## Supporting Information, SI, section

# CYCLOADDITION AND ONE-CARBON HOMOLOGATION STUDIES IN THE SYNTHESIS OF ADVANCED IRIDOID PRECURSORS 

Anne T. Stevens, Mino R. Caira, James R. Bull and Kelly Chibale,*

## General procedure for dienophile preparation

(S)-5-Hydroxymethylfuran-2(5H)-one ( $4-10 \mathrm{mmol}$ ) and imidazole ( $\sim 1.2$ equivalents), were dissolved in dry dichloromethane (to give $\sim 1 \mathrm{~m}$ solution). The silyl chloride ( $\sim 1.1$ equivalents) was added and the reaction was stirred at $25^{\circ} \mathrm{C}$ until the consumption of starting material was complete (TLC). Water was added and the resulting mixture was extracted with dichloromethane. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give a residue which chromatographed on silica gel using ethyl acetate-hexane in varying proportions.
(S)-(5-O-t-Butyldiphenylsilanyloxymethyl)furan-2(5H)-one 2a, (68\%), mp 79-82 ${ }^{\circ} \mathrm{C}$ (from ether-hexane); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.03\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.89\left(2 \mathrm{H}, \mathrm{dd}, J 4.4\right.$ and $\left.2.1 \mathrm{~Hz}, 5-\mathrm{H}_{2}\right)$, $5.03-5.10(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{dd}, J 5.8$ and $2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $7.20-7.70(11 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ and $3-\mathrm{H}$ ).
(S)-(5-O-Triisopropylsilanyloxymethyl)furan-2(5H)-one 2b, (65\%) as an oil, $\alpha_{\mathrm{D}}-133.7$ (c 1 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1756(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.98-1.08\left[21 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $3.87\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.5.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.4.6 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), 5.05-5.10(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{dd}, J 5.7$ and $2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $7.54(1 \mathrm{H}, \mathrm{dd}, J 5.7$ and $1.5 \mathrm{~Hz}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 11.9\left[3 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 17.8\left[3 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 63.5(\mathrm{C}-5), 83.3(\mathrm{C}-4), 122.4(\mathrm{C}-2), 154.5(\mathrm{C}-3)$ and $172.8(\mathrm{C}-1)$, (Found: $\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}$, 227.1117. Calc. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Si}$ : $M$, 227.1104).
(S)-(5-O-t-Butyldimethylsilanyloxymethyl)furan-2(5H)-one $\mathbf{2 c},(96 \%)$, mp $30-32{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05$ and $0.06\left(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.79(1 \mathrm{H}$, dd, $J 10.7$ and $\left.5.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{A}}\right), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J 10.7\right.$ and $\left.4.5 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{B}}\right), \quad 4.99-5.07(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.15(1 \mathrm{H}, \mathrm{dd}, J$ 5.7 and $1.9 \mathrm{~Hz}, 2-\mathrm{H})$ and $7.48(1 \mathrm{H}, \mathrm{dd}, J 5.7$ and $1.6 \mathrm{~Hz}, 3-\mathrm{H})$.

General procedure for cycloadditions of furanones $2 \mathrm{a}, \mathbf{2 b}$ and 2 c with butadiene (a) Lewis acid catalysed cycloadditions
The butenolide was dissolved in dichloromethane ( $\sim 2 \mathrm{~cm}^{3} / \mathrm{mmol}$ butenolide) under nitrogen. Ethylaluminium dichloride ( 1.0 m solution in hexanes, $\sim 0.4$ equivalents) was added and the resulting mixture was added to cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ butadiene $\left(\sim 2 \mathrm{~cm}^{3} / \mathrm{mmol}\right.$ butenolide) in a pressure tube which was sealed and heated at $60^{\circ} \mathrm{C}$ for 168 h . (CAUTION-explosion risk) The tube was cooled to $-78^{\circ} \mathrm{C}$ and aqueous saturated sodium hydrogen carbonate was added. The mixture was extracted with dichloromethane and the organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to give the cycloadduct which was purified by chromatography on silica gel using ethyl acetate-hexane.

a) The reaction of $\mathbf{2 a}(2.00 \mathrm{~g}, 5.7 \mathrm{mmol})$ gave a solid mass ( 3.25 g ) after work-up. Chromatography on silica gel ( 250 g ) using ethyl acetate-hexane (1:9) as eluent afforded (3S, 3aS, $7 \mathrm{a} R$ )-3- $t$-butyldiphenylsilanyloxymethyl-3a,4,7,7a-tetrahydro-3 H -isobenzofuran-1-one $\mathbf{6}$ ( 1.61 g , $70 \%$ ); mp $71-74{ }^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}+19.0$ (c 9.7 in $\mathrm{CHCl}_{3}$ ); $[\alpha]_{\mathrm{D}}+19.6$ ); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.07\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.88-1.98\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.22-2.48\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 7-\mathrm{H}_{2}\right)$, $2.66-2.75(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{td}, J 2 \times 10.4$ and $4.4 \mathrm{~Hz}, 7 \mathrm{a}-\mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{dd}, J 11.4$ and 3.8 $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.88\left(1 \mathrm{H}, \mathrm{dd}, J 11.4\right.$ and $\left.3.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.16(1 \mathrm{H}, \mathrm{q}, J 3 \times 3.8 \mathrm{~Hz}, 3-\mathrm{H}), 5.76-5.90$ $(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H}), 7.30-7.49(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.61-7.67(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 19.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 22.6(\mathrm{C}-7), 25.5(\mathrm{C}-4), 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.1(\mathrm{C}-3 \mathrm{a}), 37.4(\mathrm{C}-7 \mathrm{a}) 64.3(\mathrm{C}-\mathrm{C}}\right.$ $\left.1^{\prime}\right), 84.8$ (C-3), 125.6 and 126.5 (C-5 and C-6), 127.9, 129.9, 132.6(4) and 132.9(3), 135.5(5) and 135.6(4) (Ar-C), 179.4 (C-1).
b) The reaction of $\mathbf{2 b}(1.40 \mathrm{~g}, 5.19 \mathrm{mmol})$ gave a residue ( 1.66 g ) after work-up. Chromatography on silica gel ( 160 g ) using ethyl acetate-hexane (1:19) as eluent afforded ( $3 S, 3 a S, 7 a R$ )-3-triisopropylsilanyloxymethyl-3a,4,7,7a-tetrahydro-3H-isobenzofuran-1-one 7 ( $689 \mathrm{mg}, 41 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}+3.8\left(c 3.3\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1766(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06[21 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ ], $1.92-2.02\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.24-2.45\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{B}}, 7-\mathrm{H}_{2}\right), 2.70(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H})$, $3.01(1 \mathrm{H}, \mathrm{td}, J 2 \times 8.6$ and $4.4 \mathrm{~Hz}, 7 \mathrm{a}-\mathrm{H}), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.3.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.94(1 \mathrm{H}, \mathrm{dd}, J$ 11.0 and $\left.4.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.13(1 \mathrm{H}, \mathrm{q}, J 3 \times 3.7 \mathrm{~Hz}, 3-\mathrm{H})$ and $5.65(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H}) ; \delta_{\mathrm{C}}(100$
$\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.9\left[3 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)\right] 17.9\left[3 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 22.5(\mathrm{C}-7), 25.7(\mathrm{C}-4), 34.1(\mathrm{C}-3 \mathrm{a}), 37.4$ (C-7a) 64.2 (C-1'), 85.1 (C-3), 125.7 and $126.5\left(\mathrm{C}-5\right.$ and $\mathrm{C}-6$ ) and 179.4 (C-1) (Found: $\mathrm{M}^{+}$ 324.2126. Calc. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}: M, 324.2121$ ).
c) The reaction of $\mathbf{2 c}(1.41 \mathrm{~g}, 6.18 \mathrm{mmol})$ gave a residue $(1.25 \mathrm{~g})$ after work-up. Chromatography on silica gel ( 160 g ) using ethyl acetate-hexane (1:9) as eluent afforded ( $3 S, 3 a S, 7 a R$ )-3-t-butyldimethylsilanyloxymethyl-3a,4,7,7a-tetrahydro-3H-isobenzofuran-1-one 8 ( $238 \mathrm{mg}, 14 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}+3.1\left(c 1.4\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1766(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.07$ and $0.08\left(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 0.90\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.92-2.10\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{A}}\right), 2.24-2.45(3 \mathrm{H}, \mathrm{m}, 4-$ $\left.\mathrm{H}_{\mathrm{B}}, 7-\mathrm{H}_{2}\right), 2.60-2.71(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 2.99(1 \mathrm{H}, \mathrm{td}, J 2 \times 8.5 \mathrm{and} 4.6 \mathrm{~Hz}, \quad 7 \mathrm{a}-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{dd}, J$ 11.4 and $\left.3.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.85\left(1 \mathrm{H}, \mathrm{dd}, J 11.4\right.$ and $\left.3.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.13(1 \mathrm{H}, \mathrm{q}, J 3 \times 3.9 \mathrm{~Hz}, 3-\mathrm{H})$ and $5.65(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.3$ and $5.4\left(2 \mathrm{x} \mathrm{CH}_{3}\right) 18.4\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 22.7$ (C-7), $25.8(\mathrm{C}-4), 25.9\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.3(\mathrm{C}-3 \mathrm{a}), 37.6(\mathrm{C}-7 \mathrm{a}) 64.0(\mathrm{C}-1), 85.1(\mathrm{C}-3), 125.8$ and 126.6 (C-5 and C-6) and 179.6 (C-1) (Found: $\mathrm{M}^{+}$282.1640. Calc. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}: ~ M, ~ 282.1651$ ).

