Supporting information for

Non Lewis acid catalyzed epoxide ring opening with amino acids

Christine Philippe, Thierry Milcent, Benoit Crousse*, Danièle Bonnet-Delpon

Laboratoire Biocis-CNRS, Faculté de Pharmacie, Univ. Paris-sud, rue J. B. Clément,

F-92296 Châtenay-Malabry, France

Benoît.crousse@u-psud.fr

Table of contents

General methods S1

Experimental procedures and characterisations S2-S14

1H and 13C NMR spectra S14-S33

General methods

Melting points were determined on a Stuart® SMP10 apparatus. ¹H and ¹³C NMR spectra were recorded on a Bruker® ARX 200 apparatus at respectively 300 and 75 MHz in CDCl₃. The following abbreviations are used for the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, oct = octuplet, m = multiplet, br s = broad singlet, dd = doublet doublet. Chemical shifts unit is ppm. Mass spectra were performed on a Bruker® Esquire-LC apparatus. IR spectra were recorded on a Bruker® Vector 22 apparatus. Microanalyses were done on an Ankersmit CAHN® 25 apparatus. Opical activity was determined on an Optical Activity LTD Automatic polarimeter polAAr 32 apparatus. TLC monitoring was performed with Merk® silica gel aluminium sheets (type 60 F₂₅₄). Visualization were performed under a SVL Bioblock Scientific lamp at 254 nm and/or by developing the plates with KMnO₄ solution followed by heating. Purifications were done by column chromatography at atmospheric pressure with Merk® silica gel (60 µm). Trifluoroethanol was purchased from Fluorochem. N-(2,3-Epoxypropyl)phtalimide, purchased from Aldrich, and Benzyl (R)-(-)-glycidyl ether, purchased from Alfa Aesar, were used after purification on silica gel. Unless otherwise noted, commercially available reagents were used without further purification.

Experimental procedure and characterisation of products 2-10

The *C*-protected amino acid salt (1.5 mmol) and potassium carbonate (2.5 mmol) were suspended in water (3 mL). The free amino acid was extracted with diethyl ether (3x15 mL). The organic phase was then dried with magnesium sulphate and concentrated under reduced pressure at ambient temperature. The free amino acid (2 eq.) was immediately diluted in 1.25 mL of trifluoroethanol. Then, epoxide (1 eq.) was added. The reaction mixture was stirred at reflux until the disappearance of the starting material (monitored by TLC). The reaction medium was concentrated under reduced pressure and the resulting oil was then purified by chromatography on silica gel. All products, except **2e**, were obtained in the form of two diastereoisomers in a 1:1 ratio which was determined from the ratio integrals from 1H NMR spectra.

(R)-methyl 2-(2-hydroxy-3-phenoxypropylamino)-3-methylbutanoate (2a)

Epoxide **1a** (0.38 mmol, 0.058 g) and L-H-Val-OMe (0.76 mmol, 0.099 g) gave, after 10 min of heating and after purification (cyclohexane/AcOEt : 8/2), the product **2a** (0.098 g, 92%) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.85-0.89 (m, 12H), 1.82-1.93 (m, 2H), 2.40-2.47 (m, 1H), 2.55 (dd, 1H, J = 3.8, 12.4 Hz), 2.77 (dd, 1H, J = 6.9, 12.4 Hz), 2.87-2.92 (m, 1H), 2.94 (d, 1H, J = 5.7 Hz), 2.95 (d, 1H, J = 6.0 Hz), 3.64 (s, 6H), 3.87-3.94 (m, 6H), 6.81-6.88 (m, 6H), 7.18 (t, 4H, J = 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 18.4, 19.2, 19.2, 31.4, 31.5, 50.4, 51.0, 51.4, 67.0, 67.7, 68.0, 68.9, 69.7, 70.2, 114.4, 120.8, 129.3, 158.5, 175.2, 175.3; LRMS (APCI) m/z 282.1 (MH)⁺; IR (cm-1) 2956, 1732, 1599, 1496, 1461, 1244, 1156, 755, 693; Anal. Calcd for C₁₅H₂₃NO₄ (%): C, 64.03; H, 8.24; N, 4.98. Found: C, 64.43; H, 8.19; N, 4.65.

(R)-benzyl 2-(2-hydroxy-3-phenoxypropylamino)-3-methylbutanoate (3a)

Epoxide **1a** (0.58 mmol, 0.088 g) and L-H-Val-OBn (1.16 mmol, 0.240 g) gave, after 1h30 of heating and after purification (cyclohexane/AcOEt: 8/2), the product **3a** (0.190 g, 92%) as a colourless oil; 1 H NMR (300 MHz, CDCl₃) δ 0.84 (d, 3H, J = 7.2 Hz), 0.84 (d, 3H, J = 6.6 Hz), 0.86 (d, 3H, J = 6.9 Hz), 0.87 (d, 3H, J = 6.3 Hz), 1.84-1.95 (m, 2H), 2.43 (dd, 1H, J = 7.5, 12.3 Hz), 2.55 (dd, 1H, J = 3.9, 12.3 Hz), 2.77 (dd, 1H, J = 6.8, 12.3 Hz), 2.89 (dd, 1H, J = 3.6, 12.3 Hz), 2.97 (d, 1H, J = 5.7 Hz), 2.98 (d, 1H, J = 6.3 Hz), 3.83-3.92 (m, 6H), 5.05 (d, 2H, J = 12.3 Hz), 5.11 (d, 2H, J = 12.3 Hz), 6.79-6.89 (m, 6H), 7.15-7.27 (m, 14H); 13 C NMR (75 MHz, CDCl₃) δ 18.3, 19.3, 19.3, 31.5, 31.6, 50.4, 51.0, 66.4, 66.4, 67.0, 67.8, 67.9, 68.9, 69.7, 70.2, 114.4, 120.9, 128.3, 128.5, 129.3, 135.6, 158.5, 174.6, 174.8; MS (APCI) m/z 358.2 (MH)⁺; IR (cm-1) 3421, 2960, 2926, 1730, 1599, 1496, 1457, 1245, 1175, 1152, 1042, 754, 694; Anal. Calcd for C₂₁H₂₇NO₄ (%): C, 70.56; H, 7.61; N, 3.92. Found: C, 70.63; H, 7.63; N, 3.85.

(S)-methyl2-(2-hydroxy-3-phenoxypropylamino)-3-(4-phenethylphenyl) propanoate (4a)

Epoxide **1a** (0.51 mmol, 0.076 g) and L-H-Tyr(Bn)-OMe (1.02 mmol, 0.291 g) gave, after 1h30 of heating and after purification (cyclohexane/AcOEt : 8/2), the product **4a** (0.212 g, 96%) as a white gel; 1 H NMR (300 MHz, CDCl₃) δ 2.31-2.53 (br s, 2NH), 2.53-3.02 (m, 8H), 3.48-3.55 (m, 2H), 3.69 (s, 6H), 3.91-3.97 (m, 6H), 5.04 (s, 4H), 6.88-6.99 (m, 10H), 7.10-7.13 (m, 4H), 7.26-7.45 (m, 14H); 13 C NMR (75 MHz, CDCl₃) δ 38.7, 38.8, 50.0, 50.4, 51.7, 62.7, 63.4, 68.1, 68.7, 69.7, 69.9, 70.1, 114.5, 114.8, 120.9, 127.4, 127.8, 128.5, 129.3, 130.1, 136.9, 157.6, 158.5, 174.8, 174.9; MS (ESI) m/z 436.2 (MH)⁺, 458.1 (MNa)⁺, 474.1 (MK)⁺; IR (cm-1) 2926, 1730, 1598, 1511, 1496, 1454, 1241, 1171, 1042, 755, 735, 693; Anal. Calcd for C₂₆H₂₉NO₅ (%): C, 71.70; H, 6.71; N, 3.22. Found: C, 71.35; H, 6.73; N, 3.01.

tert-butyl 2-(2-hydroxy-5-methyl-1-phenoxyhexan-3-ylamino)acetate (5a)

Epoxide **1a** (0.52 mmol, 0.078 g) and L-H-Leu-O*t*Bu (1.04 mmol, 0.195 g) gave, after 10 min of heating and after purification (cyclohexane/AcOEt : 8/2), the product **5a** (0.161 g, 92%) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.82-0.86 (m, 12H), 1.33-1.44 (m, 4H), 1.39 (s, 18H), 1.62-1.75 (m, 2H), 2.36-2.78 (br s, 2NH), 2.48 (dd, 1H, J = 7.7, 12.2 Hz), 2.61 (dd, 1H, J = 4.1, 12.3 Hz), 2.75 (dd, 1H, J = 7.2, 12.3 Hz), 2.89 (dd, 1H, J = 3.5, 12.2 Hz), 3.03-3.10 (m, 2H), 3.87-3.95 (m, 6H), 6.81-6.88 (m, 6H), 7.15-7.21 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 22.2, 22.6, 24.8, 28.0, 42.7, 49.9, 50.4, 60.2, 60.9, 68.0, 68.8, 69.8, 70.2, 81.0, 114.4, 120.8, 129.3, 158.6, 174.9, 175.1; MS (APCI) m/z 338.2 (MH)⁺; IR (cm-1) 2930, 1726, 1640, 1599, 1494, 1244, 1170, 1041, 748, 693; Anal. Calcd for C₁₉H₃₁NO₄ (%): C, 67.63; H, 9.26; N, 4.15. Found: C, 67.87; H, 8.94; N, 4.03.

