further purification; R_{f} (hexane-EtOAc $1: 1 \mathrm{v} / \mathrm{v}$) $0.76 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3063,3033,2921,1729,1669$, ${ }_{90} 1496$ and $1453 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.61-7.68(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$ $\boldsymbol{H}), 7.22-7.46(13 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \boldsymbol{H}), 6.03(1 \mathrm{H}, \mathrm{dq}, J 6.1,1.7$, $\left.\mathrm{OCHCHCH}_{3}\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.67-4.62(1 \mathrm{H}, \mathrm{m}$, Ins H), $4.66(1 \mathrm{H}, \mathrm{d}, J 11.8$, OCHHPh $), 4.50(1 \mathrm{H}, \mathrm{d}, J 12.2$, ОСННРh $)$, 4.57-4.42 [5H, m, $(4 \times$ Ins $\left.\boldsymbol{H})+\mathrm{OCHCHCH}_{3}\right]$, ${ }_{95} 4.10(1 \mathrm{H}, \mathrm{t}, J 1.6$, Ins $2-\boldsymbol{H}), 1.39(3 \mathrm{H}, \mathrm{dd}, J 6.8,1.5$, $\left.\mathrm{OCHCHCH}_{3}\right) \quad \mathrm{ppm} ; \quad \delta_{\mathrm{C}} \quad\left(100 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad 143.26$ $\left(\mathrm{OCHCHCH}_{3}\right), 137.83,137.56,136.93(3 \times \mathrm{Ar} \mathrm{C}), 129.44$, 128.42 (2C), 128.34 (2C), 128.04 (2C), 127.93 (2C), 127.80 (2C), $127.54(2 \mathrm{C}), 125.36(2 \mathrm{C})(15 \times \mathrm{Ar} \mathrm{CH}), 107.83$ ${ }_{100}\left(\mathrm{PhCO}_{3}\right), 103.96\left(\mathrm{OCHCHCH}_{3}\right), 75.17,73.51,71.94,71.73$ (4 \times Ins $\boldsymbol{C H}), 71.45,71.10\left(2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 69.06,65.59(2 \times$ Ins $\mathrm{CH}), 14.17\left(\mathrm{OCHCHCH}_{3}\right) \mathrm{ppm}$; HRMS (CI+) $\mathrm{m} / \mathrm{z}(\%)$ found $[\mathrm{M}+\mathrm{H}]^{+} 487.2130(100) \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{O}_{6}$ requires 487.2121 .

2,6-O-Dibenzyl-myo-inositol 1,3,5-O-orthobenzoate (3a). 2,6-O-Dibenzyl-4- O-(prop-1-enyl)-myo-inositol $\quad 1,3,5-O-$ orthobenzoate ($17.41 \mathrm{~g}, 35.78 \mathrm{mmol}$) was taken up in MeCN $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. To the vigorously stirred solution was added p-toluene sulfonic acid ($680 \mathrm{mg}, 3.58 \mathrm{mmol}$). 110 After 48 h the reaction was quenched with triethylamine (1.5 mL) and concentrated under vacuum. The residue was taken up in EtOAc, then washed with sat. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}(\times 2)$ and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure. The crude material was 115 fractionated by chromatography on flash silica in a large sinter funnel. Elution with hexane-EtOAc $(1: 0 \rightarrow 1: 1 \mathrm{v} / \mathrm{v})$
afforded $3 \mathbf{b}(12.61 \mathrm{~g}, 79 \%)$ as a colourless oil; R_{f} (hexaneEtOAc 4:1 v/v) 0.16; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3408,3063,3033,2955$, 2931, 2875, 1711, 1496 and $1453 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.66-$ $7.19(15 \mathrm{H}, \mathrm{m}, 15 \times \mathrm{Ar} \boldsymbol{H}), 4.82(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{PhCHHO})$, $54.68(1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{PhCHHO}), 4.58-4.53[4 \mathrm{H}, \mathrm{m},(2 \times \mathrm{Ins}$ $\left.\mathrm{CH})+\mathrm{PhCH}_{2} \mathrm{O}\right], 4.50-4.47(2 \mathrm{H}, \mathrm{m}, 2 \times$ Ins CH$), 4.40-4.38$ ($1 \mathrm{H}, \mathrm{m}$, Ins CH), 3.94-3.93 ($1 \mathrm{H}, \mathrm{m}$, Ins CH), 3.63 (1 H , bs, Ins $\mathrm{OH}) \mathrm{ppm} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.81,136.79,135.93(3 \times$ Ar C), 129.46, 128.84 (2C), 128.75, 128.53 (2C), 128.11 (2C), ${ }_{10} 127.93(5 \mathrm{C}), 125.37(2 \mathrm{C})(15 \times \mathrm{Ar} \mathrm{CH}), 107.32\left(\mathrm{PhCO}_{3}\right)$, $74.46,73.41(2 \times$ Ins $\boldsymbol{C H}), 72.96\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 71.29($ Ins $\boldsymbol{C H})$, $70.99\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 68.67,67.94,65.07(3 \times$ Ins $C H) \mathrm{ppm}$; HRMS (ESI ${ }^{+}$) m/z (\%) found $[\mathrm{M}+\mathrm{H}]^{+} 447.1793$ (100), $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{6}$ requires 447.1808 .