General procedure for cycloadditions of furanones $2 \mathrm{a}, 2 \mathrm{~b}$ and 2 c with butadiene (b) Thermally induced cycloadditions

The butenolide ( $1-6 \mathrm{mmol}$ ) and hydroquinone ( 5 mg ) were weighed into a pressure tube. Butadiene ( $\sim 2.5 \mathrm{~cm}^{3} / \mathrm{mmol}$ butenolide) was condensed into the tube which was sealed and the mixture was heated at $210^{\circ} \mathrm{C}$ for 16 h . (CAUTION-explosion risk) The tube was cooled to $-40^{\circ} \mathrm{C}$ and opened. The mixture was warmed to $25^{\circ} \mathrm{C}$ and the excess butadiene was evaporated to leave a rubbery residue which was dissolved in dichloromethane and slurried with silica gel ( $\sim 5 \mathrm{~g} / \mathrm{g}$ residue). The solvent was evaporated to leave the adsorbed residue which was slurried in ethyl acetate-hexane (1:9) and loaded onto a column of silica gel ( $\sim 20 \mathrm{~g} / \mathrm{g}$ residue). Elution with ethyl acetate-hexane (1:9) afforded the cycloadduct.
a) The reaction of $\mathbf{2 a}(2.00 \mathrm{~g}, 5.7 \mathrm{mmol})$ afforded $(3 S, 3 \mathrm{a} S, 7 \mathrm{a} R)-3-t$-butyldiphenylsilanyloxy-methyl-3a,4,7,7a-tetrahydro-3H-isobenzofuran-1-one 6 ( $1.45 \mathrm{~g}, 63 \%$ )
b) The reaction of $\mathbf{2 b}(504 \mathrm{mg}, 1.87 \mathrm{mmol})$ afforded ( $3 S, 3 \mathrm{aS}, 7 \mathrm{a} R$ )-3-triisopropylsilanyloxy-methyl-3a,4,7,7a-tetrahydro-3H-isobenzofuran-1-one 7 ( $412 \mathrm{mg}, 68 \%$ )
c) The reaction of $\mathbf{2 c}(610 \mathrm{mg}, 2.68 \mathrm{mmol})$ afforded $(3 S, 3 \mathrm{aS}, 7 \mathrm{a} R)$-3-t-butyldimethylsilanyloxy-methyl-3a,4,7,7a-tetrahydro-3H-isobenzofuran-1-one $\mathbf{8}$ ( $492 \mathrm{mg}, 65 \%$ )

## Desilylation of cycloadduct 6

a) Acetic $\operatorname{acid}\left(1.0 \mathrm{M}\right.$ solution in $\left.\mathrm{THF}, 1.1 \mathrm{~cm}^{3}, 1.10 \mathrm{mmol}\right)$ and tetrabutylammonium fluoride ( 1.0 m solution in THF, $\left.1.1 \mathrm{~cm}^{3}, 1.10 \mathrm{mmol}\right)$ were added to a stirred solution of silyl ether $6(406 \mathrm{mg}$, 1.00 mmol ) was in $5 \mathrm{~cm}^{3}$ tetrahydrofuran at $0{ }^{\circ} \mathrm{C}$. The solution was warmed to $10^{\circ} \mathrm{C}$ and stirred for 1 h . Saturated aqueous ammonium chloride $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture was concentrated under reduced pressure. The aqueous slurry was extracted with ethyl acetate, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give a residue ( 430 mg ). Column chromatography on silica gel ( 15 g ) using ethyl acetate-hexane (3:2) as eluent afforded the alcohol 9 ( $131 \mathrm{mg}, 78 \%$ ).
b) Hydrogen fluoride [ $\left.40 \% \mathrm{HF}-\mathrm{MeCN}(40: 60), 6 \mathrm{~cm}^{3}, 8.00 \mathrm{mmol}\right]$ was added to a stirred solution of $6(1.00 \mathrm{~g}, 2.50 \mathrm{mmol})$ in acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h after which saturated aqueous sodium carbonate was added and the resulting mixture was extracted with ethyl acetate. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give an oily residue ( 992 mg ). Column chromatography on silica gel ( 50 g ) using ethyl acetate-hexane (3:2) as eluent afforded the alcohol 9 ( $315 \mathrm{mg}, 75 \%$ ).
c) Tetrabutylammonium fluoride ( 1.0 M solution in THF, $1.2 \mathrm{~cm}^{3}, 1.20 \mathrm{mmol}$ ) was added to a stirred solution of silyl ether $6(406 \mathrm{mg}, 1.00 \mathrm{mmol})$ was in $5 \mathrm{~cm}^{3}$ tetrahydrofuran at $0{ }^{\circ} \mathrm{C}$. The solution was warmed to $25^{\circ} \mathrm{C}$ and stirred until the consumption of starting material was complete (TLC). Saturated aqueous ammonium chloride $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture was concentrated under reduced pressure. The aqueous slurry was extracted with ethyl acetate, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give a residue ( 539 mg ). Chromatography on silica gel ( 50 g ) using ethyl acetate-hexane (3:2) as eluent yielded an inseparable mixture of $\mathbf{1 1 7}$ and a minor product, $119(162 \mathrm{mg}, 96 \%), \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ major $2.63-2.71(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H})$, $2.91-2.98(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J 12.4\right.$ and $\left.3.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.21(1 \mathrm{H}, \mathrm{dt}, J 2 \times 4.9$ and 3.2 $\mathrm{Hz}, 3-\mathrm{H})$, minor $3.47-3.53(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 3.96\left(1 \mathrm{H}, \mathrm{dd}, J 12.4\right.$ and $\left.3.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 4.25(1 \mathrm{H}$, ddd, $J 9.9,4.7$ and $2.7 \mathrm{~Hz}, 3-\mathrm{H})$ and mixed $1.92-2.55,3.65-3.75$ and $5.69-5.87$.

## MODEL SYNTHESIS FROM LEVOGLUCOSENONE

## (1S, 5R)-6,8-Dioxabicyclo[3.2.1]oct-2-en-4-one 3



Finely shredded newspaper was soaked in $1.5 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ for 24 h after which the mixture was stirred with an overhead stirrer. The resulting pulp was removed from the acid solution, spread out, and dried to give a fibrous residue ( 1.450 kg ). The dry paper were stuffed into a glass tube ( $50 \mathrm{~cm} \times 5$ $\mathrm{cm})$ and placed into a tube furnace. The top of the tube was fitted with an argon inlet and the bottom was attached to a 2-necked flask fitted with an argon outlet. The flask contained chloroform-water $\left(1: 1, \sim 2 \mathrm{dm}^{3}\right)$ and was immersed in an ice bath. The tube was heated to $300{ }^{\circ} \mathrm{C}$ where the temperature was maintained until the drip rate slowed ( $\sim 20 \mathrm{~min}$ ). The pyrolysis experiment was repeated nineteen times after which the combined solvents were placed in a separating funnel and the aqueous phase was extracted with chloroform. The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give the crude pyrolysate $(102 \mathrm{~g})$. Distillation through a vigreux column gave a forerun of furfural followed by a levoglucosenone fraction ( $32 \mathrm{~g}, 75-85{ }^{\circ} \mathrm{C} / 0.8 \mathrm{~mm} \mathrm{Hg}$ ) which was further purified by chromatography on silica gel ( 400 g ) using ethyl acetate-hexane (3:7) as eluent to give levoglucosenone 3 ( $12.4 \mathrm{~g}, 0.9 \%$ ), $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 3.99-4.09\left(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{\mathrm{A}}\right), 4.19(1 \mathrm{H}, \mathrm{d}, J$ $\left.7.6,7-H_{B}\right), 4.50(1 \mathrm{H}, \mathrm{d}, J 5.2 \mathrm{~Hz}, 1-\mathrm{H}), 5.13(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.87(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, 2-\mathrm{H})$ and 6.51 $(1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, 3-\mathrm{H})$.