(S)-methyl 2-(2-hydroxy-3-phenoxypropylamino)-3-phenylpropanoate (6a)

Epoxide **1a** (0.50 mmol, 0.075 g) and L-H-Phe-OMe (1.00 mmol, 0.179 g) gave, after 45 min of heating and after purification (cyclohexane/AcOEt : 8/2), the product **6a** (0.140 g, 85%) as a colourless oil; 1 H NMR (300 MHz, CDCl₃) δ 2.26-2.49 (br s, 2NH), 2.46 (dd, 1H, J = 7.2, 12.3 Hz), 2.57-2.62 (m, 1H), 2.70-2.96 (m, 6H), 3.41-3.47 (m, 2H), 3.59 (s, 6H), 3.78-3.87 (m, 6H), 6.76-6.88 (m, 6H), 7.07-7.22 (m, 14H); 13 C NMR (75 MHz, CDCl₃) δ 39.6, 39.6, 50.0, 50.5, 51.7, 62.6, 63.3, 68.0, 68.7, 69.7, 70.0, 114.4, 120.9, 126.7, 128.4, 129.0, 129.3, 137.1, 158.5, 174.7, 174.8; MS (APCI) m/z: 330.1 (MH) $^+$; IR (cm-1) 2928, 1735, 1599, 1496, 1455, 1244, 1173, 1042, 755, 694; Anal. Calcd for $C_{13}H_{23}NO_4$ (%): C, 69.28; H, 7.04; N, 4.25. Found: C, 69.67; H, 6.95; N, 4.15.

methyl 2-(2-hydroxy-3-phenoxypropylamino)acetate (7a)

Epoxide **1a** (0.50 mmol, 0.075 g) and H-Gly-OEt (1.00 mmol, 0.103 g) gave, after 24h at ambient temperature and after purification (cyclohexane/AcOEt : 1/1), the product **7a** (0.068 g, 54%) as a white solid (mp. 144°C); ¹H NMR (300 MHz, CDCl₃) δ 1.20 (t, 3H, J = 7.2 Hz), 2.58-2.86 (br s, NH), 2.72 (dd, 1H, J = 5.1, 7.7 Hz), 2.83 (dd, 1H, J = 3.6, 7.7 Hz), 3.38 (s, 2H), 3.90 (d, 2H, J = 9.3 Hz), 3.94-4.04 (m, 1H), 4.12 (q, 2H, J = 7.2 Hz), 6.81-6.90 (m, 3H), 7.17-7.22 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 14.2, 50.8, 51.8, 60.9, 68.5, 70.1, 114.5, 121.0, 129.4, 158.5, 172.4. MS (ESI) m/z 254.2 (MH)⁺, 276.1 (MNa)⁺; IR (cm-1) 2928, 1737, 1640, 1599, 1494, 1238, 1042, 747, 693; Anal. Calcd for C₁₃H₁₉NO₄ (%): C, 61.64; H, 7.56; N, 5.53. Found: C, 62.04; H, 7.21; N, 5.85.

methyl (2S)-2-{[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-2-hydroxypropyl]amino}-3-methylbutanoate (2b)

Epoxide **1b** (0.52 mmol, 0.106 g) and L-H-Val-OMe (1.04 mmol, 0.136 g) gave, after 1h of heating and after purification (cyclohexane/AcOEt: 6/4), the product **2b** (0.142 g, 82%) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.89 (d, 3H, J = 6.9 Hz), 0.90 (d, 3H, J = 6.9 Hz), 0.91 (d, 3H, J = 6.9 Hz), 0.91 (d, 3H, J = 6.9 Hz), 1.84-1.97 (m, 2H), 2.30-2.90 (br s, 2NH), 2.33 (dd, 1H, J = 7.5, 12.4 Hz), 2.50 (dd, 1H, J = 3.9, 12.6 Hz), 2.68 (dd, 1H, J = 7.2, 12.6 Hz), 2.85 (dd, 1H, J = 3.6, 12.4 Hz), 2.96 (d, 1H, J = 6.0 Hz), 2.97 (d, 1H, J = 5.7 Hz), 3.67 (s, 3H), 3.68 (s, 3H), 3.69-3.79 (m, 4H), 3.84-3.93 (m, 2H), 7.65-7.71 (m, 4H), 7.78-7.84 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 18.2, 18.3, 19.3, 31.4, 31.6, 41.5, 41.7, 51.0, 51.5, 51.5, 51.8, 67.0, 67.5, 67.7, 68.5, 123.2, 131.9, 133.9, 168.5, 175.1, 175.3; MS (ESI) m/z 335.3 (MH)⁺, 357.2 (MNa)⁺; IR (cm-1) 2958, 1704, 1392, 1191, 724; Anal. Calcd for C₁₇H₂₂N₂O₅ (%): C, 61.07; H, 6.63; N, 8.38. Found: C, 60.71; H, 6.79; N, 8.02.

ethyl {[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-2-hydroxypropyl]amino}acetate (7b)

Epoxide **1b** (0.50 mmol, 0.102 g) and Gly-OEt (1.00 mmol, 0.103 g) gave, after 1h of heating and after purification (cyclohexane/AcOEt : 3/7), the product **7b** (0.080 g, 52%) as white needless (mp: 139°C); 1 H NMR (300 MHz, CDCl₃) δ 1.23 (t, 3H, J = 7.2 Hz), 2.64 (dd, 1H, J = 7.5, 12.6 Hz), 2.76 (dd, 1H, J = 3.8, 12.6 Hz), 2.61-2.79 (br s, NH), 3.40 (s, 2H), 3.71 (dd, 1H, J = 5.4, 14.1 Hz), 3.79 (dd, 1H, J = 6.8, 14.1 Hz), 3.90-3.97 (m, 1H), 4.14 (q, 2H, J = 7.2 Hz), 7.67-7.70 (m, 2H), 7.79-7.83 (m, 2H); 13 C NMR (75 MHz, CDCl₃) δ 14.1, 41.7, 50.7, 52.4, 60.8, 68.1, 123.3, 131.9, 133.9, 168.5, 172.4; MS (APCl) m/z 307.1 (MH) $^+$; IR (cm-1) 2917, 1731, 1708, 1393, 1202, 1135, 1023, 723; Anal. Calcd for C₁₅H₁₈N₂O₅ (%): C, 58.82; H, 5.92; N, 9.15. Found: C, 59.21; H, 5.88; N, 8.80.

benzyl (2S)-2-{[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-2-hydroxypropyl]amino}-3-phenylpropanoate (8b)

Epoxide **1b** (0.51 mmol, 0.104 g) and L-H-Val-OMe (1.02 mmol, 0.260 g) gave, after 2h of heating and after purification (cyclohexane/AcOEt: 6/4), the product **8b** (0.168 g, 72%) as a colourless oil; 1 H NMR (300 MHz, CDCl₃) δ 2.26-2.63 (br s, 2NH), 2.31 (dd, 1H, J = 7.8, 12.3 Hz), 2.50 (dd, 1H, J = 4.1, 12.7 Hz), 2.59 (dd, 1H, J = 6.6, 12.7 Hz), 2.76-2.95 (m, 5H), 3.44-3.49 (m, 2H), 3.53-3.81 (m, 6H), 5.01 (s, 4H), 7.01-7.08 (m, 4H), 7.11-7.20 (m, 10H), 7.22-7.29 (m, 6H), 7.60-7.66 (m, 4H), 7.72-7.78 (m, 4H); 13 C NMR (75 MHz, CDCl₃) δ 39.6, 41.5, 41.6, 50.6, 51.3, 62.8, 63.2, 66.6, 66.7, 67.7, 68.4, 123.3, 126.7, 128.3, 128.4, 128.5, 129.1, 131.9, 134.0, 168.5, 174.0, 174.2; MS (APCI) m/z 459.1 (MH)⁺; IR (cm-1) 1704, 1393, 1169, 698; Anal. Calcd for $C_{27}H_{26}N_2O_5$ (%): C, 70.73; H, 5.72; N, 6.11. Found: C, 70.37; H, 6.00; N, 5.92.

benzyl (2S)-2-{[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-2-hydroxypropyl]amino}-3-ethylbutanoate (9b)

