

## Supplementary data:

### Synthesis of macrocyclic precursors of phomactins using [2,3]-Wittig rearrangements

Graham M<sup>o</sup>Gowan and Eric J. Thomas\*

e-mail: e.j.thomas@manchester.ac.uk

The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK

## Experimental

### General

Flash column chromatography was performed using Merck silica gel (60H; 40-60 $\mu$ , 230-240 mesh). Petrol refers to light petroleum which was redistilled before use and refers to the fraction boiling between 40 and 60 °C. Tetrahydrofuran was dried over sodium-benzophenone and was distilled prior to use. Dichloromethane was dried over CaH<sub>2</sub> and was distilled before use. Ether refers to diethyl ether. Reactions under non-aqueous conditions were carried out under an atmosphere of nitrogen or argon.

Electron impact (EI) or chemical ionisation using ammonia (CI) mass spectra were recorded using a Micromass Trio 200 spectrometer and high resolution mass spectra on a Kratos Concept IS spectrometer. Infra-red spectra were measured using a Genesis FTIR spectrometer on NaBr plates, either neat or as evaporated films unless otherwise stated. Nuclear magnetic resonance spectra were recorded in deuterated chloroform unless otherwise indicated on either a Varian Unity 500 (500 MHz), Varian INOVA 400 (300 MHz), or a Varian INOVA 300 (300 MHz) spectrometer. Coupling constants (*J*) are given in Hertz (Hz) and chemical shifts are relative to tetramethylsilane.

### 6-*tert*-Butyldimethylsilyloxyhex-4-yn-1-ol 13

*n*-Butyllithium (1.6 M in hexanes, 9.2 cm<sup>3</sup>, 148 mmol) was added dropwise at -78 °C to the propyne **12** (21 g, 124 mmol) in THF (150 cm<sup>3</sup>) and the solution stirred at -78 °C for 0.5 h. Oxetane (9.64 cm<sup>3</sup>, 148 mmol) in THF (100 cm<sup>3</sup>) was added, followed immediately by boron trifluoride etherate (18.9 cm<sup>3</sup>, 150 mmol). The mixture was stirred for a further 2 h and saturated aqueous ammonium chloride (200 cm<sup>3</sup>) was added. The organic phase was washed with water (2x200 cm<sup>3</sup>) and brine (200 cm<sup>3</sup>), dried (MgSO<sub>4</sub>), and concentrated under reduced pressure. Flash column chromatography of the residue on silica gel, eluted with 20 – 40% ether in petrol afforded the *title compound* **13** as a pale yellow oil (24 g, 85%), *R*<sub>f</sub> = 0.2 (20% ether in petrol) (Found: M<sup>+</sup> + NH<sub>4</sub>, 246.1884. C<sub>12</sub>H<sub>28</sub>O<sub>2</sub>NSi requires *M*, 246.1889);  $\nu_{\text{max}}$ /cm<sup>-1</sup>

3357 (br), 2930, 2858, 1465, 1057 and 1014;  $\delta_{\text{H}}$  (300 MHz,  $\text{CDCl}_3$ ) 4.3 (2 H, s, 6- $H_2$ ), 3.76 (2 H, br t,  $J$ , 6, 1- $H_2$ ), 2.35 (2 H, m, 2- $H_2$ ), 1.77 (2 H, t,  $J$ , 7, 3- $H_2$ ), 1.46 (1 H, br s, OH), 0.92 [9 H, s,  $\text{SiC}(\text{CH}_3)_3$ ] and 0.12 [6 H, s,  $\text{Si}(\text{CH}_3)_2$ ];  $\delta_{\text{C}}$  (75 MHz,  $\text{CDCl}_3$ ) 79.2, 61.7, 51.9, 31.1, 25.8, 22.5, 18.3, 15.3 and -5.2;  $m/z$  (CI) 246 ( $\text{M}^+ + 18$ , 100%), 229 (40), 97 (80) and 91 (25).