## (1S, 2S, $7 R, 9 R$ )-10,12-Dioxatricyclo[7.2.1.0 $0^{2,7}$ ]dodec-4-en-8-one 4


a) Butadiene $\left(\sim 5 \mathrm{~cm}^{3}\right)$ was condensed into a pressure tube which held levoglucosenone ( 270 mg , 2.14 mmol ). The tube was sealed, mildly agitated, and slowly heated to $160{ }^{\circ} \mathrm{C}$ (CAUTIONexplosion risk). After 3 h the mixture was cooled to $25^{\circ} \mathrm{C}$, diluted with dichloromethane and slurried with silica gel ( 6 g ). The solvent was evaporated and the adsorbed mixture was chromatographed on silica gel ( 20 g ) using ethyl acetate-hexane (2:3) as eluent to give cycloadduct 4 ( $276 \mathrm{mg}, 72 \%$ ), $\mathrm{mp} 63-66{ }^{\circ} \mathrm{C}$ (from dichloromethane-hexane); $[\alpha]_{\mathrm{D}}-55$ (c 1.1 in $\mathrm{CHCl}_{3}$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1737(\mathrm{CO}), \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.98-2.11\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.33-2.52(2 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{2}\right), 2.67-2.75(1 \mathrm{H}$, br.d, $2-\mathrm{H}), 3.18(1 \mathrm{H}, \mathrm{t}, J 2 \times 7.2 \mathrm{~Hz}, 7-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 4.8 Hz , $\left.11-\mathrm{H}_{\mathrm{A}}\right), 4.19\left(1 \mathrm{H}, \mathrm{dd}, J 7.6\right.$ and $\left.0.4 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{B}}\right), 4.46(1 \mathrm{H}, \mathrm{dd}, J 4.8$ and $1.6 \mathrm{~Hz}, 1-\mathrm{H}), 5.13(1 \mathrm{H}, \mathrm{s}$, $9-\mathrm{H})$ and $5.60-5.69(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 20.4(\mathrm{C}-3), 24.2(\mathrm{C}-6), 38.1$ (C2), 40.7 (C-7), 67.3 (C-11), 77.3 (C-1), 101.8 (C-9), 124.1 (C-4), 124.6 (C-5) and 201.8 (C-8).

The combined mother liquors were concentrated to give a mixture of 4 and its trans epimer, ( $\sim 3: 2$ by NMR $)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.18(1 \mathrm{H}, \mathrm{t}, J 2 \times 7.0 \mathrm{~Hz}, 7-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $5.0 \mathrm{~Hz}, 11-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 4.18\left(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{B}}\right), 5.07(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H})$, minor $3.60-3.74\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{2}\right) 5.13(1 \mathrm{H}, \mathrm{s}$, $9-\mathrm{H})$, mixed $1.40-2.75\left(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}_{2}, 6-\mathrm{H}_{2}\right.$, and minor $\left.7-\mathrm{H}\right)$ and $5.50-5.81(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ), major 20.3 (C-3), $24.0(\mathrm{C}-6), 38.0(\mathrm{C}-2), 40.5(\mathrm{C}-7), 67.2(\mathrm{C}-11), 77.2$ (C-1), 101.5 (C-9), 123.9 (C-4), 124.5 (C-5) and 202.0 (C-8), minor 24.6 (C-3), 32.6 (C-6), 38.0 (C-2), 41.1 (C-7), 70.8 (C-11), 76.7 (C-1), 98.8 (C-9), 125.9 (C-4), 126.4 (C-5) and 205.9 (C-8).
b) Ethylaluminium dichloride ( 1.0 M solution in hexanes, $11.9 \mathrm{~cm}^{3}, 11.9 \mathrm{mmol}$ ) was added to a solution of levoglucosenone ( $5.0 \mathrm{~g}, 39.7 \mathrm{mmol}$ ) in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ under nitrogen. The resulting mixture was added to butadiene $\left(\sim 7 \mathrm{~cm}^{3}\right)$ in a pressure tube at $-78^{\circ} \mathrm{C}$. The tube was sealed and warmed to $0^{\circ} \mathrm{C}$. After 60 min at $0^{\circ} \mathrm{C}$ the tube was cooled to $-78^{\circ} \mathrm{C}$, opened and water $\left(2 \mathrm{~cm}^{3}\right)$ and $1 \mathrm{M} \mathrm{HCl}\left(2 \mathrm{~cm}^{3}\right)$ were added. The mixture was warmed to $25^{\circ} \mathrm{C}$, extracted with dichloromethane and the organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to give the cycloadduct ( 5.70 g ). Chromatography on silica gel ( 250 g ) using ethyl acetate-hexane (3:7) as eluent furnished $\mathbf{1 3 6}(4.59 \mathrm{~g}, 64 \%)$.
(3S, 3aS, 7aR)-3-t-Butyldiphenylsilanyloxymethyl-3a,4,7,7a-tetrahydro-3H-isobenzofuran-10110


Diisobutylaluminium hydride ( 1.5 M in toluene, $0.40 \mathrm{~cm}^{3}, 0.60 \mathrm{mmol}$ ) was slowly added to a stirred solution of $6(200 \mathrm{mg}, 0.49 \mathrm{mmol})$ in toluene $\left(4 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$. After 20 min the reaction was quenched with 1 m HCl and warmed to $25^{\circ} \mathrm{C}$. The mixture was extracted with ethyl acetate and the organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure to give a residue ( 230 mg ). Chromatography on silica gel ( 20 g ) using ethyl acetate-hexane (3:7) as eluent, afforded lactol $10(183 \mathrm{mg}, 91 \%)$ as a mixture ( $\sim 2: 1$ by NMR) of diastereomers, $[\alpha]_{\mathrm{D}}-11.1$ (c 1.0 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major $1.08\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $2.66-2.76(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H})$, minor $1.06\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.42-2.53(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $5.05(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H})$, mixed $1.75-2.35\left(5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 5-\mathrm{H}_{2}\right.$ and $\left.6-\mathrm{H}\right), 3.43-3.90(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$ and $\left.10-\mathrm{H}_{2}\right), 5.52-5.75(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $4-\mathrm{H}), 7.30-7.48(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.61-7.67(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major $19.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 22.8(\mathrm{C}-2), 23.3(\mathrm{C}-5), 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 32.1(\mathrm{C}-$
6), 41.7 (C-1) 64.5 (C-10), 83.4 (C-7), 103.0 (C-9), 123.9 and 125.2 (C-3 and C-4), minor 19.2 $\left[C_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 23.1(\mathrm{C}-2), 23.1(\mathrm{C}-5), 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.8(\mathrm{C}-6), 40.2(\mathrm{C}-1) 66.7(\mathrm{C}-10), 83.1(\mathrm{C}-7) \text {, }}\right.$ 104.1 (C-9), 124.3 and 124.9 (C-3 and C-4), mixed 127.5(6), 127.6(0) and 127.7(1), 129.5(4), 129.5(6), 129.7(4) and 129.8(0), 132.9(5) and 133.0(7), 135.5(5), 135.5(9) and 135.6(4) (Ar-C) [Found (FAB): $\mathrm{M}^{+}-\mathrm{OH}, 391.2079$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}: M, 391.2085$ ].
(4S, 5R)-4-[(S)-2-t-Butyldiphenylsilanyloxy-1-hydroxyethyl]-5-(1,3-dithiolan-2-yl) cyclohexene 11