2,4,6-O-Tribenzyl-myo-inositol $\mathbf{1 , 3 , 5 - O}$-orthobenzoate (3b). ${ }^{9}$ myo-Inositol $1,3,5-O$-orthobenzoate (2, $200 \mathrm{mg}, 0.75$ $\mathrm{mmol})$ was evaporated from $\mathrm{MeCN}(3 \times 2 \mathrm{~mL})$, taken up in DMF (2 mL) and cooled to $-15{ }^{\circ} \mathrm{C}$. Sodium hydride (60% 20 dispersion in mineral oil, $101 \mathrm{mg}, 2.63 \mathrm{mmol}$) was added portion-wise, the reaction stirred at $-15{ }^{\circ} \mathrm{C}$ for 30 min then warmed to rt and benzyl bromide ($313 \mu \mathrm{~L}, 2.63 \mathrm{mmol}$) was added drop-wise. The reaction was stirred at $60^{\circ} \mathrm{C}$ for 12 h then quenched by drop-wise addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and ${ }_{25}$ stirred for 30 min . The crude material was taken up in EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}(\times 3)$ then brine. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure. The crude material was fractionated by chromatography on flash silica in a large sinter funnel.
${ }_{30}$ Elution with hexane-EtOAc $(9: 1 \rightarrow 7: 3 \mathrm{v} / \mathrm{v})$ afforded the title compound ($338 \mathrm{mg}, 84 \%$) as a yellow oil; R_{f} (EtOAc-hexane, $1: 1 \mathrm{v} / \mathrm{v}) 0.76 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.67-7.63(2 \mathrm{H}, \mathrm{m}), 7.35-$ $7.24(18 \mathrm{H}, \mathrm{m})(20 \times \mathrm{Ar} \boldsymbol{H}), 4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.64(2 \mathrm{H}$, d, $J 11.6,2 \times$ OCHHPh $), 4.56-4.44(5 \mathrm{H}, \mathrm{m}, 5 \times \operatorname{Ins} \boldsymbol{H}), 4.51$
${ }_{35}(2 \mathrm{H}, \mathrm{d}, J 11.6,2 \times$ OCHHPh $), 4.14-4.12(1 \mathrm{H}, \mathrm{m}$, Ins $\boldsymbol{H}) \mathrm{ppm}$ [lit., ${ }^{9}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.60-7.71(2 \mathrm{H}, \mathrm{m}), 7.15-7.50(18 \mathrm{H}$, $\mathrm{m}), 4.37-4.80(11 \mathrm{H}, \mathrm{m}), 4.11(\mathrm{t}, 1 \mathrm{H}, \mathrm{t}, J 2) \mathrm{ppm}] ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 138.10, 137.70 (2C), 137.21 ($4 \times \mathrm{Ar} \boldsymbol{C}$), 129.47, 128.48 (5C), 128.13 (3C), 128.01 (3C), 127.88 (2C), 127.69 $40(4 \mathrm{C}), 125.45(2 \mathrm{C})(20 \times \mathrm{Ar} \mathrm{CH}), 107.93\left(\mathrm{PhCO}_{3}\right), 74.07(2 \mathrm{C})$, $71.98(2 \mathrm{C})(4 \times$ Ins $\boldsymbol{C H}), 71.68(2 \mathrm{C}), 71.28\left(3 \times \mathrm{OCH}_{2} \mathrm{Ph}\right)$, 69.11, $66.20(2 \times \operatorname{Ins} \mathbf{C H}) \mathrm{ppm}$; MS $\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}(\%)$ found $[\mathrm{M}+\mathrm{H}]^{+} 537$ (100), $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 551$ (8).