Epoxide **1b** (0.50 mmol, 0.102 g) and L-H-Ile-OBn (1.00 mmol, 0.221 g) gave, after 1h30 of heating and after purification (cyclohexane/AcOEt: 6/4), the product **9b** (0.176 g, 83%) as a colourless oil; 1 H NMR (300 MHz, CDCl₃) δ 0.80-0.89 (m, 12H), 1.09-1.20 (m, 2H), 1.40-1.52 (m, 2H), 1.65-1.75 (m, 2H), 2.36 (dd, 1H, J = 7.2, 12.3 Hz), 2.52 (dd, 1H, J = 4.2, 12.3 Hz), 2.68 (dd, 1H, J = 6.9, 12.3 Hz), 2.86 (dd, 1H, J = 3.8, 12.3 Hz), 3.09 (d, 1H, J = 6.0 Hz), 3.10 (d, 1H, J = 5.7 Hz), 3.64-3.79 (m, 4H), 3.84-3.93 (m, 2H), 5.07-5.18 (m, 4H), 7.26-7.34 (m, 10H), 7.66-7.72 (m, 4H), 7.79-7.85 (m, 4H); 13 C NMR (75 MHz, CDCl₃) δ 11.3, 11.3, 15.7, 25.1, 25.1, 38.1, 38.2, 41.5, 41.6, 51.0, 51.8, 66.0, 66.3, 66.3, 66.6, 67.6, 68.4, 123.2, 128.2, 128.2, 128.4, 131.8, 133.9, 135.5, 135.6, 168.4, 174.4, 174.7; MS (APCI) m/z 425.2 (MH)⁺; IR (cm-1) 2963, 1713, 1395, 726; Anal. Calcd for $C_{24}H_{28}N_2O_5$ (%): C, 67.91; H, 6.65; N, 6.60. Found: C, 67.55; H, 6.54; N, 6.56.

dimethyl (2S)-2-{[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-2-hydroxypropyl]amino}succinate (10b)

Epoxide **1b** (0.50 mmol, 0.104 g) and L-H-Asp(OMe)-OMe (1.00 mmol, 0.161 g) gave, after 3h30 of heating and after purification (cyclohexane/AcOEt : 6/4), the product **10b** (0.124 g, 68%) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.42-2.96 (m, 10H), 3.61-3.81 (m, 16H), 3.84-3.94 (m, 2H), 7.65-7.71 (m, 4H), 7.78-7.83 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 37.8, 41.4, 41.5, 50.7, 51.4, 51.9, 51.9, 52.1, 52.2, 57.5, 58.0, 67.8, 68.7, 123.2, 131.9, 133.9, 168.5, 171.2, 171.3, 173.7, 173.9; MS (APCI) m/z 365.1 (MH)⁺; IR (cm-1) 2953, 1703, 1434, 1393, 1169, 1025, 725, 629; Anal. Calcd for $C_{17}H_{20}N_2O_7$ (%): C, 56.04; H, 5.53; N, 7.69. Found: C, 56.06; H, 5.60; N, 7.42.

(S)-methyl 2-(2-hydroxydecylamino)-3-methylbutanoate (2c)

Epoxide **1c** (0.50 mmol, 0.092 g) and L-H-Val-OMe (1.00 mmol, 0.131 g) gave, after 3h of heating and after purification (cyclohexane/AcOEt : 8/2), the product **2c** (0.151 g, 96%) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.84 (t, 6H, J = 6.6 Hz), 0.90 (d, 6H, J = 6.9 Hz), 0.91 (d, 6H, J = 6.9 Hz), 1.22 (s, 24H), 1.25-1.39 (m, 12H), 1.85-1.94 (m, 2H), 2.06-2.13 (m, 1H), 2.44-2.47 (m, 2H), 2.79 (dd, 1H, J = 2.4, 11.7 Hz), 2.92 (d, 1H, J = 5.7 Hz), 2.97 (d, 1H, J = 6.0 Hz), 2.43-2.55 (m, 2H), 3.69 (s, 3H), 3.69 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 14.0, 18.3, 18.4, 19.3, 22.6, 25.4, 25.6, 29.2, 29.5, 29.6, 31.4, 31.6, 31.8, 34.5, 34.8, 51.4, 53.5, 54.8, 66.3, 67.9, 68.6, 70.2, 175.3, 175.5; MS (APCI) m/z 316.2 (MH)⁺; IR (cm-1) 2923, 2854, 1736, 1465, 1196, 678; Anal. Calcd for C₁₈H₃₇NO₃ (%): C, 68.53; H, 11.82; N, 4.44. Found: C, 68.83; H, 11.61; N, 4.48.

(S)-benzyl 2-(2-hydroxydodecylamino)-3-methylbutanoate (3c)

Epoxide **1c** (0.54 mmol, 0.099 g) and L-H-Val-OBn (1.08 mmol, 0.223 g) gave, after 4h of heating and after purification (cyclohexane/AcOEt : 8/2), the product **3c** (0.165 g, 78%) as a yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 0.86-0.95 (m, 18H), 1.26-1.41 (m, 36H), 1.89-2.01 (m, 2H), 2.09-2.48 (br s, 2NH), 2.13 (dd, 1H, J = 9.6, 11.7 Hz), 2.47-2.49 (m, 2H), 2.81 (dd, 1H, J = 2.7, 11.7 Hz), 2.99 (d, 1H, J = 16.2 Hz), 3.04 (d, 1H, J = 6.0 Hz), 3.43-3.57 (m, 2H), 5.14 (d, 2H, J = 12.3 Hz), 5.19 (d, 2H, J = 12.3 Hz), 7.33-7.37 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 14.0, 18.2, 18.3, 19.4, 22.6, 25.4, 25.6, 29.3, 29.5, 29.7, 31.4, 31.7, 31.8, 34.5, 34.8, 53.4, 54.8, 66.4, 67.9, 68.6, 70.2, 128.3, 128.5, 135.6, 135.6, 174.7, 174.9; MS (ESI) m/z 392.4 (MH)⁺; IR (cm-1) 2924, 2853, 1732, 1465, 1150, 734, 698, 669; Anal. Calcd for C₂₄H₄₁NO₃ (%): C, 73.61; H, 10.55; N, 3.58. Found: C, 74.00; H, 10.57; N, 3.47.

(R)-tert-butyl 2-(2-hydroxydodecylamino)-4-methylpentanoate (5c)

Epoxide **1c** (0.38 mmol, 0.070 g) and L-H-Leu-O*t*Bu (0.76 mmol, 0.142 g) gave, after 2h30 of heating and after purification (cyclohexane/AcOEt: 8/2), the product **5c** (0.127 g, 90%) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.83-0.92 (m, 18H), 1.24 (s, 28H), 1.32-1.42 (m, 12H), 1.45 (s, 18H), 1.66-1.82 (m, 2H), 2.12-2.56 (br s, 2NH), 2.16 (dd, 1H, J = 9.8, 11.9 Hz), 2.45 (dd, 1H, J = 8.3, 12.5 Hz), 2.53 (dd, 1H, J = 3.6, 12.5 Hz), 2.80 (dd, 1H, J = 2.9, 11.9 Hz), 3.02-3.15 (m, 2H), 3.41-3.58 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 14.1, 22.2, 22.6, 22.7, 24.9, 24.9, 25.6, 25.7, 28.1, 29.3, 29.6, 29.7, 31.9, 34.6, 34.9, 42.8, 43.0, 53.0, 54.3, 59.7, 61.1, 68.9, 70.1, 81.0, 81.0, 175.1, 175.4; MS (ESI) m/z 372.4 (MH)⁺; IR (cm-1) 2924, 2855, 1730, 1367, 1152; Anal. Calcd for C₂₂H₄₅NO₃ (%): C, 71.11; H, 12.21; N, 3.77. Found: C, 71.23; H, 12.21; N, 3.74.

(R)-methyl 2-(2-hydroxycyclopentylamino)-3-methylbutanoate (2d)

Epoxide **1d** (0.52 mmol, 0.044 g) and L-H-Val-OMe (1.04 mmol, 0.136 g) gave, after 18h of heating and after purification (cyclohexane/AcOEt: 8/2), the product **2d** (0.072 g, 64%) as a yellow oil; 1 H NMR (300 MHz, CDCl₃) δ 0.91 (d, 12H, J = 6.9 Hz), 1.22-2.01 (m, 14H, 2NH), 2.66-2.75 (m, 2H), 3.02 (d, 1H, J = 6.0 Hz), 3.09 (d, 1H, J = 6.0 Hz), 3.71 (s, 6H), 3.77-3.85 (m, 2H); 13 C NMR (75 MHz, CDCl₃) δ 18.5, 18.6, 19.2, 20.1, 20.5, 29.6, 30.7, 31.7, 32.2, 32.4, 51.5, 51.5, 65.4, 65.5, 65.8, 66.1, 78.0, 78.7, 176.2, 176.5; MS (APCI) m/z 216.2 (MH)⁺; IR (cm-1) 2957, 1733, 1153, 625; Anal. Calcd for $C_{11}H_{21}NO_3$ (%): C, 61.37; H, 9.83; N, 6.51. Found: C, 61.75; H, 9.88; N, 6.14.

(R)-benzyl 2-(2-hydroxycyclopentylamino)-3-methylbutanoate (3d)

Epoxide **1d** (0.50 mmol, 0.042 g) and L-H-Val-OBn (1.00 mmol, 0.207 g) gave, after 18h of heating and after purification (cyclohexane/AcOEt : 8/2), the product **3d** (0.078 g, 54%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 0.87-0.94 (m, 12H), 1.21-2.02 (m, 14H, 2NH), 2.66-2.76 (m, 2H), 3.06 (d, 1H, J = 6.3 Hz), 3.14 (d, 1H, J = 6.0 Hz), 3.81 (q, 2H, J = 5.6 Hz), 5.11-5.21 (m, 4H), 7.31-7.40 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 18.4, 18.5, 19.3, 20.0, 20.4, 29.5, 30.7, 31.7, 31.7, 32.1, 32.4, 65.4, 65.6, 65.8, 66.2, 66.4, 66.4, 77.9, 78.7, 128.3, 128.4, 128.5, 135.7, 135.8, 175.6, 175.9; MS (APCI) m/z 292.2 (MH)⁺; IR (cm-1) 2971, 1639, 1598, 1492, 1340, 1244, 1170, 1041, 747, 694; Anal. Calcd for C₁₇H₂₅NO₃ (%): C, 70.07; H, 8.65; N, 4.81. Found: C, 69.71; H, 8.60; N, 4.67.