1,2-Ethanediol ( $0.04 \mathrm{~cm}^{3}, 0.04 \mathrm{mg}, 0.48 \mathrm{mmol}$ ) and titanium tetrachloride ( 1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.10$ $\left.\mathrm{cm}^{3}, 0.10 \mathrm{mmol}\right)$ were added sequentially to a solution of $10(148 \mathrm{mg}, 0.36 \mathrm{mmol})$ in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 15 min at $-78^{\circ} \mathrm{C}$, aqueous saturated sodium hydrogen carbonate was added and the resulting mixture was warmed to room temperature. The mixture was extracted with dichloromethane, the organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give a residue ( 178 mg ). Purified by chromatography on silica gel ( 20 g ) using ethyl acetate-hexane (1:9) as eluent gave the thioacetal $\mathbf{1 1}(140 \mathrm{mg}, 80 \%)$ as a gum, $[\alpha]_{\mathrm{D}}-3.6\left(c 3.4\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3557(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.07[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.57(1 \mathrm{H}$, br.s, -OH$), 1.67-1.77\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.98-2.18\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}, 6-\mathrm{H}_{\mathrm{A}}\right.$ and $5-\mathrm{H}), 2.26-2.33(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.34-2.42\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.13-3.25\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}-\mathrm{H}_{2}\right.$ and $\left.5{ }^{\prime \prime}-\mathrm{H}_{2}\right)$, $3.57\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.6.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.72\left(1 \mathrm{H}, \mathrm{dd}, J 10.1\right.$ and $\left.2.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 3.79-3.85(1 \mathrm{H}$, $\left.\mathrm{m}, 1^{\prime}-\mathrm{H}\right), 5.00(1 \mathrm{H}, \mathrm{d}, J 9.8 \mathrm{~Hz}, 2 \mathrm{H}-\mathrm{H}), 5.40-5.49(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.57-5.65(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $7.37-7.49(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.63-7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 19.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right]$, $26.8\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 28.1(\mathrm{C}-3), 29.4(\mathrm{C}-6), 38.0(\mathrm{C}-4 " \text { and } \mathrm{C}-5 "), 38.3(\mathrm{C}-5), 45.3(\mathrm{C}-4), 58.4(\mathrm{C}-2 ") \text {, }}\right.$ 66.9 (C-2'), 70.8 (C-1'), 124.7 (C-2), 126.7 (C-1), 127.8, 129.8, 133.0, 135.5(2) and 135.5(5) (ArC) (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$, 427.1227. Calc. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}$ : $M$, 427.1219)
(4S, 5R)-4-[(S)-2-t-Butyldiphenylsilanyloxy-1-hydroxyethyl]-5-hydroxymethylcyclohexene 12


Lithium borohydride ( $62 \mathrm{mg}, 3.4 \mathrm{mmol}$ ) was added to a solution of $6(400 \mathrm{mg}, 0.99 \mathrm{mmol})$ in tetrahydrofuran $\left(20 \mathrm{~cm}^{3}\right)$. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 85 h . The reaction mixture was diluted with water, extracted with dichloromethane and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure to give a residue ( 440 mg ) which was purified by column chromatography on silica gel ( 40 g ) using ethyl acetate-hexane (1:4) as eluent to give the $\operatorname{diol} 12(259 \mathrm{mg}, 63 \%)$ as an oil, $[\alpha]_{\mathrm{D}}+14.4$ (c 2.2 in $\mathrm{CHCl}_{3}$ ); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$; $1.09\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.81-2.28\left(6 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}_{2}\right), 3.05(2 \mathrm{H}$, br.s, $2 \times \mathrm{OH}), 3.52$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.4.8 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 3.62-3.69\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.73-3.82\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{B}}\right.$, $\left.1 "-\mathrm{H}_{\mathrm{B}}\right), 5.50-5.65(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2-\mathrm{H}), 7.38-7.49(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.66-7.70(4 \mathrm{H}, \mathrm{m}$,
 C-6), 35.7 (C-5), 37.8 (C-4), 63.3 (C-1"), 66.8 (C-2'), 72.6 (C-1'), 125.3 and 125.8 (C-1 and C-2), 127.8, 129.9, 133.1(0) and 133.1(3), 135.5(2) and 135.5(4) (Ar-C).
(4S, 5R)-4-[(S)-2-t-Butyldiphenylsilanyloxy-1-hydroxyethyl]-5-triisopropylsilanyloxymethylcyclohexene 13


Triisopropylsilyl chloride ( $0.63 \mathrm{~cm}^{3}, 2.95 \mathrm{mmol}$ ) and imidazole ( $219 \mathrm{mg}, 3.21 \mathrm{mmol}$ ) were added to a stirred solution of $\mathbf{1 2}(1.10 \mathrm{~g}, 2.68 \mathrm{mmol})$ in acetonitrile $\left(100 \mathrm{~cm}^{3}\right)$. After 5 h at $25{ }^{\circ} \mathrm{C}$, the solvent was removed under reduced pressure and water was added. The mixture was extracted with dichloromethane, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give an oil ( 2.53 g ). Chromatography on silica gel ( 150 g ) using ethyl acetatehexane (1:19) as eluent furnished the $l^{\prime \prime}$-triisopropylsilyl ether 13 ( $1.454 \mathrm{~g}, 96 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}$ $+1.3\left(c 1.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3329(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 0.98-1.20[30 \mathrm{H}, \mathrm{m}, 3$ x $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ ], $1.63(1 \mathrm{H}$, br.s, OH$), 1.78-2.15\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.16-2.29$ $\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.29-2.40(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.52\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.5.6 \mathrm{~Hz}, 1 "-\mathrm{H}_{\mathrm{A}}\right), 3.62-3.80(3 \mathrm{H}$, $\mathrm{m}, 1^{\prime}-\mathrm{H}$ and $\left.2^{\prime}-\mathrm{H}_{2}\right), 3.85\left(1 \mathrm{H}\right.$, dd, $J 10.0$ and $\left.8.1 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 5.50-5.60(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2-\mathrm{H})$, $7.33-7.47(6 H, \mathrm{~m}, \mathrm{Ar}-\mathrm{H})$ and $7.64-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 11.9(3 \mathrm{x}$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 18.0\left(3 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 25.4(\mathrm{C}-3), 26.9\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.2(\mathrm{C}-6), 34.3}\right.$ (C-5), 37.8 (C-4), 63.5 (C-1'), 66.4 (C-2'), 73.3 (C-1'), 125.3 and 126.0 (C-1 and C-2), 127.6(5) and

## (4S, 5R)- 4-[(S)-2,2-Dimethyl-1,3-dioxolan-4-yl]-5-hydroxymethyl-cyclohexene 14



Cycloadduct 6 ( $408 \mathrm{mg}, 1.00 \mathrm{mmol}$ ) was added to a stirred suspension of lithium aluminium hydride ( $160 \mathrm{mg}, 4.20 \mathrm{mmol}$ ) in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 60 min . Saturated aqueous sodium sulfate was added dropwise until flocculation occurred and the resulting mixture was stirred for 60 min . The mixture was filtered through layers of Celite and $\mathrm{MgSO}_{4}$ which were rinsed with hot methanol-chloroform (50:50). The combined filtrate was evaporated under reduced pressure to give the crude triol which was dissolved in acetone ( $5 \mathrm{~cm}^{3}$ ) and toluene-$p$-sulfonic acid ( 10 mg ) was added. After stirring for 16 h at $25^{\circ} \mathrm{C}$, anhydrous copper sulfate (200 mg ) was added and the mixture refluxed for 5 h . Triethylamine ( $2 \mathrm{~cm}^{3}$ ) was added, and the mixture was filtered through a Celite pad, which was washed with ethyl acetate. Removal of the solvent under reduced pressure gave a residue ( 570 mg ) which was loaded onto a silica column ( 50 g ) and eluted with ethyl acetate-hexane (1:4) to give the acetonide $\mathbf{1 4}(60 \mathrm{mg}, 28 \%)$ as an oil, $[\alpha]_{\mathrm{D}}+13.9$ (c 3.6 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3442(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.40(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.69-1.80\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 1.90-2.01(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.02-2.30\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}, 5-\mathrm{H}, 6-\mathrm{H}_{2}\right)$, $2.81(1 \mathrm{H}$, br.s, OH$), 3.58\left(1 \mathrm{H}, \mathrm{t}, J 2 \times 7.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.50-3.83\left(2 \mathrm{H}, \mathrm{m}, 1 \mathrm{l}-\mathrm{H}_{2}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, J$ 7.9 and $\left.5.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{\mathrm{B}}\right), 4.13\left(1 \mathrm{H}\right.$, ddd, J $9.7,7.9$ and $\left.5.9 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right)$, $5.52-5.62(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $5.64-5.72(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.7\left(\mathrm{CH}_{3}\right), 25.9(\mathrm{C}-6), 26.8\left(\mathrm{CH}_{3}\right), 27.2(\mathrm{C}-3)$, 37.6 (C-5), 38.9 (C-4), 64.4 (C-1"), 69.4 (C-5'), 75.5 (C-4'), 109.0 (C-2'), 124.3 (C-2), 126.5 (C-1) (Found: $\mathrm{M}^{+}, 212.1421$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}: M, 212.1412$ )