${ }_{4}$ 2,6-O-Dibenzyl-4-O-(tert-butyldimethylsilyl)-myo-inositol 1,3,5-O-orthobenzoate (3c). 2,6-O-Dibenzyl-myo-inositol $1,3,5-O$-orthobenzoate ($300 \mathrm{mg}, 0.672 \mathrm{mmol}$) and imidazole $(99 \mathrm{mg}, 1.478 \mathrm{mmol})$ were evaporated from $\mathrm{MeCN}(3 \times 1 \mathrm{~mL})$ then taken up in dry DMF (5 mL) and $\mathrm{Et}_{3} \mathrm{~N}(93 \mu \mathrm{~L}, 0.672$ ${ }_{50} \mathrm{mmol}$) added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, before adding $\mathrm{TbdmsCl}(0.152 \mathrm{~g}, 1.008 \mathrm{mmol})$. The temperature was then raised to $100^{\circ} \mathrm{C}$ and the reaction stirred for 48 h . The reaction was quenched with water (1 mL), stirred for a further 20 min and the solvent evaporated under reduced pressure. The ${ }_{55}$ residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. NaHCO_{3}, water, then brine. The organic layer was dried $\left(\mathrm{Mg}_{2} \mathrm{SO}_{4}\right)$, filtered and the filtrate evaporated to dryness under reduced pressure. The residue was fractionated by
chromatography on flash silica. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ${ }_{60}(1: 9 \rightarrow 1: 1 \mathrm{v} / \mathrm{v})$ afforded the title compound ($286 \mathrm{mg}, 76 \%$) as an oil; $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane, $\left.2: 1 \mathrm{v} / \mathrm{v}\right) 0.55 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl3) 7.72-7.67 ($2 \mathrm{H}, \mathrm{m}$), 7.47-7.43 ($2 \mathrm{H}, \mathrm{m}$), 7.40-7.29 (9 H , m), $7.28-7.22(2 \mathrm{H}, \mathrm{m})(15 \times \mathrm{Ar} \boldsymbol{H}), 4.77(1 \mathrm{H}, \mathrm{d}, J 12.6$, CHHPh), $4.73(1 \mathrm{H}, \mathrm{d}, J 12.6, \mathrm{CHHPh}), 4.65(1 \mathrm{H}, \mathrm{td}, J 3.8$, ${ }_{65}$ 1.7, Ins \boldsymbol{H}), 4.64 ($1 \mathrm{H}, \mathrm{d}, J$ 11.8, CHHPh), 4.51-4.49 (1H, m, Ins $\boldsymbol{H}), 4.49(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH} \boldsymbol{H P h}), 4.44(1 \mathrm{H}, \operatorname{td}, J 3.7,1.6$, Ins $\boldsymbol{H}), 4.38-4.33(2 \mathrm{H}, \mathrm{m}, 2 \times \operatorname{Ins} \boldsymbol{H}), 4.12(1 \mathrm{H}, \mathrm{t}, J 1.5$, Ins $2-$ H), $\left.0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.06(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})_{2}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.08,137.76,137.27(3 \times \mathrm{Ar} \mathrm{C}), 129.36$, 70128.50 (2C), 128.36 (2C), 128.11 (2C), 127.96 (2C), 127.85, 127.77, 127.57 (2C), $125.43(15 \times \mathrm{Ar} \mathrm{CH}), 107.67\left(\mathrm{PhCO}_{3}\right)$, 74.29, 74.14, $72.03(3 \times$ Ins $\boldsymbol{C H}), 71.45\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 71.20($ Ins $\boldsymbol{C H}), 71.00\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 68.28,65.34(2 \times \mathrm{Ins} \boldsymbol{C H}), 25.56$ $\left(\mathrm{SiCMe}_{3}\right), 17.83\left(\mathrm{SiCMe}_{3}\right),-4.77,-5.07\left(\mathrm{SiMe}_{2}\right) \mathrm{ppm} ;$ HRMS ${ }_{75} \mathrm{ES}+$) m / z (\%) found $[\mathrm{M}+\mathrm{H}]^{+} 561.2677$ (83), $\left[\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{Si}^{+}\right.$ requires $561.2672 ; \quad[\mathrm{M}+\mathrm{K}]^{+} 599.2251 \quad(25), \quad[\mathrm{M}+\mathrm{Na}]^{+}$ 583.2501 .

2,6-O-Dibenzyl-4-O-tert-butyldiphenylsilyl-myo-inositol

${ }_{80} \mathbf{1 , 3 , 5}-\mathrm{O}$-orthobenzoate (3d). 2,6-O-Dibenzyl-myo-inositol $1,3,5-O$-orthobenzoate $(\mathbf{3 b}, \quad 500 \mathrm{mg}, \quad 1.12 \mathrm{mmol})$ and imidazole ($164 \mathrm{mg}, 2.46 \mathrm{mmol}$) were evaporated from MeCN $(3 \times 1 \mathrm{~mL})$ then taken up in dry DMF (3 mL) and $\mathrm{Et}_{3} \mathrm{~N}(155$ $\mu \mathrm{L}, 1.12 \mathrm{mmol}$) was added. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$, ${ }_{85}$ before adding $\mathrm{TbdpsCl}(1.16 \mathrm{~mL}, 4.48 \mathrm{mmol})$. The reaction was heated to $100^{\circ} \mathrm{C}$ and stirred for 72 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, stirred for a further 20 min and the solvent was evaporated. The remaining solids were taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with sat. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ 90 and then brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate evaporated to dryness. The residue was fractionated by chromatography on flash silica, eluting with EtOAc-hexane ($1: 9 \mathrm{v} / \mathrm{v}$), followed by sublimation of the residual TbdpsOH contaminant (oil pump, heat gun) to give ${ }_{95} \mathbf{3 d}\left(645 \mathrm{mg}, 84 \%\right.$) as fine white crystals; R_{f} (hexane-EtOAc, $4: 1 \mathrm{v} / \mathrm{v}) 0.52 ; \mathrm{mp} 129-131{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); Found C, $75.5 ; \mathrm{H}, 6.5 . \mathrm{C}_{43} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}$ requires $\mathrm{C}, 75.4 ; \mathrm{H}, 6.5 \%$; $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71-7.67(2 \mathrm{H}, \mathrm{m}), 7.66-7.63(4 \mathrm{H}, \mathrm{m}), 7.52-7.47$ $(4 \mathrm{H}, \mathrm{m}), 7.46-7.32(13 \mathrm{H}, \mathrm{m}), 7.31-7.27(2 \mathrm{H}, \mathrm{m})(25 \times \mathrm{Ar} \boldsymbol{H})$, $1004.70(1 \mathrm{H}, \mathrm{td}, J 3.9,1.7$, Ins $\boldsymbol{H}), 4.70(1 \mathrm{H}, \mathrm{d}, J$ 12.2, OCHHPh $), 4.67(1 \mathrm{H}, \mathrm{d}, J 12.6$, OCHHPh $), 4.60(1 \mathrm{H}, \mathrm{d}, J$ 12.0, OCHHPh), $4.48(1 \mathrm{H}, \mathrm{dq}, J 3.9,1.9$, Ins $\boldsymbol{H}), 4.48(1 \mathrm{H}, \mathrm{d}$, $J 12.0$, ОСННРh $), 4.39(1 \mathrm{H}, \mathrm{td}, J 3.7,1.6$, Ins $\boldsymbol{H}), 4.24(1 \mathrm{H}$, $\mathrm{tt}, J 3.5,1.7$, Ins $5-\boldsymbol{H}), 4.22(1 \mathrm{H}, \mathrm{t}, J 1.7$, Ins $2-\boldsymbol{H}), 4.19(1 \mathrm{H}$, ${ }_{105} \mathrm{dq}, J 3.9,1.9$, Ins $\left.\boldsymbol{H}\right), 0.97\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, CDCl_{3}) 138.09, $137.68,137.16$ ($3 \times \mathrm{Ar}$ C), 135.81 (2C), $135.73(2 \mathrm{C})(4 \times \mathrm{Ar} \mathrm{CH}), 133.16,133.06(2 \times \mathrm{Ar} \boldsymbol{C}), 130.17$, 130.10, 129.38, 128.51 (2C), 128.49 (2C), 128.19 (2C), 127.94 (4C), 127.85 (4C), 127.76 (2C), 125.41 (2C) ($21 \times \mathrm{Ar}$ $\left.{ }_{110} \boldsymbol{C H}\right), 107.61\left(\mathrm{PhCO}_{3}\right), 74.39,73.61(2 \times$ Ins $\boldsymbol{C H}), 72.05$ $\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 72.05($ Ins CH$), 70.99\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 70.91,68.72$, $65.33(3 \times$ Ins $\boldsymbol{C H}), 26.84\left(\mathrm{SiCCH}_{3}\right), 19.14\left(\mathrm{Me}_{3} \mathbf{C S i}\right) \mathrm{ppm}$; HRMS (TOF ES ${ }^{+}$) m / z (\%) found $[\mathrm{M}+\mathrm{H}]^{+} 685.2970$ (100), $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{Si}$ requires 685.2985; [M+K] 748.3071 (32), $115[\mathrm{M}+\mathrm{Na}]^{+} 707.2792$ (94).

2,4-O-Bis[2,7-dibromo-9-(3-trifluoromethylphenyl)

 xanthen-9-yl]-myo-inositol 1,3,5-O-orthobenzoate (8). To myo-inositol orthobenzoate ($2,99 \mathrm{mg}, 0.37 \mathrm{mmol}$) in MeCN (2 mL) was added a solution of 9-chloro-2,7-dibromo-9-(35 trifluoromethylphenyl)xanthene $(0.574 \mathrm{~g}, \quad 1.1 \mathrm{mmol})$ in pyridine-MeCN ($10 \mathrm{~mL}, 1: 1 \mathrm{v} / \mathrm{v}$). The reaction was refluxed for 6.5 h , then cooled to rt and quenched with $\mathrm{H}_{2} \mathrm{O}$. After 30 min the solvent was stripped off and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution was washed with sat. $\mathrm{NaHCO}_{3}(\times 2)$, 10 then brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent evaporated under reduced pressure. The resultant pale yellow solids were triturated with hexane, discarding the filtrate. This material $(0.336 \mathrm{~g})$ was crystallised from $\mathrm{EtOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the title compound ($248 \mathrm{mg}, 46 \%$) as fine crystallites; $R_{\mathrm{f}}\left(\mathrm{CHCl}_{3}\right.