(2S,3R)-benzyl 2-(2-hydroxycyclopentylamino)-3-methylpentanoate (9d)

Epoxide **1d** (0.50 mmol, 0.042 g) and L-H-Ile-OBn (1.00 mmol, 0.221 g) gave, after 18h of heating and after purification (cyclohexane/AcOEt: 8/2), the product **9d** (0.120

g, 79%) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.82-0.88 (m, 12H), 1.10-2.00 (m, 18H, 2NH), 2.65-2.75 (m, 2H), 3.14 (d, 1H, J = 6.3 Hz), 3.21 (d, 1H, J = 6.3 Hz), 3.77-3.84 (m, 2H), 5.10-5.22 (m, 4H), 7.32-7.39 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 11.3, 15.6, 20.0, 20.4, 25.3, 25.4, 29.5, 30.7, 32.1, 32.4, 38.4, 38.4, 64.5, 64.8, 65.4, 66.1, 66.3, 66.4, 77.9, 78.8, 128.3, 128.5, 128.5, 135.7, 135.8, 175.5, 175.9; MS (APCl) m/z 306.1 (MH)⁺; IR (cm-1) 2960, 1729, 1454, 1233, 1127, 735, 699; Anal. Calcd for C₁₈H₂₇NO₃ (%): C, 70.79; H, 8.91; N, 4.59. Found: C, 70.39; H, 8.78; N, 4.52.

2-(3-Benzyloxy-2-hydroxy-propylamino)-3-methyl-butyric acid methyl ester (2e)

Epoxide **1e** (0.50 mmol, 0.082 g) and L-H-Val-OMe (1.00 mmol, 0.131 g) gave, after 45 min of heating and after purification (cyclohexane/AcOEt : 8/2), the product **2e** (0.118 g, 80%) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 0.84 (d, 3H, J = 6.6 Hz), 0.85 (d, 3H, J = 6.6 Hz), 1.84 (oct, 1H, J = 6.6 Hz), 2.19-2.40 (br s, NH), 2.34 (dd, 1H, J = 12.0, 7.8 Hz), 2.76 (dd, 1H, J = 12.0, 3.9 Hz), 2.90 (d, 1H, J = 6.6 Hz), 3.37-3.46 (m, 2H), 3.63 (s, 3H), 3.68-3.75 (m, 1H), 4.47 (s, 2H), 7.17-7.28 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 18.4, 19.2, 31.5, 51.1, 51.4, 67.7, 69.4, 72.2, 73.3, 127.5, 127.6, 128.2, 138.0, 175.3; MS (ESI) m/z 296.0 (MH)⁺, 318.0 (MNa)⁺, 333.9 (MK)⁺.; IR (cm-1) 2960, 1732, 1454, 1199, 1095, 700; Anal. Calcd for C₁₆H₂₅NO₄ (%): C, 65.06; H, 8.53; N, 4.74. Found: C, 65.14; H, 8.69; N, 4.59; [α]₅₈₉^{18.2} = -6° (c=1 in CH₂Cl₂).

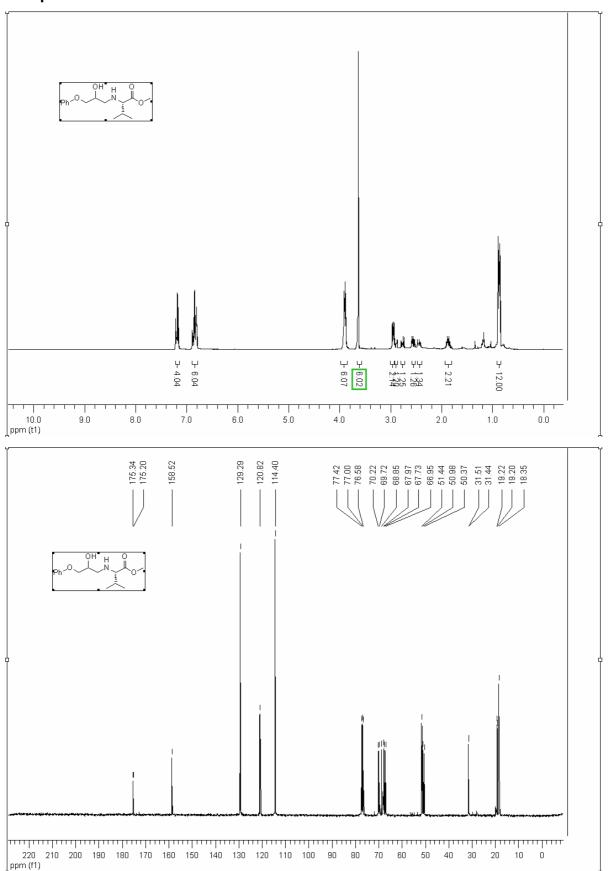
Experimental procedure and characterisation of products 12

L-Z-Phe-Ala-OMe (0.385 g, 1 mmol, 2 eq.) was suspended in methanol (8 mL). After addition of Pd/C, the solution was placed under a hydrogen atmosphere and was vigorously stirred during 40 minutes. The crude product was then filtrated several times on celite. The filtrate was concentrated under reduced pressure at ambient temperature. The dipeptide L-H-Phe-Ala-OMe thus obtained was immediately diluted in 1.25 mL of trifluoroethanol and epoxide (0.5 mmol) was added. The reaction mixture was stirred at reflux until the disappearance of the starting material

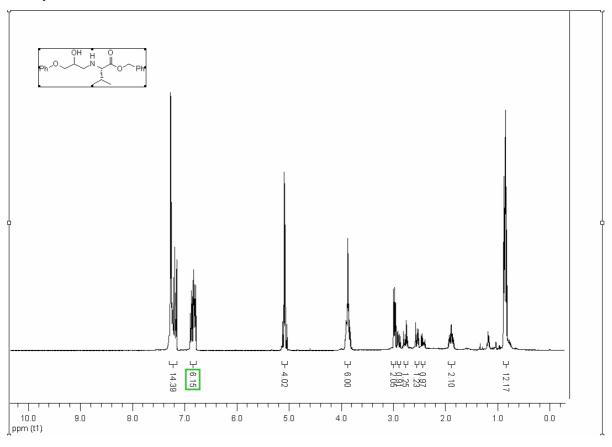
(monitored by TLC). The reaction medium was concentrated under reduced pressure and the resulting oil was then purified by chromatography on silica gel. Products were obtained in the form of two diastereoisomers in a 1:1 ratio which was determined from the ratio integrals from 1H NMR spectra.

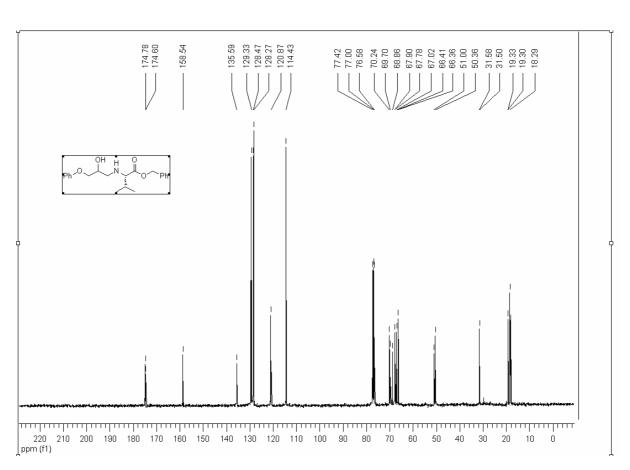
2-[2-(2-Hydroxy-3-phenoxy-propylamino)-3-phenyl-propionylamino]-propionic acid methyl ester (12a)

Epoxide **1a** (0.50 mmol, 0.075 g) and L-H-Phe-Ala-OMe (1.00 mmol, 0.250 g) gave, after 1h30 of heating and after purification (cyclohexane/AcOEt : 1/1), the product **12a** (0.168 g, 84%) as a yellow gel; ¹H NMR (300 MHz, CDCl₃) δ 1.36 (d, 6H, J = 7.2 Hz), 2.41-2.84 (br s, 2NH), 2.41-2.84 (m, 6H), 3.14-3.24 (m, 2H), 3.35-3.43 (m, 2H), 3.70 (s, 6H), 3.83-4.05 (m, 6H), 4.56-4.66 (m, 2H), 6.85 (t, 4H, J = 8.7 Hz), 6.93 (t, 2H, J = 7.2 Hz), 7.22-7.31 (m, 14H), 7.83 (d, NH, J = 8.4 Hz), 7.87 (d, NH, J = 8.4 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 18.0, 39.1, 39.2, 47.3, 50.9, 51.1, 52.3, 63.6, 64.0, 68.9, 69.9, 70.0, 114.3, 120.9, 126.8, 128.5, 128.8, 128.9, 129.2, 137.0, 137.1, 158.3, 158.3, 173.3, 173.6, 173.6; MS (ESI) m/z 401.0 (MH)⁺, 422.9 (MNa)⁺; IR (cm-1) 3311, 2968, 1744, 1645, 1495, 1453, 1209, 1150, 1056, 755, 696, 613; Anal. Calcd for C₂₂H₂₈N₂O₅ (%): C, 65.98; H, 7.05; N, 7.00. Found: C, 65.84; H, 6.88; N, 6.75.