### Ethyl (2E)-8-*tert*-butyldimethylsilyloxy-2-methyloct-2-en-6-yneate 14

Dimethyl sulfoxide (12.5 cm<sup>3</sup>, 240 mmol) in dichloromethane (100 cm<sup>3</sup>) was added dropwise at -78 °C to oxalyl chloride (11.4 cm<sup>3</sup>, 132 mmol) in dichloromethane (250 cm<sup>3</sup>). The solution was stirred for 20 min, then the alcohol **13** (20 g, 88 mmol) in dichloromethane (150 cm<sup>3</sup>) was added dropwise. After stirring for 1 h, triethylamine (49 cm<sup>3</sup>, 350 mmol) was added, and the reaction allowed to stir at room temperature for a further 1 h before being cooled to -78 °C. 1-Carbethoxyethylidenetriphenylphosphorane (36.5 g, 100 mmol) in dichloromethane (100 cm<sup>3</sup>) was added and the suspension warmed to room temperature. After 16 h, saturated aqueous ammonium chloride (250 cm<sup>3</sup>) was added and the organic layer was washed with water (300 cm<sup>3</sup>) and brine (300 cm<sup>3</sup>), dried ( $\text{MgSO}_4$ ), and concentrated under reduced pressure. Flash column chromatography of the residue on silica gel, eluted with 10 – 20% ether in petrol, afforded the *title compound* **14** as a pale yellow oil (24.5 g, 90%),  $R_f$  = 0.6 (20% ether in petrol) (Found:  $\text{M}^+ + \text{H}$ , 311.2049.  $\text{C}_{17}\text{H}_{31}\text{O}_3\text{Si}$  requires  $M$ , 311.2043);  $\nu_{\text{max}}/\text{cm}^{-1}$  2925, 2876, 1739, 1466, 1110 and 1035;  $\delta_{\text{H}}$  (300 MHz,  $\text{CDCl}_3$ ) 6.77 (1 H, m, 3- $H$ ), 4.30 (2 H, s, 8- $H_2$ ), 4.2 (2 H, q,  $J$ , 7,  $\text{CO}_2\text{CH}_2\text{CH}_3$ ), 2.37 (4 H, m, 4- $H_2$  and 5- $H_2$ ), 1.86 (3 H, s, 2- $\text{CH}_3$ ), 1.30 (3 H, t,  $J$ , 7,  $\text{CO}_2\text{CH}_2\text{CH}_3$ ), 0.92 [9 H, s,  $\text{SiC}(\text{CH}_3)_3$ ] and 0.12 [6 H, s,  $\text{Si}(\text{CH}_3)_2$ ];  $\delta_{\text{C}}$  (75 MHz,  $\text{CDCl}_3$ ) 167.9, 139.7, 129.0, 83.9, 79.3, 60.4, 51.8, 27.8, 25.8, 22.5, 18.1, 14.2, 12.5 and -5.2;  $m/z$  (EI) 311 ( $\text{M}^+ + 1$ , 10%), 253 (100) and 75 (80).

### (2E)-8-*tert*-Butyldimethylsilyloxy-2-methyloct-2-en-6-yn-1-ol 15

Super-Hydride™ (1.0 M in THF, 42 cm<sup>3</sup>, 42 mmol) was added dropwise at -78 °C to ester **14** (5.62 g, 18 mmol) in THF (100 cm<sup>3</sup>) and the solution stirred for 1 h then water (200 cm<sup>3</sup>) was added. On warming to room temperature, the organic phase was diluted with ether (100 cm<sup>3</sup>), separated and washed with water (150 cm<sup>3</sup>) and brine (150 cm<sup>3</sup>), dried ( $\text{MgSO}_4$ ) and concentrated under reduced pressure. Flash column chromatography of the residue on silica gel, eluted with 20 – 50% ether in petrol, afforded the *title compound* **15** as a colourless oil (4 g, 84%),  $R_f$  = 0.25 (20% ether in petrol) (Found:  $\text{M}^+$  268.1862.  $\text{C}_{15}\text{H}_{28}\text{O}_2\text{Si}$  requires  $M$ , 268.1859);  $\nu_{\text{max}}/\text{cm}^{-1}$  3426 (br), 2955, 2880, 1723, 1462 and 1340;  $\delta_{\text{H}}$  (300 MHz,  $\text{CDCl}_3$ ) 5.47 (1 H, m, 3- $H$ ), 4.31 (2 H, s, 8- $H_2$ ), 4.02 (2 H, s, 1- $H_2$ ), 2.27 (4 H, m, 4- $H_2$  and 5- $H_2$ ), 1.69 (3 H, s, 2- $\text{CH}_3$ ), 1.4 (1 H, br s, OH), 0.92 [9 H, s,  $\text{SiC}(\text{CH}_3)_3$ ] and 0.13 [6 H, s,  $\text{Si}(\text{CH}_3)_2$ ];  $\delta_{\text{C}}$  (75 MHz,  $\text{CDCl}_3$ ) 136.1, 124.2, 84.7, 78.9, 68.7, 51.9, 26.8, 25.8, 18.9, 18.3, 13.7 and -5.2;  $m/z$  286 ( $\text{M}^+ + 18$ , 100%), 269 ( $\text{M}^+ + 1$ , 34%), 251 (59), 246 (95), 229 (30), 200 (27), 195 (25), 184 (25), 97 (40), 92 (40) and 91 (40).