$ ${ }_{15}$ hexane, $\left.7: 3 \mathrm{v} / \mathrm{v}\right) 0.41$; $\mathrm{mp}>250{ }^{\circ} \mathrm{C}\left(\mathrm{EtOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Found: C, 51.72; H, 2.50. $\mathrm{C}_{53} \mathrm{H}_{32} \mathrm{Br}_{4} \mathrm{~F}_{6} \mathrm{O}_{8}$ requires $\mathrm{C}, 51.73$; $\mathrm{H}, 2.62$ $\%$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.92(1 \mathrm{H}, \mathrm{bs}), 7.66-7.61(4 \mathrm{H}, \mathrm{m})$, 7.58-7.37 (7H, m), 7.36-7.28 (8H, m), 7.15-7.12 (3H, m), 7.09 $(1 \mathrm{H}, \mathrm{d}, J 2.3), 6.71(1 \mathrm{H}, \mathrm{d}, J 2.3)(25 \mathrm{Ar} \boldsymbol{H}), 4.25(1 \mathrm{H}, \mathrm{m}$, ${ }_{20} \mathrm{ex} \rightarrow \mathrm{td}, J 4.0,1.8$, Ins $\left.6-\boldsymbol{H}\right), 4.04(1 \mathrm{H}, \mathrm{t}, J 1.8$, Ins $2-\boldsymbol{H}), 3.98$ $(1 \mathrm{H}, \mathrm{td}, J 4.0,1.8$, Ins $4-\boldsymbol{H}), 3.65(1 \mathrm{H}, \mathrm{dq}, J 4.0,1.8$, Ins $\boldsymbol{H})$, $3.40(1 \mathrm{H}, \mathrm{dq}, J 4.0,1.8$, Ins $\boldsymbol{H}), 3.14(1 \mathrm{H}, \mathrm{tt}, J 3.7,1.5$, Ins $5-$ H), $2.58(1 \mathrm{H}, \mathrm{d}, J 8.4$, ex, Ins $\mathbf{O H}) \mathrm{ppm} ; \delta_{\mathrm{C}}(90.6 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 150.16,149.99,149.77,149.56,147.74,146.82$, ${ }_{25} 136.50(7 \times \operatorname{Ar} \mathrm{C}), 134.21,134.03,133.74$ (2C), 133.36, $133.09,132.92,131.37(8 \times \mathrm{Ar} C H), 130.67(2 \mathrm{C}, \mathrm{q}, J 32.3,2$ $\left.\times \mathrm{CCF}_{3}\right), 130.74,129.63,129.31,129.00,128.86,128.14$ (2C), 125.11 (2C) $(9 \times \mathrm{Ar} C H), 125.00(\mathrm{q}, J 3.5), 124.63$ (q, J 3.6) $\left(2 \times \mathrm{Ar} \mathrm{CHCCF}_{3}\right), 124.04(\mathrm{Ar} \boldsymbol{C}), 124.01(\mathrm{q}, J 272.3$, ${ }_{30} \boldsymbol{C F}_{3}$), $123.80(\mathrm{Ar} \boldsymbol{C}), 123.79\left(\mathrm{q}, J 272.6, \boldsymbol{C F}_{3}\right), 123.70-123.53$ ($2 \mathrm{C}, \mathrm{m}, 2 \times \mathrm{Ar} \mathrm{CHCCF}_{3}$), 123.05, $121.88(2 \times \mathrm{Ar} \mathrm{C}), 119.15$, $119.08,118.59,118.49(4 \times \mathrm{Ar} \mathrm{CH}), 116.76,116.73,116.40$, $116.13(4 \times \mathrm{Ar} \boldsymbol{C}), 106.92\left(\mathrm{PhCO}_{3}\right), 77.46,75.45\left(2 \times \mathrm{Ar}_{3} \mathrm{CO}\right)$, 73.92, 73.70, 69.56, 68.80, 67.35, $61.66(6 \times$ Ins $C H$) ppm; ${ }_{35} \mathrm{MS}\left(\mathrm{ESI}^{+}\right) m / z(\%)$ found $[\mathrm{M}+\mathrm{H}]^{+} 1230.9$ (44).2-O-[2,7-Dibromo-9-(3-trifluoromethylphenyl)xanthen-9-yl]-myo-inositol 1,3,5-O-orthobenzoate (9). Method A: A solution of 2,4-di-Dtpx myo-inositol orthobenzoate (8, 122 $\left.{ }_{40} \mathrm{mg}, 0.099 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was cooled to $-20^{\circ} \mathrm{C}$ and DIBAL-H (1 M in hexanes, $0.6 \mathrm{~mL}, 0.60 \mathrm{mmol}$) was added. After 30 min a solution of sat. sodium potassium tartrate was added followed by sufficient $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to allow efficient mixing, and vigorous stirring continued for 1 h . The organic ${ }_{45}$ layer was separated, washed with sat. $\mathrm{NaHCO}_{3}(\times 2)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent evaporated under reduced pressure. The residual gum (131 mg) was fractionated by medium pressure silica column chromatography. Elution with hexane$\mathrm{CHCl}_{3}(1: 0 \rightarrow 0: 1 \mathrm{v} / \mathrm{v})$, and then $\mathrm{MeOH}-\mathrm{CHCl}_{3}(0: 1 \rightarrow 1: 9$ ${ }_{50} \mathrm{v} / \mathrm{v}$) afforded 9 ($70 \mathrm{mg}, 94 \%$). Method B: myo-Inositol orthobenzoate ($2,85 \mathrm{mg}, 0.32 \mathrm{mmol}$) was evaporated from pyridine ($3 \times 1 \mathrm{~mL}$), then re-dissolved in pyridine (2 mL) and to this was added 9-chloro-2,7-dibromo-9-(3trifluoromethylphenyl)xanthene $(0.323 \mathrm{~g}, 0.62 \mathrm{mmol})$ and the ${ }_{55}$ reaction was stirred at rt for 18 h . The next day EtOH (5 mL) was added and the solvent stripped off under reduced pressure. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent evaporated