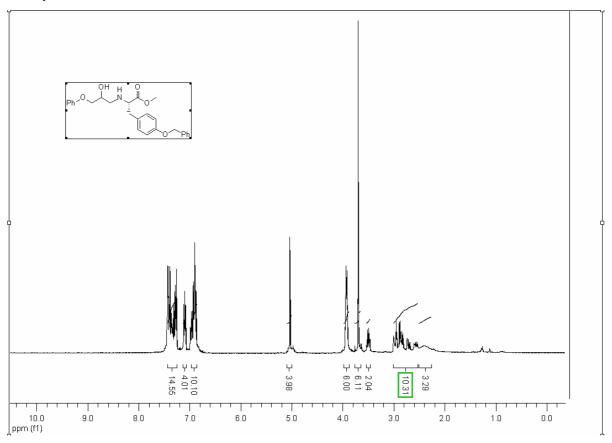

2-{2-[3-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-2-hydroxy-propylamino]-3-phenyl-propionylamino}-propionic acid methyl ester (12b)

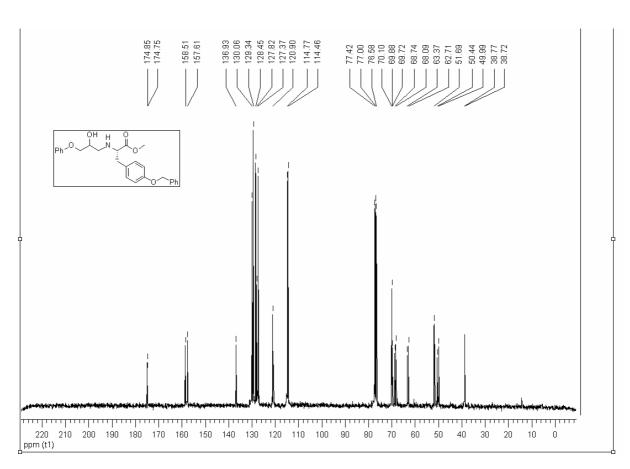
Epoxide **1b** (0.50 mmol, 0.102 g) and L-H-Phe-Ala-OMe (1.00 mmol, 0.250 g) gave, after 3h30 of heating and after purification (cyclohexane/AcOEt : 6/4), the product **12b** (0.204 g, 90%) as a white solid (mp:125-126°C); ¹H NMR (300 MHz, CDCl₃) δ 1.26 (d, 3H, J = 7.2 Hz), 1.31 (d, 3H, J = 7.5 Hz), 1.75-2.16 (br s, 2NH), 2.45-2.72 (m, 6H), 3.05 (t, 1H, J = 3.9 Hz), 3.10 (t, 1H, J = 3.6 Hz), 3.24-3.30 (m, 2H), 3.53 (s, 3H), 3.56 (s, 3H), 3.59-3.63 (m, 2H), 3.68-3.70 (m, 2H), 3.80-3.91 (m, 2H), 4.44-4.56 (m, 2H), 7.11-7.21 (m, 10H), 7.59-7.65 (m, 3H), 7.69-3.77 (m, 5H); ¹³C NMR (75 MHz,

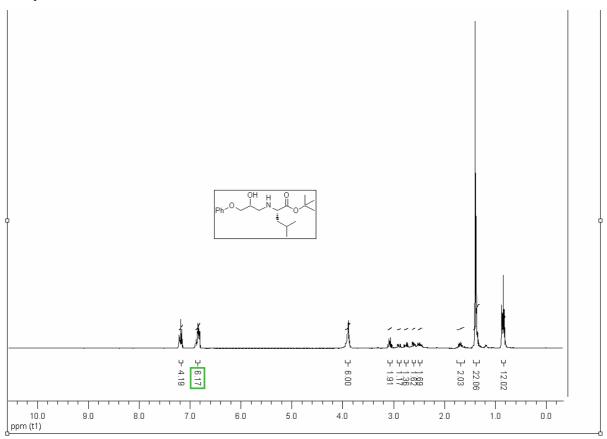

CDCl₃) δ 17.8, 18.0, 39.2, 39.3, 41.5, 41.7, 47.2, 51.6, 51.7, 52.2, 52.2, 63.8, 63.9, 68.7, 68.8, 123.2, 126.7, 126.8, 128.5, 128.5, 129.0, 129.0, 131.8, 131.8, 133.9, 137.1, 137.2, 168.5, 168.6, 173.3, 173.4, 173.6; MS (ESI) m/z 454.2 (MH)⁺, 476.2 (MNa)⁺; IR (cm-1) 3313, 2269, 1739, 1687, 1642, 1541, 1400, 1316, 1232, 1152, 1072, 1025, 716, 693; Anal. Calcd for $C_{24}H_{27}N_3O_6$ (%): C, 63.56; H, 6.00; N, 9.27. Found: C, 63.42; H, 6.00; N, 8.98.

