Electronic Supplementary Information

Conformationally constrained aromatic oligoamide foldamers with supersecondary structure motifs

Hai-Yu Hu,^{a,b} Jun-Feng Xiang,^a and Chuan-Feng Chen^{a,*}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^bGraduate School, Chinese Academy of Sciences, Beijing 100049, China.

Email Address: cchen@iccas.ac.cn

Contents

1.	¹ H NMR and ¹³ C NMR spectra of new compounds	S2
2.	TOCSY and NOESY spectra of compounds 1~6	S8
3.	UV-vis spectra of compounds 1~6 at various concentrations	S20
4.	X-ray crystallographic analysis of oligomers 2 and 4	S24

1. ¹H NMR and ¹³C NMR spectra of new compounds.

Figure S1. The ¹H NMR spectrum of compound 1.

Figure S2. The ¹³C NMR spectrum of compound 1.

Figure S3. The ¹H NMR spectrum of compound 2.

Figure S4. The ¹³C NMR spectrum of compound 2.

Figure S5. The ¹H NMR spectrum of compound 3.

Figure S6. The ¹³C NMR spectrum of compound 3.

Figure S7. The ¹H NMR spectrum of compound 4.

Figure S8. The ¹³C NMR spectrum of compound 4.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

Figure S9. The ¹H NMR spectrum of compound 5.

Figure S10. The ¹³C NMR spectrum of compound 5.

Figure S11. The ¹H NMR spectrum of compound 6.

Figure S12. The ¹³C NMR spectrum of compound 6.

2. TOCSY and NOESY spectra of compounds 1~6.

Figure S13. The TOCSY spectrum (600MHz, CDCl₃) of compound 1.

Figure S14. The NOESY spectrum (600MHz, CDCl₃) of compound 1.

Figure S15. The TOCSY spectrum (600MHz, CDCl₃) of compound 2.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

Figure S16. The NOESY spectrum (600MHz, CDCl₃) of compound 2.

[#] Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2009

Figure S17. The TOCSY spectrum (600MHz, CDCl₃) of compound 3.

Figure S18. The NOESY spectrum (600MHz, CDCl₃) of compound 3.

[#] Supplementary Material (ESI) for Organic & Biomolecular Chemistry # This journal is (c) The Royal Society of Chemistry 2009

Figure S19. The TOCSY spectrum (600MHz, CDCl₃) of compound 4.

Figure S20. The NOESY spectrum (600MHz, CDCl₃) of compound 4.

Figure S21. The TOCSY spectrum (600MHz, CDCl₃) of compound 5.

Figure S22. The NOESY spectrum (600MHz, CDCl₃) of compound 5.

Figure S23. The TOCSY spectrum (600MHz, CDCl₃) of compound 6.

Figure S24. The NOESY spectrum (600MHz, CDCl₃) of compound 6.

3. UV-vis spectra of oligomers 1~6 at various concentrations.

To rule out intermolecular association, the ε for each oligomer was determined by using a range of concentrations. For each compound, Beer's law behavior was observed, which indicated that the oligomers were in an ordered conformation consistent with the helix formation.

Figure S25. Representative UV-vis spectra of 1 in $CHCl_3$ at various concentrations.

Figure S26. Representative UV-vis spectra of 2 in $CHCl_3$ at various concentrations.

Figure S27. Representative UV-vis spectra of 3 in $CHCl_3$ at various concentrations.

Figure S28. Representative UV-vis spectra of 4 in $CHCl_3$ at various concentrations.

Figure S29. Representative UV-vis spectra of 5 in $CHCl_3$ at various concentrations.

Figure S30. Representative UV-vis spectra of 6 in CHCl₃ at various concentrations.

Figure S31. UV-Vis spectra of the molecular strands $1\sim6$ in CHCl₃ (c = 2×10^{-5} M).

4. X-ray crystallographic analysis of oligomers 2 and 4.

Single crystals of **2** ($C_{126}H_{120}N_{16}O_{18}\cdot 3.5CH_2Cl_2\cdot 2.5CH_3OH\cdot CH_3CH_2OH\cdot 0.5H_2O$ $M_w = 2578.8$) suitable for X-ray analysis were grown from the mixture solution of CH₂Cl₂/CH₃OH, CH₃CH₂OH through a slow evaporation at room temperature of **2**, and an orange single crystal was selected for intensity measurements.

2

Table S1. Crystal Data and Structure Refinement for Compound 2.