under reduced pressure, re-evaporating from $\mathrm{EtOH}(\times 2)$. The ${ }_{60}$ residue was triturated with hexane and the filtrate discarded. The crude material (0.198 g) was fractionated by medium pressure silica column chromatography. Elution with hexane$\mathrm{CHCl}_{3}(1: 0 \rightarrow 0: 1 \mathrm{v} / \mathrm{v})$ afforded $9(179 \mathrm{mg}, 75 \%)$ as a colourless amorphous solid; $R_{\mathrm{f}}\left(\mathrm{EtOH}-\mathrm{CHCl}_{3}, 1: 19 \mathrm{v} / \mathrm{v}\right) 0.42$; ${ }_{65} \mathrm{mp} 97-99{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.96(1 \mathrm{H}, \mathrm{bs}), 7.74-7.72$ $(2 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{bd}, J 7.8), 7.58(1 \mathrm{H}, \mathrm{bd}, J 7.7), 7.49-7.41$ $(6 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{d}, J 2.4), 7.14(2 \mathrm{H}, \mathrm{d}, J 8.8)(15 \times \mathrm{Ar} \boldsymbol{H})$, $3.80(2 \mathrm{H}, \mathrm{t}, J 4.0$, Ins $4-\boldsymbol{H}+$ Ins $6-\boldsymbol{H}), 4.22(1 \mathrm{H}, \mathrm{tt}, J 3.8,1.5$, Ins $5-\boldsymbol{H}), 3.80(1 \mathrm{H}, \mathrm{t}, J 1.9$, Ins $2-\boldsymbol{H}), 3.73(2 \mathrm{H}, \mathrm{dt}, J 4.6,1.7$, ${ }_{70}$ Ins $1-\boldsymbol{H}+$ Ins $\left.3-\boldsymbol{H}\right), 3.09(2 H$, bs, ex, Ins $4-\mathrm{OH}+$ Ins $6-\mathrm{OH})$ ppm; $\delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) 149.57 (2C), $148.64,137.60$ $(4 \times \operatorname{Ar} C), 133.56(2 \mathrm{C}), 131.81$ (2C), 131.52, 129.82, 129.27 $(7 \times \operatorname{ArCH}), 128.96\left(\mathrm{q}, J 31.8\right.$, CCF $\left._{3}\right), 127.74(2 \mathrm{C}), 125.29$ (2C) $(4 \times \operatorname{Ar} \boldsymbol{C H}), 124.56\left(\mathrm{q}, J 3.1, \operatorname{Ar} \mathrm{CHCCF}_{3}\right), 124.13(\mathrm{q}, J$ $\left.75272.4, \mathrm{CF}_{3}\right), 123.52(2 \times \mathrm{Ar} \boldsymbol{C}), 121.84\left(\mathrm{q}, J 3.3, \mathrm{Ar} \mathrm{CHCCF}_{3}\right)$, $119.37(2 \times \mathrm{Ar} \boldsymbol{C H}), 115.39(2 \times \mathrm{Ar} \boldsymbol{C}), 106.32\left(\mathrm{PhCO}_{3}\right)$, 74.77 [3C, $(2 \times \operatorname{Ins} \boldsymbol{C H})+\mathrm{Ar}_{3} \mathrm{CO}$], 69.87, 66.52 (2C), 61.50 $(4 \times$ Ins $C H) \mathrm{ppm}$; HRMS $\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}(\%)$ found $[\mathrm{M}+\mathrm{H}]^{+}$ 746.9829 (49), $\mathrm{C}_{33} \mathrm{H}_{24}{ }^{79} \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{O}_{7}$ requires 746.9841.

80
2,6-O-Dibenzyl-inos-4-ose $\mathbf{1 , 3 , 5} \mathbf{- O}$-orthobenzoate. 2,6- O -Dibenzyl-myo-inositol 1,3,5-O-orthobenzoate (3a) (2.00 g, $4.47 \mathrm{mmol})$ was evaporated from $\mathrm{MeCN}(3 \times 5 \mathrm{~mL})$ and taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Dess Martin periodinane ($3.80 \mathrm{~g}, 4.94$ ${ }_{85} \mathrm{mmol}$) was added portion-wise and the suspension stirred for 3 h . Aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \% \mathrm{w} / \mathrm{v})$ was added and stirring continued for 10 min . The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(\times 2)$, and the combined organic layers washed successively with sat. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine, before drying $\left(\mathrm{MgSO}_{4}\right)$ and ${ }_{90}$ evaporation to dryness under reduced pressure. The crude inos-4-ose ($1.98 \mathrm{~g}, 100 \%$, pale yellow oil) was used without further purification; R_{f} (hexane-acetone, $7: 3 \mathrm{v} / \mathrm{v}$) 0.21 ; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3064,3033,2969,2873,17661454$ and 1342; δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.68-7.63 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \boldsymbol{H}$), 7.43-7.20 $(12 \mathrm{H}$, $\left.{ }_{95} \mathrm{~m}, \mathrm{Ar} \boldsymbol{H}\right), 4.81-4.45\left[8 \mathrm{H}, \mathrm{m},(4 \times \operatorname{Ins} \boldsymbol{H})+\left(2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right)\right]$, 3.82-3.81 $(1 \mathrm{H}, \mathrm{m}, \operatorname{Ins} \boldsymbol{H}) \mathrm{ppm} ; ~ \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.01$ (Ins $\boldsymbol{C}=0$), $137.14,136.33,135.66(3 \times \mathrm{Ar} \boldsymbol{C}$), 129.80, 128.67 (2C), 128.58 (2C), $128.45,128.11,128.05$ (2C), 127.94 (2C), 127.89 (2C), $125.49(2 \mathrm{C})(15 \times \mathrm{Ar} C \mathrm{C}), 108.04\left(\mathrm{O}_{3} \mathbf{C P h}\right)$, 100 79.77, 77.40, $71.95(3 \times$ Ins $C H), 71.76,71.49\left(2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right)$, 70.46, $70.38(2 \times \operatorname{Ins} C H) \mathrm{ppm}$; HRMS $\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}(\%)$ found $[\mathrm{M}+\mathrm{H}]^{+} 445.1666(100), \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{6}$ requires 445.1651 .