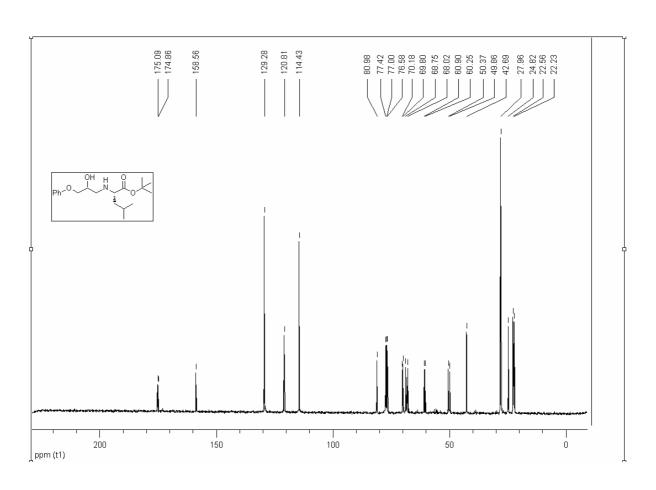

1H and 13C NMR spectra

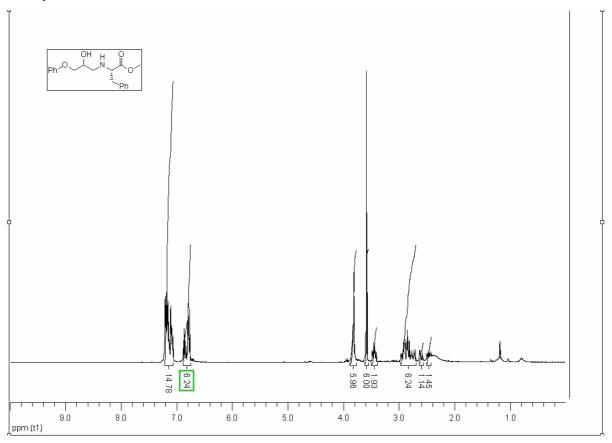
Compound 2a

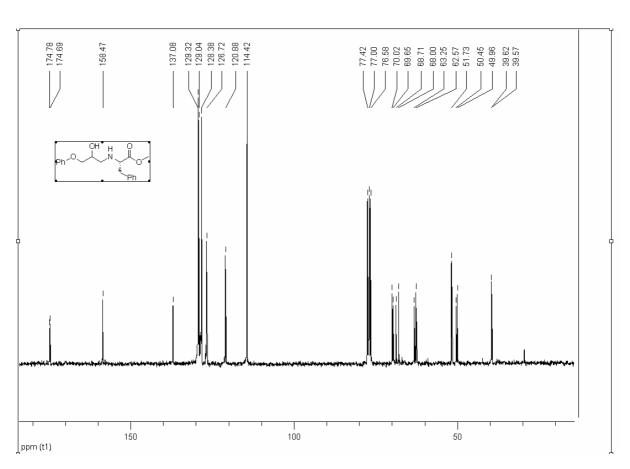


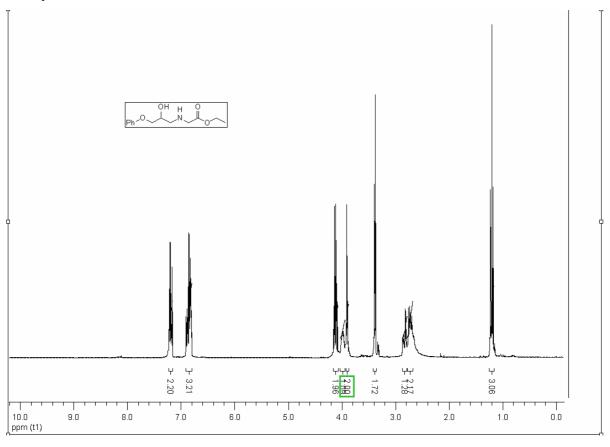

Compound 3a

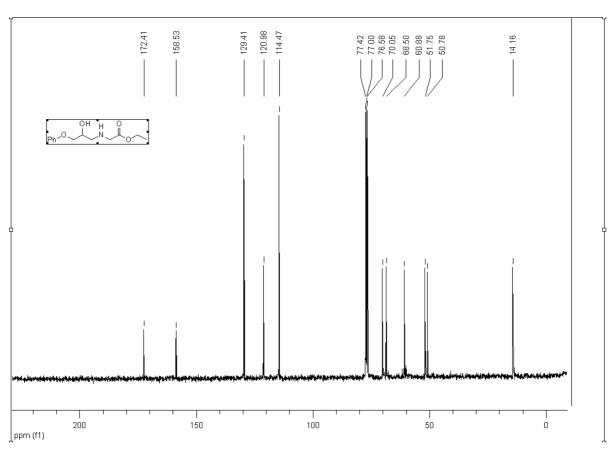


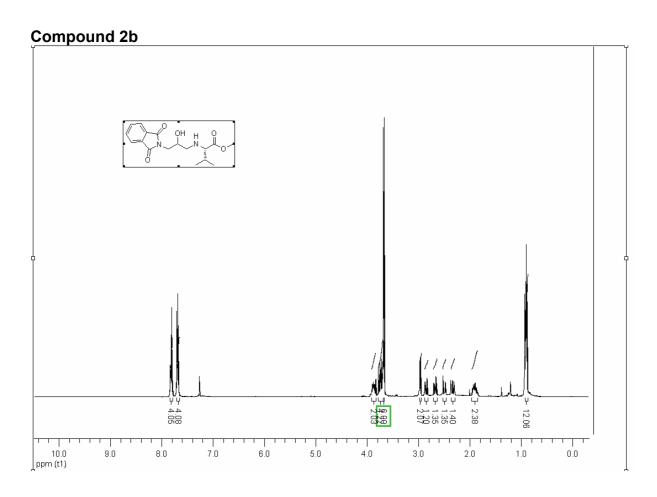

Compound 4a

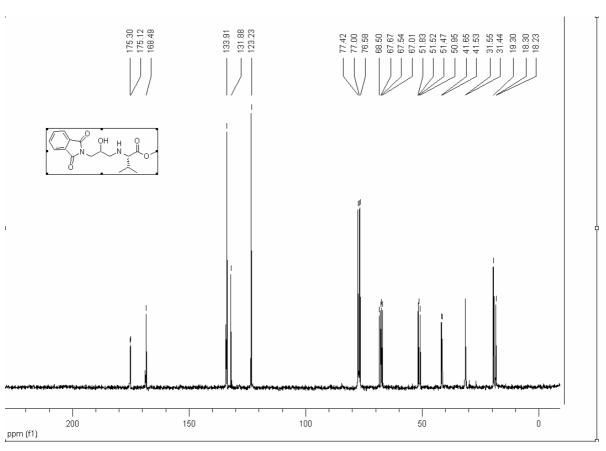



Compound 5a

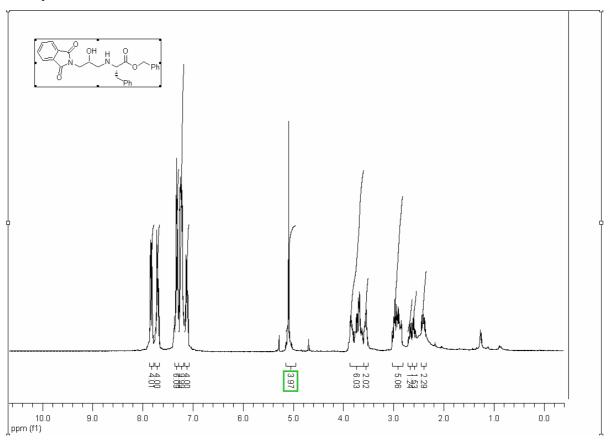


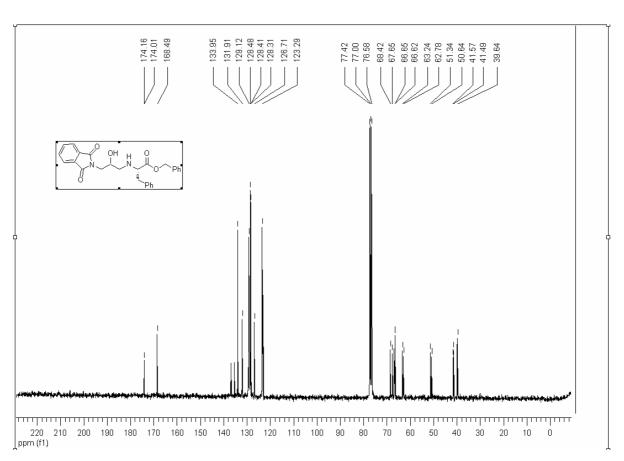

Compound 6a

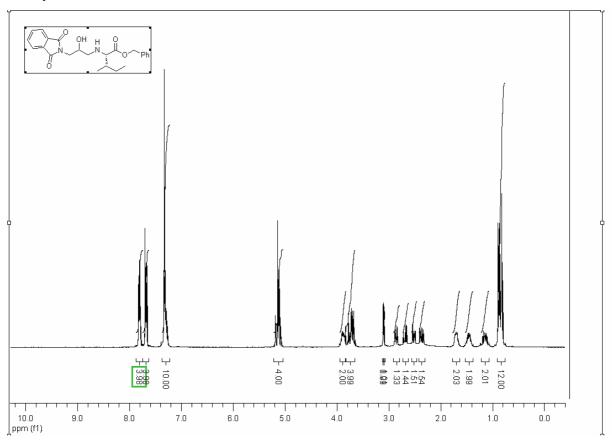