Ozone was bubbled through a solution of $6(1.10 \mathrm{~g}, 2.71 \mathrm{mmol})$ in methanol $\left(100 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ until the solution turned blue. Nitrogen was then bubbled through the solution as it was warmed to $25^{\circ} \mathrm{C}$. Sodium borohydride ( $450 \mathrm{mg}, 12.16 \mathrm{mmol}$ ) was added and the solution was stirred for 15 min . Water was added and the volatile media removed under reduced pressure. The mixture was extracted with dichloromethane, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give the crude diol $(1.35 \mathrm{~g})$. Column chromatography on silica gel ( 75 g ) using ethyl acetate-hexane (4:1) as eluent afforded the diol $\mathbf{1 6}(1.01 \mathrm{~g}, 88 \%)$ as an oil, $[\alpha]_{\mathrm{D}}+17.2\left(c 1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3437(\mathrm{OH})$ and $1760(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.07\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.45-1.56\left(1 \mathrm{H}, \mathrm{m}, 1 \mathrm{l}-\mathrm{H}_{\mathrm{A}}\right), 1.67(1 \mathrm{H}$, br.s, OH$), 1.74-1.92\left(3 \mathrm{H}, \mathrm{m}, 1\right.$ ' $-\mathrm{H}_{2}$ and 1 " $-\mathrm{H}_{\mathrm{B}}$ ), $2.52(1 \mathrm{H}$, br.s, OH$), 2.66-2.76(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.11(1 \mathrm{H}, \mathrm{td}, J 2 \times 8.6$ and $6.4 \mathrm{~Hz}, 3-\mathrm{H})$, $3.61-3.92\left(6 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime}-\mathrm{H}_{2}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}_{2}\right), 4.36(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $3.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.38-7.48(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.63-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.4$ (C-1'), 30.4 (C-1"), 37.2 (C-4), 40.6 (C-3), 60.4 (C-2"), 61.1 (C-2'), 64.5 (C-1"'), 83.0 (C-5), 127.9, 130.0, 132.5(7) and 132.8(2), 135.5(7) and 135.6(3) (Ar-C), 179.7 (C-1) (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$, 385.1477. Calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{Si}$ : $M 385.1471$ )
(3R, 4S)-5-[(S)-t-Butyldiphenylsilanyloxymethyl]-3,4-bis[2-(3,5-dinitrobenzoyl)ethyl]-dihydrofuran-2-one 17


4-Dimethylaminopyridine ( $20 \mathrm{mg}, 0.16 \mathrm{mmol}$ ) and freshly prepared 3,5 -dinitrobenzoyl chloride $(1.54 \mathrm{~g}, 6.66 \mathrm{mmol})$ were added to a stirred solution of $\mathbf{1 6}(400 \mathrm{mg}, 0.90 \mathrm{mmol})$ in dry pyridine ( 10 $\mathrm{cm}^{3}$ ). After stirring the mixture for 3 h at $25^{\circ} \mathrm{C}$, toluene was added and the mixture was concentrated under reduced pressure. Water was added to the remaining residue and it was extracted with ethyl acetate. The organic extract was washed with saturated aqueous ammonium chloride and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give an
oil ( 1.62 g ). Purification by column chromatography on silica gel ( 750 g ) using ethyl acetatehexane (1:4) as eluent yielded the bis(3,5-dinitrobenzoate) $\mathbf{1 7}$ ( $604 \mathrm{mg}, 80 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}+7.1$ (c 1.4 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1734$ and $1773(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.00[9 \mathrm{H}, \mathrm{s}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, $1.84-1.96\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 2.07-2.22\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 2.24\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right)$, $2.73-2.83(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.14(1 \mathrm{H}, \mathrm{dd}, J 15.2$ and $8.2 \mathrm{~Hz}, 3-\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and 3.1 Hz , $\left.1 "-H_{\mathrm{A}}\right), 3.95\left(1 \mathrm{H}, \mathrm{dd}, J 11.5\right.$ and $\left.4.2 \mathrm{~Hz}, 1{ }^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 4.40(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $3.2 \mathrm{~Hz}, 5-\mathrm{H}), 4.53(2 \mathrm{H}, \mathrm{t}$, $\left.J 2 \times 6.8 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}_{2}\right), 4.60-4.77\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 7.32-7.48(6 \mathrm{H}, \mathrm{m}, \mathrm{TPS}$ Ar-H), 7.55-7.65(4H, m, TPS Ar-H), $9.10(4 \mathrm{H}, \mathrm{t}, J 2 \times 2.0 \mathrm{~Hz}, \mathrm{DNP} \mathrm{Ar}-\mathrm{H})$ and $9.21(2 \mathrm{H}, \mathrm{dt}, J 8.6$ and $2 \times 2.0 \mathrm{~Hz}$, DNP $\mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.2\left[C\left(\mathrm{CH}_{3}\right)_{3}\right], 25.0\left(\mathrm{C}-1^{\prime}\right), 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.2\left(\mathrm{C}-1{ }^{\prime \prime}\right), 37.0(\mathrm{C}-4)$, 39.3 (C-3), 64.1 (C-2"), 64.4 (C-1"'), 64.6 (C-2'), 81.9 (C-5), 122.5(0) and 122.6(5), 127.9(1) and 127.9(3), 129.3(6) and 129.3(9), 130.1(1) and 130.1(5), 132.1(3) and 132.5(4), 133.2(7) and 133.5(4), 135.3(5) and 135.4(9), 148.7(1) and 148.7(6) (Ar-C), $2 \times 162.5$ [ $2 \times \mathrm{OC}(\mathrm{O}) \mathrm{Ar}]$ and 177.0 (C-2) [Found (FAB): $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$, 773.1372. Calc. for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{15} \mathrm{Si}$ : M, 773.1399]
(3R, 4S)-5-[(S)-t-Butyldiphenylsilyloxymethyl]-3,4-bis(2-methoxyethoxymethoxyethyl)-dihydrofuran-2-one 18


Methoxyethoxymethylchloride $\left(0.15 \mathrm{~cm}^{3}, 164 \mathrm{mg}, 1.31 \mathrm{mmol}\right)$ and diisopropylethylamine $(0.24$ $\left.\mathrm{cm}^{3}, 178 \mathrm{mg}, 1.38 \mathrm{mmol}\right)$ were added to diol $16(200 \mathrm{mg}, 0.45 \mathrm{mmol})$ in dichloromethane $\left(3 \mathrm{~cm}^{3}\right)$ and stirred at $25{ }^{\circ} \mathrm{C}$ for 16 h . Then saturated aqueous ammonium chloride was added and the mixture was extracted with dichloromethane. The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give an oil ( 340 mg ). Chromatography on silica gel ( 20 g ) using ethyl acetate-hexane (3:2) as eluent, afforded 18 ( $257 \mathrm{mg}, 92 \%$ ) as an oil, $[\alpha]_{\mathrm{D}}+10.5$ (c 1.9 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1771(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.48-1.60\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}_{\mathrm{A}}\right), 1.76-1.87\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}_{\mathrm{B}}\right), 1.93-2.04\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{\mathrm{B}}\right)$, $2.63-2.73(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{q}, J 3 \mathrm{x} 8.0 \mathrm{~Hz}, 3-\mathrm{H}), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.47-3.76\left(13 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime}-\mathrm{H}_{2}, 1{ }^{1 "}-\mathrm{H}_{\mathrm{A}}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J 11.4\right.$ and $3.5 \mathrm{~Hz}, 1{ }^{\prime \prime \prime}-$ $\left.\mathrm{H}_{\mathrm{B}}\right), 4.32(1 \mathrm{H}, \mathrm{q}, J 3 \times 3.5 \mathrm{~Hz}, 5-\mathrm{H}), 4.64\left(2 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, $7.35-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.62-7.65(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.2\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$,
 65.4 (C-2', C-2" and C-1'"), 66.8, 66.9, 71.7 and $71.8\left(2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 82.3(\mathrm{C}-5), 95.4$ and 95.5