2,6-O-Dibenzyl-4-C-methyl-myo-inositol 1,3,5-O-
${ }_{105}$ orthobenzoate (10). Crude 2,6-O-Dibenzyl-inos-4-ose 1,3,5-O-orthobenzoate $(1.00 \mathrm{~g}, 2.25 \mathrm{mmol})$ was evaporated from $\mathrm{MeCN}(3 \times 4 \mathrm{~mL})$, taken up in diethyl ether (10 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. Methylmagnesium bromide (3 M in ether, $0.9 \mathrm{~mL}, 2.7 \mathrm{mmol}$) was added drop-wise and the solution
${ }_{110}$ stirred for 30 min before warming to rt . After 3 h the reaction was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 2)$. The organic layers were washed with 0.1 M HCl , sat. NaHCO_{3} and brine, before drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporating to dryness under reduced pressure. The crude 115 material $(0.98 \mathrm{~g})$ was fractionated by chromatography on flash silica. Elution with ether-hexane ($1: 9 \rightarrow 4: 6 \mathrm{v} / \mathrm{v}$) afforded 10
($0.53 \mathrm{~g}, 77 \%$ over 2 steps) as a clear oil; R_{f} (hexane-ether, 3:7 $\mathrm{v} / \mathrm{v}) 0.69 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3478,3064,3032,2927,1723$, 1496 and $1455 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.68-7.66(2 \mathrm{H}, \mathrm{m})$, 7.46-7.34 $(11 \mathrm{H}, \mathrm{m}) 7.24-7.22(2 \mathrm{H}, \mathrm{m})(15 \times \mathrm{Ar} \boldsymbol{H}), 4.82(1 \mathrm{H}$, $\left.{ }_{5} \mathrm{~d}, J 12.5,2-\mathrm{OCHHPh}\right), 4.69(1 \mathrm{H}, \mathrm{d}, J 12.5,2-\mathrm{OCHHPh}), 4.63$ ($1 \mathrm{H}, \mathrm{d}, J 11.6,6-\mathrm{OCHHPh}), 4.57(1 \mathrm{H}, \mathrm{d}, J 11.6,6-\mathrm{OCHHPh})$, $4.53(1 \mathrm{H}, \mathrm{t}, J 3.9$, Ins 6-H), $4.46(1 \mathrm{H}, \mathrm{dq}, J 3.6,1.7$, Ins $1-\boldsymbol{H})$, $4.32(1 \mathrm{H}$, bs, Ins $4-\mathrm{OH}), 4.19(1 \mathrm{H}$, dt, $J 3.7,1.8$, Ins $3-\boldsymbol{H})$, $4.04(1 \mathrm{H}, \mathrm{dt}, J 3.8,1.9$, Ins $5-\boldsymbol{H}), 4.01(1 \mathrm{H}, \mathrm{t}, J 1.8$, Ins $2-\boldsymbol{H})$, ${ }_{10} 1.67\left(3 \mathrm{H}, \mathrm{s}\right.$, Ins $\left.4-\mathrm{CH}_{3}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.89$, 136.94, $135.67(3 \times \operatorname{Ar} \boldsymbol{C}), 129.44,128.84$ (2C), 128.75, 128.51 (2C), 128.10 (2C), 127.97 (2C), 127.93 (3C), 127.88 , $125.35(15 \times \mathrm{Ar} \boldsymbol{C H}), 107.31\left(\mathrm{O}_{3} \mathbf{C P h}\right), 77.29,74.67(2 \times \mathrm{Ins}$ $\boldsymbol{C H}), 72.96\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 72.89(\operatorname{Ins} \boldsymbol{C H}), 71.04\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$, 1570.66 (Ins $\boldsymbol{C H}$), 69.58 (Ins \boldsymbol{C}), 66.20 (Ins $\boldsymbol{C H}$), 24.27 (Ins 4CH_{3}) ppm; HRMS (ESI+) m/z (\%) found $[\mathrm{M}+\mathrm{H}]^{+} 461.1959$ (100), $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{O}_{6}$ requires 461.1964 .