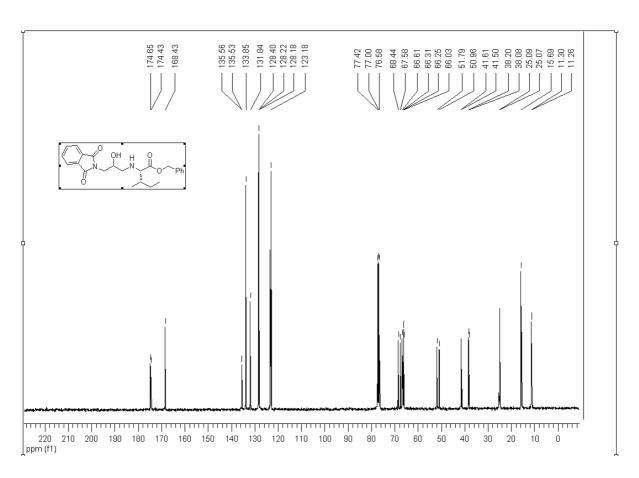


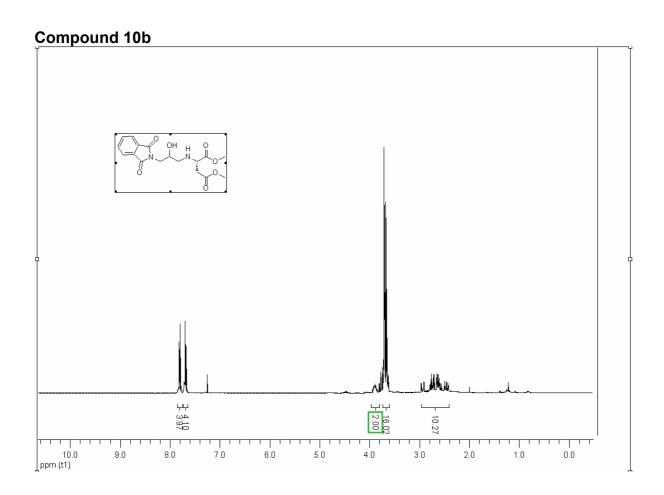
Compound 7a

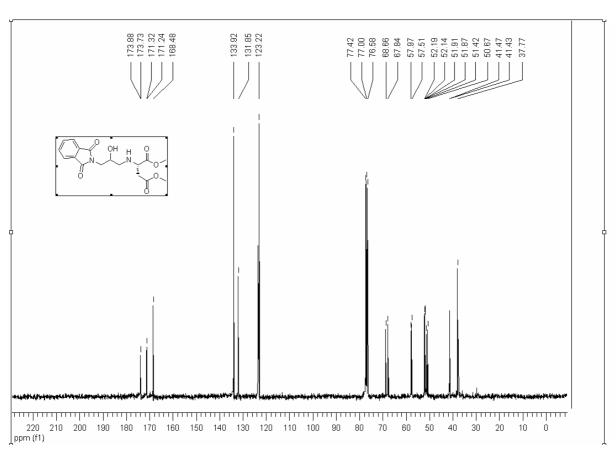




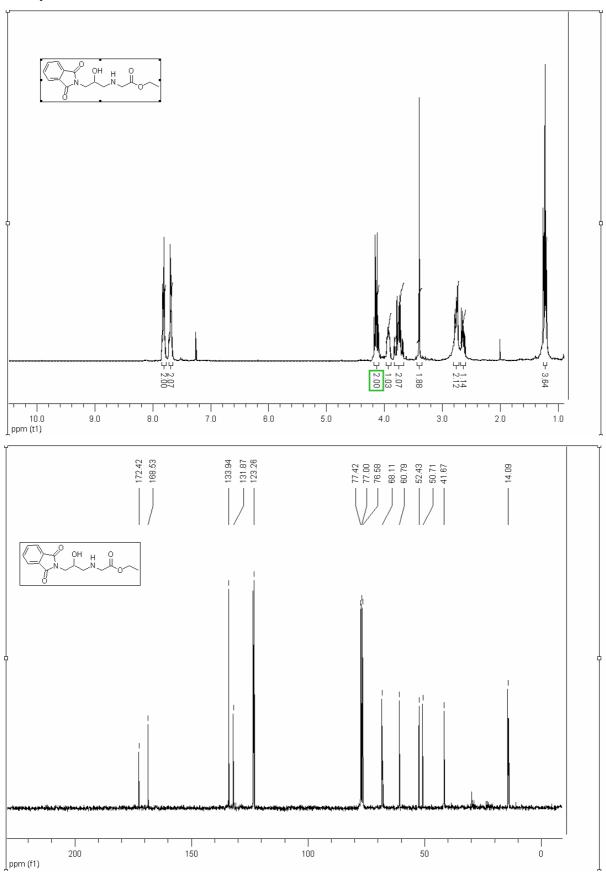


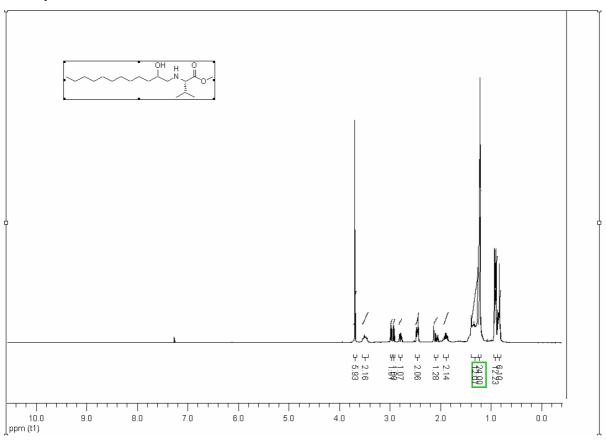

Compound 8b

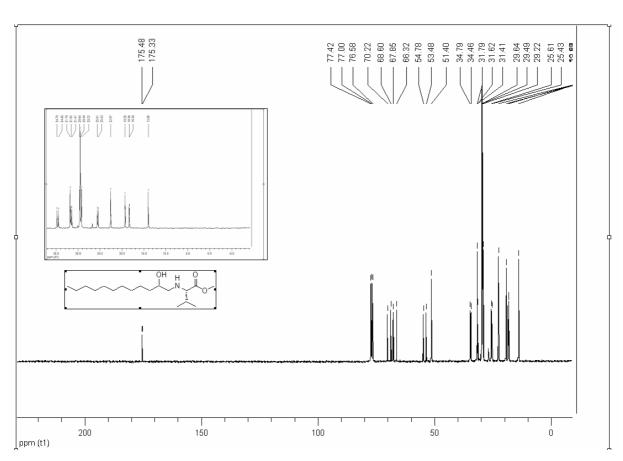




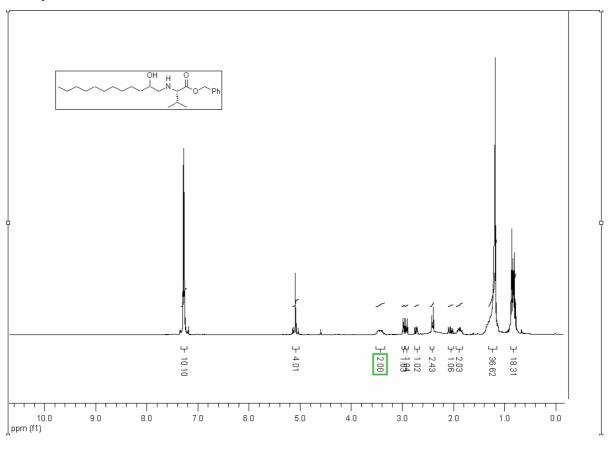
Compound 9b

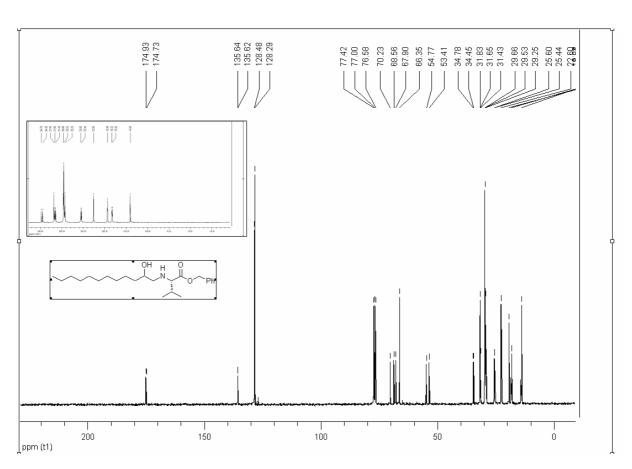


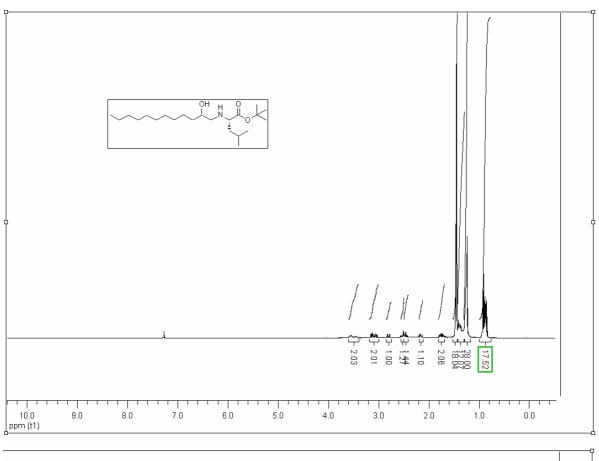


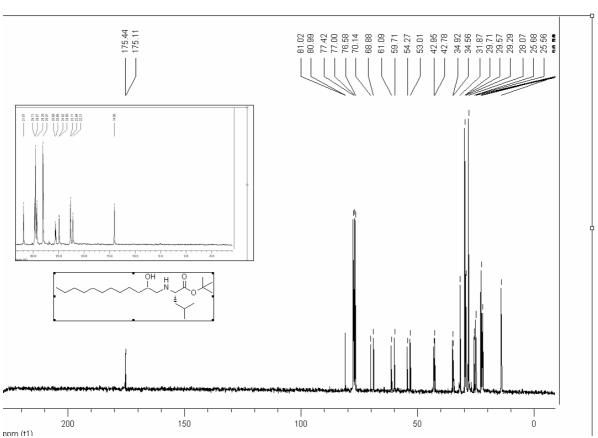


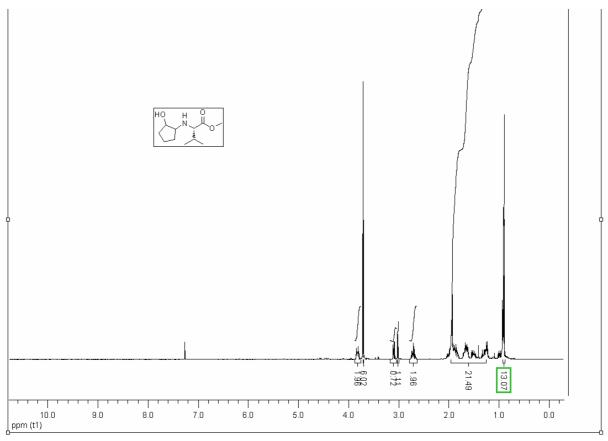
Compound 7b

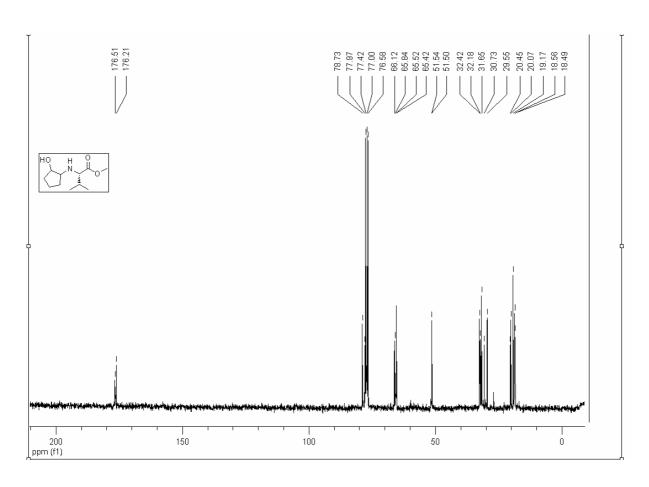