**(2E)-8-*tert*-Butyldimethylsilyloxy-1-*tert*-butyldiphenylsilyloxy-2-methyloct-2-en-6-yne 16**

Imidazole (2.96 g, 43 mmol) and *tert*-butyldiphenylsilyl chloride (5.3 cm<sup>3</sup>, 21 mmol) were added to the alcohol **15** (4.6 g, 17 mmol) in dichloromethane (100 cm<sup>3</sup>) at 0 °C. The mixture was stirred for 16 h and diluted with ether (100 cm<sup>3</sup>). The solution was washed with saturated aqueous ammonium chloride (200 cm<sup>3</sup>), water (150 cm<sup>3</sup>) and brine (150 cm<sup>3</sup>), dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Flash column chromatography of the residue on silica gel, eluted with 10% ether in petrol, afforded the *title compound* **16** as a colourless oil (5.85 g, 67%), *R*<sub>f</sub> = 0.95 (20% ether in petrol) (Found: M<sup>+</sup> 506.3050. C<sub>31</sub>H<sub>46</sub>O<sub>2</sub>Si<sub>2</sub> requires *M*, 506.3036);  $\nu_{\text{max}}$ /cm<sup>-1</sup> 2930, 2857, 1727, 1460, 1364, 1256, 1219, 1111 and 1079;  $\delta_{\text{H}}$  (300 MHz, CDCl<sub>3</sub>) 7.69 (4 H, m, Ar-H), 7.41 (6 H, m, Ar-H), 5.52 (1 H, m, 3-H), 4.30 (2 H, s, 8-H<sub>2</sub>), 4.07 (2 H, s, 1-H<sub>2</sub>), 2.25 (4 H, m, 4-H<sub>2</sub> and 5-H<sub>2</sub>), 1.62 (3 H, s, 2-CH<sub>3</sub>), 1.07 and 0.93 [each 9 H, s, SiC(CH<sub>3</sub>)<sub>3</sub>] and 0.12 [6 H, s, Si(CH<sub>3</sub>)<sub>2</sub>];  $\delta_{\text{C}}$  (75 MHz, CDCl<sub>3</sub>) 135.5, 133.8, 129.5, 127.5, 122.6, 99.9, 85.0, 68.7, 51.9, 26.8, 25.8, 19.2, 19.1, 18.3, 18.1, 13.5, 3.2 and -5.2; *m/z* (CI) 524 (M<sup>+</sup> + 18, 100%), 449 (40), 375 (5), 251 (15) and 197 (25).

