Supporting Information

A versatile approach to oligostilbenoid natural products – synthesis of permethylated analogues of viniferifuran, malibatol A, and

shoreaphenol

Ikyon Kim,* and Jihyun Choi

Medicinal Chemistry Research Center, Korea Research Institute of Chemical

Technology

Daejeon 305-600, Republic of Korea

* Corresponding author. Tel.: +82 42 860 7177; fax: +82 42 860 7160; e-mail:

ikyon@krict.re.kr

Table of Contents

¹H and ¹³C spectra of compounds **1~6**, **8**, **11~18** Comparison of spectral data of **1~3** with those of the same compounds derived from the natural products Crystallographic details for **5** and **11**

	600 MHz ¹ H NMR (CDCl ₃) of 1 derived
300 MHZ H NMR ($CDCI_3$) of synthetic 1	from the natural product
7.53 (2H, d, 9.0)	7.52 (2H, d, 9.2)
7.11 (1H, d, 2.1)	7.09 (1H, d, 2.2)
7.01 (2H, s)	7.01 (2H, d, 8.8)
7.04 (1H, s)	6.99 (1H, d, 2.2)
6 97 ()]]	6.87 (1H, d, 16.1)
6.87 (2H, s)	6.84 (1H, d, 16.1)
6.82 (2H, d, 8.7)	6.81 (2H, d, 9.2)
6.78 (2H, d, 8.7)	6.77 (2H, d, 8.8)
6.65 (2H, s)	6.65 (2H, d, 2.2)
6.63 (1H, t, 2.1)	6.62 (1H, t, 2.2)
3.92 (3H, s)	3.90 (3H, s)
3.82 (3H, s)	3.79 (3H, s)
3.80 (3H, s)	3.78 (3H, s)
3.74 (6H, s)	3.73 (6H, s)

Comparison of spectral data of 1~3 with those of the same compounds derived

from the natural products

700 MH $_{2}^{1}$ H NMP (CDCL) of synthetic 1	
700 WHZ II WWK (CDCI3) of Synthetic I	from the natural product
7.52 (2H, d, 8.9)	7.52 (2H, d, 9.2)
7.10 (1H, d, 2.1)	7.09 (1H, d, 2.2)
7.01 (2H, d, 8.7)	7.01 (2H, d, 8.8)
6.99 (1H, d, 2.1)	6.99 (1H, d, 2.2)
6.87 (1H, d, 16.3)	6.87 (1H, d, 16.1)
6.84 (1H, d, 16.3)	6.84 (1H, d, 16.1)
6.81 (2H, d, 8.9)	6.81 (2H, d, 9.2)
6.77 (2H, d, 8.7)	6.77 (2H, d, 8.8)
6.65 (2H, d, 2.3)	6.65 (2H, d, 2.2)
6.63 (1H, t, 2.3)	6.62 (1H, t, 2.2)
3.91 (3H, s)	3.90 (3H, s)
3.79 (3H, s)	3.79 (3H, s)
3.78 (3H, s)	3.78 (3H, s)
3.74 (6H, s)	3.73 (6H, s)

600 MHz ¹H NMR (CDCl₃) of **1** derived

	from the natural product
161.7	161.4
159.5	159.2
159.4	159.1
158.3	158.0
155.2	154.9
150.0	149.7
137.2	136.9
132.3	132.0
130.5	130.1
128.8	128.5
127.9	127.6
127.8	127.5
123.8	123.5
123.4	123.1
122.3	122.0

150 MHz 13 C NMR (CDCl₃) of **1** derived 75 MHz 13 C NMR (CDCl₃) of synthetic **1**

20

116.6	116.3
114.2	113.9
114.1	113.8
108.8	108.5
106.9	106.6
100.7	100.4
95.1	94.8
56.1	55.8
55.7	55.4
55.5	55.3
55.4	55.2

300 MHz ¹ H NMR (CDCl ₃) of synthetic 2	300 MHz ¹ H NMR (CDCl ₃) of 2 derived
	from the natural product
7.62 (2H, d, 9.0)	7.61 (2H, d, 8.8)
7.12~7.10 (3H, m)	7.12 (1H, d, 2.0)
	7.11 (2H, d, 8.6)
6.94 (2H, d, 9.0)	6.93 (2H, d, 8.8)

6.79 (1H, d, 2.4)	6.78 (1H, d, 2.0)
6.72 (1H, d, 2.4)	6.71 (1H, d, 2.0)
6.52 (2H, d, 9.0)	6.51 (2H, d, 8.6)
6.41 (1H, d, 2.7)	6.41 (1H, d, 2.4)
5.57 (1H, d, 2.4)	5.57 (1H, br d)
5.40 (1H, d, 6.0)	5.40 (1H, br d)
3.85 (3H, s)	3.84 (3H, s)
3.83 (3H, s)	3.82 (3H, s)
3.81 (3H, s)	3.81 (3H, s)
3.60 (3H, s)	3.60 (3H, s)
3.46 (3H, s)	3.46 (3H, s)
2.59 (1H, d, 6.9)	4.89 (1H, br s)

$75 \text{ MHz}^{13} \text{CNMD}$ (CDCl) of sumthating 2	75 MHz ¹³ C NMR (CDCl ₃) of 2 derived
/5 MHz ² C NMR (CDCl ₃) of synthetic 2	from the natural product
160.2	160.0
158.8	158.5
158.5	158.2