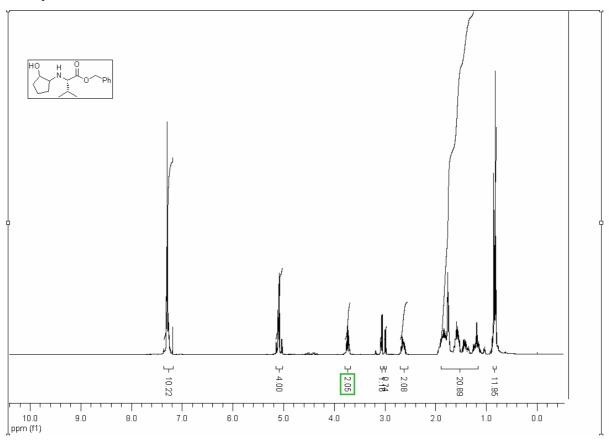

Compound 2c

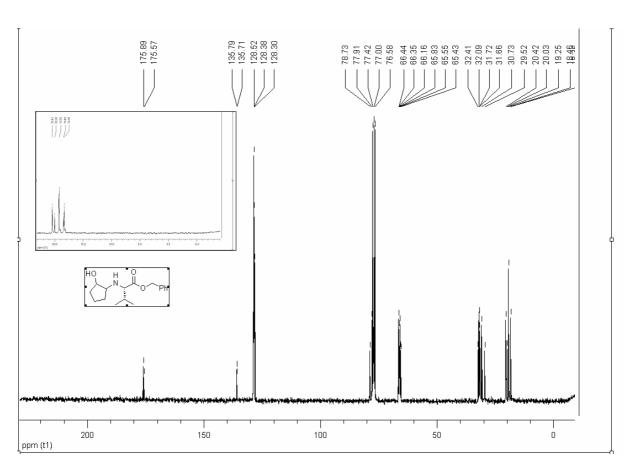


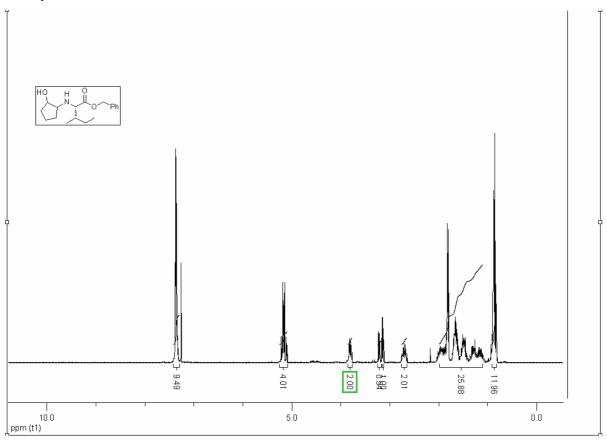

Compound 3c

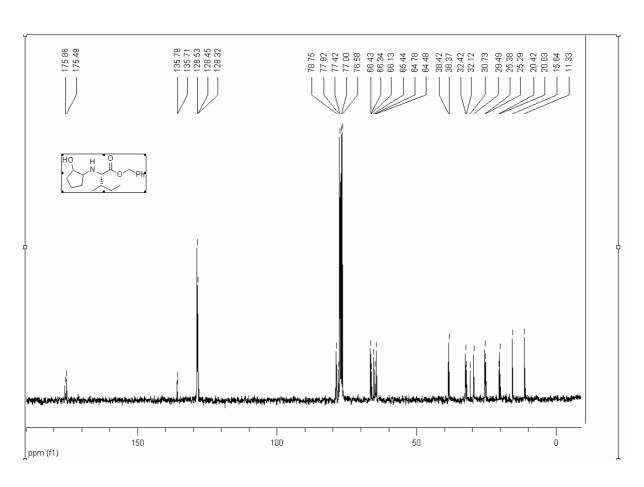


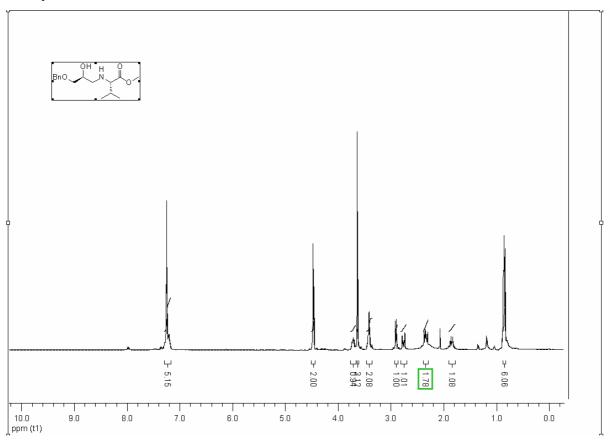

Compound 5c

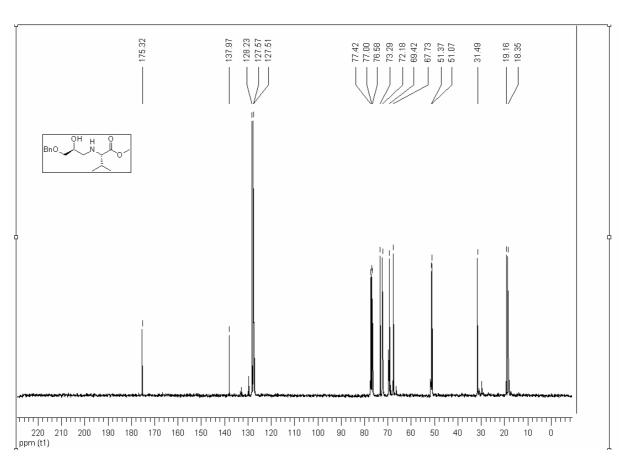


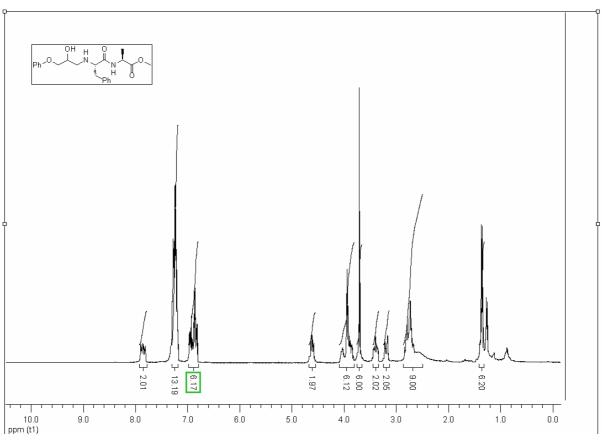


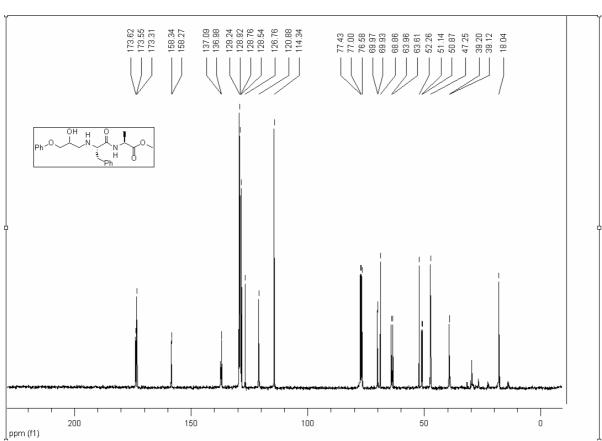


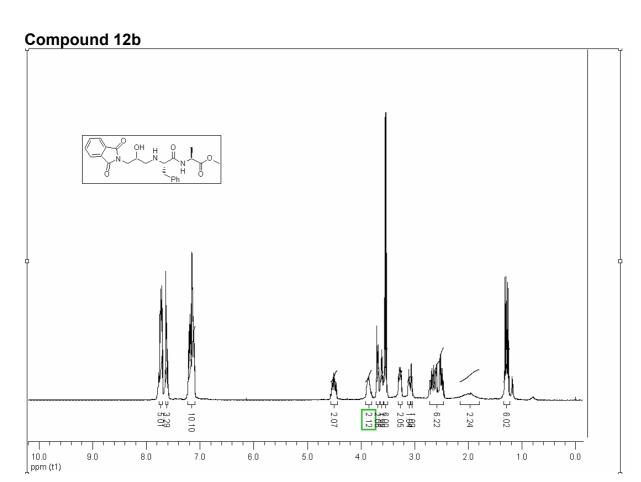

Compound 3d

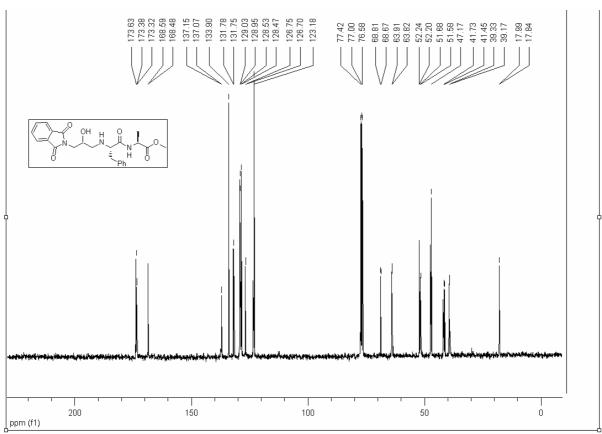



Compound 9d




Compound 2e





Compound 12a