Empirical formula	C134 H144 Cl7	N16 O22		
Formula weight	2578.80	2578.80		
Temperature	113(2) K	113(2) K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Triclinic	Triclinic		
Space group	P-1	P-1		
Unit cell dimensions	a = 15.396(3) Å	$\alpha = 99.21(3)^{\circ}$		
	b = 16.278(3) Å	$\beta = 104.19(3)^{\circ}$		
	c = 29.093(6) Å	$\gamma = 100.30(3)^{\circ}$		
Volume	6794(2) Å ³			
Z	2	2		
Density (calculated)	1.261 g/cm^3	1.261 g/cm^3		
Absorption coefficient	0.218 mm^{-1}			
F(000)	2710			
Theta range for data collection	1.48 to 25°			

Index ranges	$-18 \le h \le 17, -19 \le k \le 19, -34 \le 1 \le 20$	
Reflections collected	38568	
Independent reflections	23468 [R(int) = 0.1804]	
Completeness to theta = 26°	98.0%	
Absorption correction	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	23468 / 11 / 1470	
Goodness-of-fit on F ²	1.176	
Final R indices [I>2sigma(I)]	$R_1 = 0.1587, wR_2 = 0.3256$	
R indices (all data)	$R_1 = 0.3304, wR_2 = 0.4091$	
Largest diff. peak and hole	$0.744 \text{ and } -1.244 \text{ e} \cdot \text{\AA}^3$	

The poor quality of the crystal structure may be attributed to the weak diffraction intensity, strong disorganization of isobutyl side chains and included solvent molecules. Both CH_2Cl_2 (C135, C19, C110) and H_2O (O20) are half-occupied, i.e. the sum of the SOF of these two groups are 1.00, in other words, they do not appear at the same time. The O23 atom is also half-occupied, i.e. O23 is disordered in two positions. The C136/O23 are belong to one CH₃OH molecule (H for O23 was not added).

Since the X-ray diffraction data were weak and the quality was not good enough, DFIX restrains are used to keep the bonds and angles in a reasonable range, and isor simu restrains are used to restrict the anisotropic atomic displacement parameters.

Restrains List DFIX 1.50 0.01 C95 O4 DFIX 1.55 0.01 C95 C96 DFIX 1.55 0.01 C96 C97 DFIX 1.55 0.01 C96 C98 DFIX 1.55 0.01 C111 C112 DFIX 1.55 0.01 C112 C113 DFIX 1.55 0.01 C112 C114 DFIX 1.55 0.01 C111 C12B

DFIX 1.55 0.01 C12B C13B

DFIX 1.55 0.01 C12B C14B

EADP C112 C12B

EADP C113 C13B

EADP C114 C14B

DFIX 1.55 0.01 C136 O23

ISOR 0.01 C95 C96 C97 C98

Single crystals of **4** ($C_{126}H_{120}N_{16}O_{18}$ ·4.5CHCl₃·2CH₃OH $M_w = 2753.63$) suitable for X-ray analysis were grown from the mixture solution of CHCl₃/ CH₃OH, CH₃CH₂OH through a slow evaporation at room temperature of **4**, and an orange single crystal was selected for intensity measurements.

Table S2. Crystal Data and Structure Refinement for Compound 4.

Empirical formula	C 132.5 H 132.5 Cl 13.50 N 16 O20		
Formula weight	2753.63		
Temperature	113(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	$a = 14.041(3) \text{ Å}$ $\alpha = 110.78(3)^{\circ}$		
	$b = 15.327(3))$ Å $\beta = 102.06(3)^{\circ}$		
	$c = 18.740(4) \text{ Å}$ $\gamma = 104.06(3)^{\circ}$		
Volume	3458.6(12) Å ³		
Z	1		
Density (calculated)	1.322 g/cm^3		
Absorption coefficient	0.339 mm ⁻¹		
F(000)	1432		
Crystal size	$0.14 \times 0.12 \times 0.06 \text{ mm}^3$		
Theta range for data collection	1.77 to 25.00°		
Index ranges	$-16 \le h \le 16, -18 \le k \le 13, -22 \le l \le 22$		
Reflections collected	23723		
Independent reflections	12103 [R(int) = 0.1890]		

Completeness to theta = 26°	99.2%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9799 and 0.9541
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	12103 / 197 / 948
Goodness-of-fit on F ²	1.103
Final R indices [I>2sigma(I)]	$R_1 = 0.1473, wR_2 = 0.3631$
R indices (all data)	$R_1 = 0.2973, wR_2 = 0.4435$
Largest diff. peak and hole	0.908 and -0.621 $e \cdot Å^3$

DFIX restrains are used to keep the bonds and angles of C-Cl Cl-C-Cl in CHCl₃ in a reasonable range. Isor simu restrains are used to restrict the anisotropic atomic displacement parameters.

Restrains List

ISOR 0.01 O10 > last

DFIX 1.45 0.01 O10 C67 O11 C68 O12 C69 O13 C70

DFIX 1.54 0.01 C25 C27

DFIX 1.72 0.01 C64 CL1 C64 CL2 C64 CL3 C64 CL1' C64 CL2' C64 CL3'

ISOR 0.01 CL1 CL2 CL3 CL1' CL2' CL3' CL4 CL5 CL6 CL7 CL8

ISOR 0.01 CL7 CL8 CL9 C27

ISOR 0.01 CL4 CL5 CL6 CL4' CL5' CL6'

DFIX 1.72 0.01 C66 CL7 C66 CL8 C66 CL9

DFIX 1.72 0.01 C65 CL4 C65 CL5 C65 CL6 C65 CL4' C65 CL5' C65 CL6'

DFIX 2.8 0.01 CL4' CL5' CL4' CL6' CL5' CL6'

EADP Cl6 Cl6'

EADP Cl5 Cl5'

EADP Cl4 Cl4'