# (3R, 4S)-5-[(S)-t-Butyldiphenylsilyloxymethyl]-3,4-bis(2-methoxyethoxymethoxyethyl)-dihydrofuran-2-ol 21 



Diisobutylaluminium hydride ( 1.5 M in toluene, $1.30 \mathrm{~cm}^{3}, 1.95 \mathrm{mmol}$ ) was added to a stirred solution of $\mathbf{1 8}(1.00 \mathrm{~g}, 1.62 \mathrm{mmol})$ in toluene $\left(100 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 10 min the solution was acidified ( pH 1 ) with 3 m HCl and the mixture was warmed to room temperature. Water was added and the mixture extracted with ethyl acetate. The organic extract was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give the lactol $(1.23 \mathrm{~g})$ which was further purified by column chromatography on silica gel ( 30 g ) using ethyl acetate as eluent to give the lactol $21(0.94 \mathrm{~g}, 93 \%)$ as a mixture ( $\sim 4: 1$ by NMR) of diastereomers, $[\alpha]_{\mathrm{D}}+6.6$ (c 1.4 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3440(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major $1.07\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $2.57-2.69(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.77-3.83(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.23(1 \mathrm{H}, \mathrm{d}, J 5.1 \mathrm{~Hz}, 2-\mathrm{H})$, minor $1.05[9 \mathrm{H}, \mathrm{s}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ ], $2.30-2.40(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.82(1 \mathrm{H}$, br.s, OH$), 4.12-4.17(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{d}, J$ $4.4 \mathrm{~Hz}, 2-\mathrm{H})$, mixed $1.33-1.45$ and $1.46-1.92\left(5 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}_{2}, 1^{\prime}-\mathrm{H}_{2}\right.$ and OH$), 2.17-2.26(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 3.15-3.75\left(20 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime}-\mathrm{H}_{2}, 1^{\prime \prime}-\mathrm{H}_{2}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.2 \times \mathrm{OCH}_{3}\right), 4.58-4.80(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{O}\right), 7.33-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.64-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ major $19.4\left[C_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 26.1(\mathrm{C}-1 '), 27.0\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.7(\mathrm{C}-1 "), 36.6(\mathrm{C}-4), 46.3(\mathrm{C}-3), 59.1(2 \mathrm{x}, ~}^{2}\right.$ $\left.\mathrm{OCH}_{3}\right), 84.0(\mathrm{C}-5)$, minor $19.4\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 25.5(\mathrm{C}-1 '), 27.7\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.5(\mathrm{C}-1 "), 38.2(\mathrm{C}-4), 43.71020}\right.$ (C-3), $59.1\left(2 \times \mathrm{OCH}_{3}\right), 84.7(\mathrm{C}-5)$, mixed $65.2,66.4,66.5,66.6$ and $67.0\left(\mathrm{C}-2 ', \mathrm{C}-2 "\right.$ and $\left.\mathrm{C}-1{ }^{\prime \prime}\right)$, 67.0(2), 67.0(4), 67.1(0), 67.1(6), 72.0(1) and 72.0(5) ( $2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O} 95.6(1)$, 95.6(4), and 95.6(8) $\left(2 \times \mathrm{OCH}_{2} \mathrm{O}\right), 99.7$ and 101.7 (C-2) and 127.8, 128.0, 129.9, 130.0, 130.1, 133.1, 133.7, 133.8, 135.3, 135.5 and 135.9 (Ar-C) [Found (FAB): $\mathrm{M}^{+}+{ }^{85} \mathrm{Rb}, 705$. Calc. for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{9} \mathrm{Si}^{85} \mathrm{Rb}$ : $M, 705$ ].
(2S, 3S, 4R)-1-t-Butyldiphenylsilanyloxy-4-(1,3-dithiolan-2-yl)-6-methoxyethoxymethoxy-3-(methoxyethoxymethoxyethan-2-yl)hexan-2-ol 22


1,2-Ethanedithiol ( $0.04 \mathrm{~cm}^{3}, 45 \mathrm{mg}, 0.48 \mathrm{mmol}$ ) and titanium tetrachloride $\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.37$ $\left.\mathrm{cm}^{3}, 0.37 \mathrm{mmol}\right)$ were added sequentially to a stirred solution of $21(200 \mathrm{mg}, 0.32 \mathrm{mmol})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $-84{ }^{\circ} \mathrm{C}$. After 5 min , the reaction was quenched with saturated aqueous sodium hydrogen carbonate and the resultant mixture was extracted with dichloromethane. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give a residue ( 320 mg ) which was chromatographed on silica gel ( 20 g ) using ethyl acetate-hexane (2:3) as eluent to give the thioacetal 22 ( $71 \mathrm{mg}, 32 \%$ ) as a glassy solid, $[\alpha]_{\mathrm{D}}-34.5$ (c 1.25 in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3498(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.50-1.82$ $\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right.$ and $\left.1^{\prime}-\mathrm{H}_{2}\right), 1.94(1 \mathrm{H}$, br.s, OH$), 2.23-2.35(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.38-2.51(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $2.63-3.00\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{4}-\mathrm{H}_{2}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}_{2}\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.45-3.77(14 \mathrm{H}$, $\left.\mathrm{m}, 1-\mathrm{H}_{2}, 6-\mathrm{H}_{2}, 2^{\prime}-\mathrm{H}_{2}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.86-3.94(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.70(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.10\left(1 \mathrm{H}, \mathrm{d}, J 4.1 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 7.34-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.65-7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.2\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 25.3(\mathrm{C}-4 " \text { or } \mathrm{C}-5 "), 26.8\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.0 \text { and } 27.4(\mathrm{C}-1 ' \text { and }}\right.$ C-5), 35.4 (C-4" or C-5"), 40.0 (C-3), 45.0 (C-4), 58.9 and $59.0\left(2 \times \mathrm{OCH}_{3}\right), 66.1,66.2,66.4,66.7$ and $66.8\left(\mathrm{C}-1, \mathrm{C}-6, \mathrm{C}-2\right.$ and $\left.2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 71.7$ and $71.8\left(2 \mathrm{x} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 84.9(\mathrm{C}-2), 88.5$ (C-2"), 95.3 and $95.4\left(2 \mathrm{X} \mathrm{OCH}_{2} \mathrm{O}\right), 127.7,129.6(3)$ and 129.6(5), 133.4 and 135.6 (Ar-C) [Found (FAB): $\mathrm{M}^{+}+{ }^{85} \mathrm{Rb}, 781$. Calc. for $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Si}^{85} \mathrm{Rb}$ : $\left.M, 781\right]$.

## (1S, 2S, $7 R, 8 R, 9 R$ )-10,12-dioxatricyclo[7.2.1.0 $0^{2,7}$ ]dodec-4-en-8-yl-toluene- $p$-sulfone 25



Toluene-p-sulfonyl chloride ( $3.70 \mathrm{~g}, 19.40 \mathrm{mmol}$ ) and 4-dimethylaminopyridine ( $20 \mathrm{mg}, 0.16$ $\mathrm{mmol})$ were added to a solution of $\mathbf{2 3}(360 \mathrm{mg}, 1.98 \mathrm{mmol})$ in dry pyridine $\left(25 \mathrm{~cm}^{3}\right)$. The solution was stirred at $25^{\circ} \mathrm{C}$ for 18 h after which toluene was added and the volatile material was removed under reduced pressure. Water was added to the residue and the mixture was extracted with ethyl
acetate, washed with saturated ammonium chloride and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure. The residue ( 872 mg ) was chromatographed on silica gel ( 60 g ) using ethyl acetate-hexane (1:4) as eluent to give the tosylate 25 ( $648 \mathrm{mg}, 97 \%$ ), mp $164-166{ }^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[\alpha]_{\mathrm{D}}+25.9$ (c 1.7 in $\mathrm{CHCl}_{3}$ ); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1039,1176$ and 1362 $\left(\mathrm{SO}_{2}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.61\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 1.70-1.78(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.91-2.00(1 \mathrm{H}, \mathrm{m}, 3-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 2.15-2.28\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.40(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $4.4 \mathrm{~Hz}, 7-\mathrm{H}) 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right)$, $2.48-2.59\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 3.80\left(1 \mathrm{H}, \mathrm{dd}, J 7.6\right.$ and $\left.5.2 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{A}}\right), 3.88(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 0.8 Hz , $\left.11-\mathrm{H}_{\mathrm{B}}\right), 4.27(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and $2.4 \mathrm{~Hz}, 8-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{dd}, J 5.2$ and $2.4 \mathrm{~Hz}, 1-\mathrm{H}), 5.31(1 \mathrm{H}, \mathrm{d}, J$ $2.4 \mathrm{~Hz}, 9-\mathrm{H}), 5.44-5.51(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.67-5.71(1 \mathrm{H} . \mathrm{m}, 4-\mathrm{H}), 7.31(2 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{Ar}-m-\mathrm{H})$ and 7.77 (2H, br.d, Ar-o-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 21.6\left(\mathrm{Ar}^{2}-\mathrm{CH}_{3}\right), 25.1(\mathrm{C}-3), 25.6(\mathrm{C}-6), 26.3(\mathrm{C}-7), 34.5$ (C-2), 67.2 (C-11), 76.5 (C-8), 79.0 (C-1), 100.0 (C-9), 124.0 (C-5), 125.6 (C-4), 125.6, 127.8, 129.7 and 144.7 (Ar-C) (Found: C, 60.6, H, 5.9, S, $9.4 \%, \mathrm{M}^{+}$, 336. Calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}$ : C, 60.7, H, 6.0, S, $9.5 \%, M, 336)$.