158.3 158.1

- 157.7 157.4
- 154.2 153.9
- 151.1 150.8
- 137.5 137.2
- 134.4 134.1
- 132.0 131.7
- 130.5 130.2
- 129.8 129.5
- 124.6 124.3
- 122.1 121.9
- 118.2 117.9
- 116.5 116.3
- 114.2 113.9
- 113.3 113.0
- 108.4 108.2
- 106.2 106.0
- 98.3 98.0

94.1	1	93.8
73.8	8	73.5
56.2	2	55.6
55.9	9	55.1
55.6	6	54.9
55.2	2	54.9
55.1	1	54.9
47.9	9	47.6

200 MHz ¹ H NMD (CDCl) of super-	300 MHz ¹ H NMR (CDCl ₃) of 3 derived
300 MHz ^{$+$} H NMR (CDCl ₃) of synthetic 3	from the natural product
7.77 (2H, d, 9.0)	7.75 (2H, d, 8.8)
7.44 (1H, d, 2.1)	7.44 (1H, d, 2.1)
7.06 (1H, d, 2.1)	7.05 (1H, d, 2.1)
6.98 (2H, d, 8.7)	6.97 (2H, d, 8.8)
6.87 (2H, d, 8.7)	6.87 (2H, dd, 1.3, 8.3)
6.75 (1H, d, 2.1)	6.75 (1H, d, 2.6)
6.55 (2H, d, 8.7)	6.55 (2H, d, 8.3)

6.50 (1H, d, 2.4)	6.50 (1H, d, 2.6)
6.20 (1H, s)	6.20 (1H, br s)
3.89 (3H, s)	3.89 (3H, s)
3.88 (3H, s)	3.86 (3H, s)
3.87 (3H, s)	3.85 (3H, s)
3.61 (3H, s)	3.60 (3H, s)
3.52 (3H, s)	3.52 (3H, s)

75 MHz 13 C NMP (CDC1) of synthetic 3	75 MHz 13 C NMR (CDCl ₃) of 3 derived
/5 MHZ C NMR (CDCl ₃) of synthetic 5	from the natural product
196.3	196.0
160.9	160.6
159.9	159.7
159.2	159.0
158.0	157.7
157.9	157.6
154.2	154.0
153.1	152.9

134.3 134.1

- 130.8 130.5
- 130.4 130.2
- 130.2 129.9
- 127.8 127.6
- 123.5 123.2
- 122.7 122.4
- 116.5 116.2
- 116.1 115.8
- 114.4 114.2
- 113.5 113.3
- 109.9 109.7
- 105.8 105.5
- 101.5 101.2
- 98.8 98.6
- 56.4 56.2
- 56.3 56.1
- 55.6 55.4

55.3	55.0 (3C)
55.2	

Crystallographic details for 5 and 11

Crystal data and structure refinement for 3,4-dia	arylbenzofuran (5)	
Identification code	3,4-diarylbenzofuran (5)	
Empirical formula	C26 H24 O7	
Formula weight	448.45	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.6796(1) Å	= 81.579(1)°.
	b = 8.7072(1) Å	= 78.919(1)°.
	c = 17.3304(2) Å	= 87.911(1)°.
Volume	1124.94(2) Å ³	
Z	2	
Density (calculated)	1.324 Mg/m ³	
Absorption coefficient	0.096 mm ⁻¹	
F(000)	472	
Crystal size	0.42 x 0.38 x 0.21 mm ³	
Theta range for data collection	1.21 to 28.35°.	
Index ranges	-10<=h<=10, -11<=k<=11, -22<=l<=22	
Reflections collected	20569	
Independent reflections	5535 [R(int) = 0.0211]	
Completeness to theta = 28.35°	98.6 %	
Absorption correction	None	
Max. and min. transmission	0.9801 and 0.9607	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	5535 / 0 / 298	
Goodness-of-fit on F ²	1.046	
Final R indices [I>2sigma(I)]	R1 = 0.0439, wR2 = 0.1164	
R indices (all data)	R1 = 0.0615, $wR2 = 0.1284$	
Largest diff. peak and hole	0.161 and -0.229 e.Å ⁻³	

Crystal data and structure refinement for Benzofuran dimer (11)				
Identification code	benzofuran dimer (11)			
Empirical formula	C38 H34 O12			
Formula weight	682.65			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 7.5867(1) Å	= 79.655(1)°.		
	b = 7.9569(1) Å	$= 81.410(1)^{\circ}.$		
	c = 14.3677(2) Å	= 81.762(1)°.		
Volume	837.59(2) Å ³			
Z	1			
Density (calculated)	1.353 Mg/m ³			
Absorption coefficient	0.101 mm ⁻¹			
F(000)	358			
Crystal size	0.29 x 0.21 x 0.07 mm ³			
Theta range for data collection	1.45 to 28.30°.			
Index ranges	-10<=h<=8, -10<=k<=10, -19	0<=1<=19		
Reflections collected	15109			
Independent reflections	4103 [R(int) = 0.0269]			
Completeness to theta = 28.30°	98.5 %			
Absorption correction	None			
Max. and min. transmission	0.9929 and 0.9712			
Refinement method	Full-matrix least-squares on F	52		
Data / restraints / parameters	4103 / 0 / 227			
Goodness-of-fit on F ²	1.041			
Final R indices [I>2sigma(I)]	R1 = 0.0415, $wR2 = 0.1011$			
R indices (all data)	R1 = 0.0679, wR2 = 0.1141			
Extinction coefficient	0.019(3)			
Largest diff. peak and hole	0.202 and -0.144 e.Å ⁻³			