1,3,4,5-O-Tetraacetyl-2,6-O-dibenzyl-4-C-methyl-myo-

${ }_{20}$ inositol. 2,6-O-Dibenzyl-4-C-methyl-myo-inositol (14, 60 $\mathrm{mg}, 0.16 \mathrm{mmol})$ and DMAP ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) were evaporated from pyridine ($3 \times 1 \mathrm{~mL}$) and taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$. Acetic anhydride ($127 \mu \mathrm{~L}, 1.28 \mathrm{mmol}$) and triethylamine ($267 \mu \mathrm{~L}, 1.92 \mathrm{mmol}$) were added and the ${ }_{25}$ reaction mixture stirred for 2 h . The reaction was quenched by drop-wise addition of $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and stirred for a further 30 min before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $\mathrm{H}_{2} \mathrm{O}$, then brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure. The crude material was fractionated 30 by chromatography on flash silica. Elution with EtOAchexane ($0: 1 \rightarrow 7: 10 \mathrm{v} / \mathrm{v}$) afforded the title compound (45 mg , 52%) as a colourless oil; $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.90 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.41-7.25(10 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{Ar} \boldsymbol{H}), 6.14(1 \mathrm{H}, \mathrm{d}, J 3.6 \mathrm{Ins}$ $3-\boldsymbol{H}), 6.03(1 \mathrm{H}, \mathrm{d}, J 9.6$, Ins $5-\boldsymbol{H}), 5.09(1 \mathrm{H}$, dd, $J 11.2,2.8$, ${ }_{35}$ Ins $\left.1-\mathrm{H}\right), 4.72-4.61\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.18(1 \mathrm{H}, \mathrm{t}, J 3.2$, Ins $2-H), 3.99(1 \mathrm{H}, \mathrm{t}, J 10.0$, Ins $6-H), 2.08(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}$, s), $1.96(3 \mathrm{H}, \mathrm{s}), 1.91(3 \mathrm{H}, \mathrm{s})(4 \times$ OCOMe $), 1.59(3 \mathrm{H}, \mathrm{s}$, Ins $4-$ Me) $\mathrm{ppm} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.31,169.70,169.58$, $169.35(4 \times \mathrm{OCOMe}), 138.24,137.99(2 \times \mathrm{Ar} \boldsymbol{C}), 128.39$
40 (2C), 128.33 (2C), 127.83, 127.64 (2C), 127.56, 127.25 (2C) $(10 \times \mathrm{Ar} \boldsymbol{C H}), 84.52($ Ins $4-\mathrm{C}), 76.77,76.21(2 \times$ Ins $\boldsymbol{C H})$, 75.55, $74.97\left(2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 72.86,72.48,70.32(3 \times$ Ins CH$)$, 22.33, 20.78, 20.74, 20.71 ($4 \times$ OCOMe), 17.42 (Ins 4-CMe) ppm.

45
${ }^{45} \mathbf{C a}^{2+}$ Flux Assay. L15 cells were obtained by stable exogenous expression of $\mathrm{IP}_{3} \mathrm{R} 1$ in L fibroblasts. ${ }^{19}$ The cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% foetal calf serum, 3.8 mM L -
${ }_{50}$ glutamine, $0.9 \%(\mathrm{v} / \mathrm{v})$ non-essential amino acids, $85 \mathrm{IU} / \mathrm{mL}$ penicillin, $85 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and 20 mM HEPES, pH 7.4. ${ }^{45} \mathrm{Ca}^{2+}$ fluxes were performed on saponin-permeabilized cells. ${ }^{20}$ The cells were seeded in 12 -well clusters (Costar, Cambridge, MA) at a density of approximately $4 \times 10^{4} \mathrm{~cm}^{2}$.
${ }_{55}$ Experiments were carried out on confluent monolayers of cells at the seventh day after plating. The cells were permeabilized by incubating them for 10 min with a solution containing $120 \mathrm{mM} \mathrm{KCl}, 30 \mathrm{mM}$ imidazole hydrochloride, pH
$6.8,2 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ ATP, 1 mM EGTA, and $40 \mu \mathrm{~g} / \mathrm{mL}$ 60 saponin at $30{ }^{\circ} \mathrm{C}$. The non-mitochondrial Ca^{2+} stores were loaded for 45 min at $30^{\circ} \mathrm{C}$ in $120 \mathrm{mM} \mathrm{KCl}, 30 \mathrm{mM}$ imidazole hydrochloride, $\mathrm{pH} 6.8,5 \mathrm{mM} \mathrm{MgCl}_{2}, 5 \mathrm{mM}$ ATP, 0.44 mM EGTA, $10 \mathrm{mM} \mathrm{NaN}_{3}$, and 150 nM free ${ }^{45} \mathrm{Ca}^{2+}(28 \mu \mathrm{Ci} / \mathrm{mL})$. The cells were then washed twice with 1 mL of efflux medium ${ }_{65}$ containing $120 \mathrm{mM} \mathrm{KCl}, 30 \mathrm{mM}$ imidazole hydrochloride, pH 6.8, 1 mM EGTA, and $10 \mu \mathrm{M}$ thapsigargin. The efflux medium was replaced every 2 min , and the efflux was performed at $30^{\circ} \mathrm{C}$. At the end of the experiment, the ${ }^{45} \mathrm{Ca}^{2+}$ remaining in the stores was released by incubation with 1 mL 70 of a 2% sodium dodecyl sulfate solution for $30 \mathrm{~min} . \mathrm{Ca}^{2+}$ release is plotted as the fractional loss (i.e., the amount of Ca^{2+} released in 2 min divided by the total store Ca^{2+} content at that time). The latter value was calculated by summing in retrograde order the amount of tracer remaining in the cells at 75 the end of the efflux and the amounts of tracer collected during the successive time intervals. The Ca^{2+} release provoked by IP_{3} and $4-C$-methyl IP_{3} was normalized to the maximal releasable Ca^{2+}, measured by the addition of $10 \mu \mathrm{M}$ A23187.