## (1S, 2S, 9R)-10,12-Dioxatricyclo[7.2.1.0 ${ }^{2,7}$ ]dodeca-4,7-diene 26



Lithium cyanide ( 0.5 m in $N, N$-dimethylformamide, $7.5 \mathrm{~cm}^{3}$ ) was added to a solution of $\mathbf{2 5}$ (250 $\mathrm{mg}, 0.74 \mathrm{mmol}$ ) in $N, N$-dimethylformamide and heated at $80^{\circ} \mathrm{C}$ for 15 h . The solution was cooled, diluted with diethyl ether, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed under reduced pressure to give a solid residue ( 107 mg ) which was purified by chromatography on silica gel ( 10 g ) using ethyl acetate-hexane (1:9) as eluent to yield the olefin 26 ( $85 \mathrm{mg}, 70 \%$ ); $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), 2.08\left(1 \mathrm{H}, \mathrm{ddd}, J 5.2,4.8\right.$ and $\left.1.2 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.20-2.31(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.47(1 \mathrm{H}, \mathrm{ttd}, J$ $14.2,2 \times 4.5$ and $\left.2 \times 2.4 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{B}}\right), 2.55-2.65\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.84-2.94\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}},\right), 3.70$ $\left(1 \mathrm{H}, \mathrm{dd}, J 7.2\right.$ and $\left.2.0 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{A}}\right), 3.98\left(1 \mathrm{H}, \mathrm{dd}, J 7.2\right.$ and $\left.6.0 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{B}}\right), 4.39(1 \mathrm{H}, \mathrm{dt}, J 6.0$ and 2 x $0.8 \mathrm{~Hz}, 1-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{d}, J 3.2 \mathrm{~Hz}, 9-\mathrm{H}), 5.59-5.67(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$ and $5.68-5.80(2 \mathrm{H} . \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 30.4(\mathrm{C}-3), 32.9(\mathrm{C}-6), 42.4(\mathrm{C}-2), 68.0(\mathrm{C}-11), 75.0(\mathrm{C}-8), 96.3$ (C-9), 120.2 (C-8), 125.4 and 126.5 (C-4 and C-5) and 137.3 (C-7) (Found $\mathrm{M}^{+} 164, \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $M, 164$ )

$\mathrm{CrO}_{3}\left(8 \mathrm{M}, 5 \mathrm{~cm}^{3}\right)$ was added to a solution of $\mathbf{3 0}(421 \mathrm{mg}, 2.15 \mathrm{mmol})$ in acetone $\left(15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The resulting mixture was kept at $-4^{\circ} \mathrm{C}$ for 15 h after which excess isopropyl alcohol was added and the volume was reduced in vacuo. Ethyl acetate was added to the aqueous slurry and the resulting mixture was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give a green residue ( 360 mg ). Chromatography on silica gel ( 45 g ) using ethyl acetate-hexane ( $3: 7$ to $3: 2$ gradient), gave acid 32 ( $122 \mathrm{mg}, 27 \%$ ), $\mathrm{mp} 82-85^{\circ} \mathrm{C}$ (from ethyl acetate), $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.79-1.90(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.96-2.09\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.19-2.42$ $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.49-2.67\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.8-\mathrm{H}\right), 2.66-2.76(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{dd}, J 7.1$ and $\left.5.4 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{A}}\right), 4.00\left(1 \mathrm{H}\right.$, dd, $J 7.1$ and $\left.0.6 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{B}}\right), 4.37-4.45(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $5.62-5.66(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and $9-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 24.6(\mathrm{C}-7), 25.9$ and $26.5(\mathrm{C}-3$ and C-6), 35.4 (C-2), 48.2 (C-8), 67.9 (C-11), 76.9 (C-1), 100.6 (C-9), 124.5 and 126.6 (C-4 and C-5) (Found: $\mathrm{M}^{+}, 210.0892$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}: M, 210.0907$ ).

## (1S, 2S, $7 R, 8 S, 9 R$ )-10,12-Dioxatricyclo[7.2.1.0 ${ }^{2,7}$ ]dodec-4-ene-8-carbaldehyde 31



Dimethyl sulfoxide $\left(0.17 \mathrm{~cm}^{3}, 187 \mathrm{mg}, 2.4 \mathrm{mmol}\right)$ was added to a stirred solution of oxalyl chloride $\left(0.11 \mathrm{~cm}^{3}, 152 \mathrm{mg}, 1.2 \mathrm{mmol}\right)$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 10 min a solution of $\mathbf{3 0}$ $(196 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ was added and the solution was stirred for 15 min . Triethylamine ( $0.5 \mathrm{~cm}^{3}, 363 \mathrm{mg}, 3.5 \mathrm{mmol}$ ) was added and the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 $\min$ then warmed to $0^{\circ} \mathrm{C}$ over 10 min . Cold saturated aqueous ammonium chloride was added and the mixture was extracted with dichloromethane. The organic extract was washed with cold 0.5 m HCl followed by cold aqueous saturated sodium hydrogen carbonate, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give a residue ( 262 mg ) which was chromatographed on silica gel ( 25 g ) using ethyl acetate-hexane (1:9) as eluent to give the carbaldehyde 31 ( $185 \mathrm{mg}, 95 \%$ ), mp $72 — 75^{\circ} \mathrm{C}$ (from dichloromethane-hexane); $[\alpha]_{\mathrm{D}} 125.4$ (c 1.0
in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1712(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.89-1.97(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 1.98-$ $2.07\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.13-2.24\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{A}}\right), 2.29-2.40\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{B}}\right), 2.40-2.46(1 \mathrm{H}, \mathrm{m}, 8-$ H), $2.46-2.52\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right), 2.75(1 \mathrm{H}, \mathrm{q}, J 3 \times 6.5 \mathrm{~Hz}, 7-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $5.3 \mathrm{~Hz}, 11-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 4.03\left(1 \mathrm{H}, \mathrm{dd}, J 7.3\right.$ and $\left.0.7 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{B}}\right), 4.43(1 \mathrm{H}, \mathrm{dd}, J 5.3$ and $1.2 \mathrm{~Hz}, 1-\mathrm{H}), 5.62-5.75(3 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and $9-\mathrm{H}$ ) and $9.71\left(1 \mathrm{H}, \mathrm{d}, J 3.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{\mathrm{A}}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 25.0(\mathrm{C}-3), 26.3$ (C7), 26.9 (C-6), 35.1 (C-2), 58.9 (C-8), 68.0 (C-11), 77.3 (C-1), 101.0 (C-9), 125.5 and 126.0 (C-4 and C-5) and 203.3 (C-1'), (Found: C, 67.8, H, 7.4\%, $\mathrm{M}^{+}$194. Calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ : C, 68.0, H , $7.3 \%, M, 194)$.

## CRYSTAL STRUCTURE DETERMINATION OF 30

Data were collected at 295 K using a Nonius Kappa CCD with 1.5 kW graphite monochromated Mo radiation. The strategy for the data collection was evaluated using COLLECT. The detector to crystal distance was 40 mm . Exposure times of 40 s per frame and scan widths of $1^{\circ}$ were used throughout the data collection. Three sets of data were collected: a $182^{\circ} \phi$-scan and two $\omega$-scans. The data were scaled and reduced using $D E N Z O-S M N$. Unit cell dimensions were refined on 1291 strong, well-measured reflections in the $\theta$-range $1.02^{\circ}$ to $27.5^{\circ}$ (resolution between $20.00 \AA$ and $0.77 \AA$ ). The chiral space group $P 2_{1} 2_{1} 2_{1}$ was chosen on the basis of the systematic absences. The structure was solved and refined using SHELX97. Hydrogen atoms were placed in calculated positions and refined as riding atoms. Molecular graphics were generated using X-SEED.

Although the product $\mathbf{3 0}$ was expected to be racemic, crystallization of the specimen of the compound selected from the crystal batch for X-ray analysis in the chiral space group $P 2_{1} 2_{1} 2_{1}$ required the molecules in the chosen crystal to be homochiral. This indicated that spontaneous resolution of the product had occurred, the batch consisting of a mixture of crystals containing exclusively left- and right-handed molecules in equimolar proportions. After solution and refinement of the structure, the Flack parameter was not definitive as regards absolute structure (an expected result for a crystal containing only $\mathrm{C}, \mathrm{H}, \mathrm{O}$ atoms) and the recommended procedure of merging the Friedel opposites was therefore followed (instruction MERG 4 in SHELX-97). The molecule shown in Fig. 2 (with configurations $1 S, 2 S, 7 R, 8 S, 9 R$ ) was thus chosen arbitrarily to illustrate the structure. In summary, the relative configurations in the molecule are correct but the absolute configuration of a molecule in an individual crystal could not be reliably determined from the X-ray data.

Details of the data collection and refinement are given in Table 1.
Atomic coordinates for non-hydrogen atoms are listed in Table 2.
Selected bond lengths are listed in Table 3, and bond angles in Table 4.

Table 1 Crystal data and structure refinement for $\mathbf{3 0}$

| Empirical formula | $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$ |
| :---: | :---: |
| Formula weight | 196.24 |
| Temperature | 295(2) K |
| Wavelength | 0.71073 A |
| Crystal system | Orthorhombic |
| Space group | $P 2{ }_{1} 2_{1} 2_{1}$ |
| Unit cell dimensions | $\mathrm{a}=7.475(1) \AA \quad \alpha=90^{\circ}$ |
|  | $b=8.234(1) \AA \quad \beta=90^{\circ}$ |
|  | $\mathrm{c}=16.061(2) \AA \quad \gamma=90^{\circ}$ |
| Volume | 988.5(2) $\AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.319 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.095 \mathrm{~mm}^{-1}$ |
| F(000) | 424 |
| Crystal size | $0.45 \times 0.24 \times 0.17 \mathrm{~mm}^{3}$ |
| $\theta$ range for data collection | 1.02 to $27.48^{\circ}$ |
| Index ranges | $-9<=\mathrm{h}<=9,-10<=\mathrm{k}<=10,-13<=\mathrm{l}<=20$ |
| Reflections collected | 4919 |
| Independent reflections | $1326[\mathrm{R}(\mathrm{int})=0.0239]$ |
| Completeness to $\theta=27.48^{\circ}$ | 99.4\% |
| Max. and min. transmission | 0.9841 and 0.9586 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 2160 / 1/148 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.070 |
| Final R indices [ $\mathrm{I}>2 \sigma(\mathrm{I})$ ] | $\mathrm{R} 1=0.0357, \mathrm{wR} 2=0.0760$ |
| R indices (all data) | $\mathrm{R} 1=0.0496, \mathrm{wR} 2=0.0815$ |
| Largest diff. peak and hole | 0.166 and -0.166 e. $\AA^{-3}$ |

Table 2 Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 0} . U(e q)$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

|  | x | y | z | $\mathrm{U}(\mathrm{eq})$ |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{O}(10)$ | $3289(2)$ | $7653(2)$ | $834(1)$ | $42(4)$ |
| $\mathrm{O}(12)$ | $2030(2)$ | $7964(2)$ | $2105(1)$ | $48(1)$ |
| $\mathrm{O}\left(2^{\prime}\right)$ | $6850(2)$ | $5417(2)$ | $1781(1)$ | $52(1)$ |
| $\mathrm{C}(7)$ | $1795(3)$ | $4712(2)$ | $1508(1)$ | $34(1)$ |
| $\mathrm{C}\left(1^{\prime}\right)$ | $5276(3)$ | $4739(3)$ | $1412(1)$ | $40(1)$ |
| $\mathrm{C}(2)$ | $1147(3)$ | $5470(2)$ | $685(1)$ | $36(1)$ |
| $\mathrm{C}(8)$ | $3594(3)$ | $5434(2)$ | $1805(1)$ | $35(1)$ |
| $\mathrm{C}(3)$ | $2034(3)$ | $4772(3)$ | $-92(1)$ | $47(1)$ |
| $\mathrm{C}(6)$ | $1761(3)$ | $2844(2)$ | $1471(1)$ | $48(1)$ |
| $\mathrm{C}(1)$ | $1405(2)$ | $7305(2)$ | $721(1)$ | $39(1)$ |
| $\mathrm{C}(9)$ | $3536(3)$ | $7270(2)$ | $1680(1)$ | $39(1)$ |
| $\mathrm{C}(11)$ | $617(3)$ | $8099(3)$ | $1493(1)$ | $46(1)$ |
| $\mathrm{C}(5)$ | $2387(3)$ | $2168(3)$ | $663(2)$ | $54(1)$ |
| $\mathrm{C}(4)$ | $2496(3)$ | $3005(3)$ | $-25(2)$ | $52(1)$ |

Table 3 Selected bond lengths for 30

| Bond | Length $(\AA)$ | Bond | Length $(\AA)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O}(10)-\mathrm{C}(9)$ | $1.407(2)$ | $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(8)$ | $1.519(3)$ |
| $\mathrm{O}(10)-\mathrm{C}(1)$ | $1.449(2)$ | $\mathrm{C}(2)-\mathrm{C}(1)$ | $1.525(3)$ |
| $\mathrm{O}(12)-\mathrm{C}(9)$ | $1.435(2)$ | $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.525(3)$ |
| $\mathrm{O}(12)-\mathrm{C}(11)$ | $1.447(2)$ | $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.526(3)$ |
| $\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$ | $1.431(2)$ | $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.500(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)$ | $1.540(3)$ | $\mathrm{C}(6)-\mathrm{C}(5)$ | $1.487(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(2)$ | $1.540(2)$ | $\mathrm{C}(1)-\mathrm{C}(11)$ | $1.521(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.545(3)$ | $\mathrm{C}(5)-\mathrm{C}(4)$ | $1.304(3)$ |

Table 4 Selected bond angles for 30

| Bonds | Angle $\left({ }^{\circ}\right)$ | Bonds | Angle ( $\left.{ }^{\circ}\right)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(1)$ | $101.8(2)$ | $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(8)-\mathrm{C}(9)$ | $110.0(2)$ |
| $\mathrm{C}(9)-\mathrm{O}(12)-\mathrm{C}(11)$ | $106.2(2)$ | $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(8)-\mathrm{C}(7)$ | $116.6(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$ | $111.5(2)$ | $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$ | $108.4(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $114.2(2)$ | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | $114.0(2)$ |
| $\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$ | $112.6(2)$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $113.7(2)$ |
| $\mathrm{O}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(8)$ | $111.2(2)$ | $\mathrm{O}(10)-\mathrm{C}(1)-\mathrm{C}(11)$ | $101.0(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $110.4(2)$ | $\mathrm{O}(10)-\mathrm{C}(1)-\mathrm{C}(2)$ | $108.9(2)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$ | $109.2(2)$ | $\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$ | $114.1(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$ | $114.4(2)$ | $\mathrm{O}(10)-\mathrm{C}(9)-\mathrm{O}(12)$ | $105.5(2)$ |

## NMR Spectra of prepared compounds


ppm (f1)


Figure S1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4

## Compond 6


$\qquad$



Figure S2: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6
TCompound 10
(

Figure S3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 10


Figure $\mathrm{S} 4:{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 12



Figure S5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 14


Figure S6: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 16


Figure $\mathrm{S} 7:{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 18


Figure S8: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 20
Compound 21


Figure S9: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 21



Figure S10: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 23



Figure S11: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 24

(

Figure S12: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 25

(ampound 26

Figure S13: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 26

compound 27

Figure S14: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 27



Figure S15: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 28

## Compound 32


Compound 32

Figure S16: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 32



Figure S18: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 35



Figure S19: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 36



Figure S20: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathbf{C}$ NMR spectra of 37