**(6E)-8-*tert*-Butyldiphenylsilyloxy-7-methyloct-6-en-2-yn-1-ol 17**

Alkyne **16** (4.3 g, 9 mmol) was dissolved in a mixture of methanol and carbon tetrachloride (1 : 1, 100 cm<sup>3</sup>), and the solution sonicated for 4 h at 50 °C then concentrated under reduced pressure. Flash column chromatography of the residue on silica gel, eluted with 20 – 50% ether in petrol, afforded the *title compound* **17** as a clear oil (3.2 g, 86%), *R*<sub>f</sub> = 0.3 (50% ether in petrol) (Found: M<sup>+</sup> + NH<sub>4</sub>, 410.2515. C<sub>23</sub>H<sub>36</sub>O<sub>2</sub>NSi requires *M*, 410.2513);  $\nu_{\text{max}}$ /cm<sup>-1</sup> 3406 (br), 2930, 2857, 1730, 1461, 1429 and 1108;  $\delta_{\text{H}}$  (300 MHz, CDCl<sub>3</sub>) 7.77 (4 H, m, Ar-H), 7.45 (6 H, m, Ar-H), 5.55 (1 H, m, 6-H), 4.26 (2 H, s, 1-H<sub>2</sub>), 4.10 (2 H, s, 8-H<sub>2</sub>), 2.29 (4 H, m, 4-H<sub>2</sub> and 5-H<sub>2</sub>), 1.74 (1 H, br s, OH), 1.65 (3 H, s, 7-CH<sub>3</sub>) and 1.11 [9 H, s, SiC(CH<sub>3</sub>)<sub>3</sub>];  $\delta_{\text{C}}$  (75 MHz, CDCl<sub>3</sub>) 135.5, 135.4, 133.8, 129.6, 127.6, 122.4, 86.0, 78.5, 68.7, 51.2, 26.8, 26.7, 19.3, 19.1 and 13.5; *m/z* (CI) 410 (M<sup>+</sup> + 18, 13%), 197 (90) and 137 (100).

**Methyl (8*SR*,9*RS*)-7-[(6*E*)-8-*tert*-Butyldiphenylsilyloxy-7-methyloct-6-en-2-yn-1-yloxy]methyl-8,9-dimethyl-1,4-dioxaspiro[4.5]dec-6-ene-8-carboxylate 19**

*tert*-*n*-Butylammonium iodide (0.23 g, 0.6 mmol), 15-crown-5 (1.37 cm<sup>3</sup>, 7 mmol) and sodium hydride (60% dispersion in mineral oil, 0.28 g, 7 mmol) were added to the alcohol **17** (2.7 g, 6.9 mmol) in THF (50 cm<sup>3</sup>) at 0 °C. The solution was stirred until effervesence had ceased (approximately 5 min) then the bromide **18** (2 g, 6.3 mmol) in THF (50 cm<sup>3</sup>) was added using a cannula. The mixture was stirred at room temperature for 16 h and then saturated aqueous ammonium chloride (100 cm<sup>3</sup>) and ether (50 cm<sup>3</sup>) were added. The organic extracts were washed with water (150 cm<sup>3</sup>) and brine (150 cm<sup>3</sup>), dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Flash column chromatography of the residue on silica gel, eluted

with 5 – 20% ether in petrol, afforded the *title compound* **19** as a clear, viscous oil (1.7 g, 42%),  $R_f = 0.2$  (50% ether in petrol) (Found:  $M^+$ , 630.3389.  $C_{38}H_{50}O_6Si$  requires  $M$ , 630.3376);  $\nu_{max}/cm^{-1}$  2933, 2881, 2343, 1731, 1667, 1455, 1428, 1254 and 1112;  $\delta_H$  (500 MHz,  $CDCl_3$ ) 7.69 (4 H, m, Ar- $H$ ), 7.40 (6 H, m, Ar- $H$ ), 5.72 (1 H, s, 6- $H$ ), 5.48 (1 H, m, 6'- $H$ ), 4.06 (4 H, m, 1'- $H_2$  and 7- $CH_2$ ), 3.92 – 4.03 (6 H, m, 2- $H_2$ , 3- $H_2$  and 8'- $H_2$ ), 3.68 (3 H, s, 8- $CO_2CH_3$ ), 2.56 (1 H, m, 9- $H$ ), 2.25 (4 H, m, 4'- $H_2$  and 5'- $H_2$ ), 1.73 (2 H, m, 10- $H_2$ ), 1.62 (3 H, s, 7'- $CH_3$ ), 1.19 (3 H, s, 8- $CH_3$ ), 1.07 [9 H, s,  $SiC(CH_3)_3$ ] and 0.88 (3 H, d,  $J$  7, 9- $CH_3$ );  $m/z$  (EI) 630 ( $M^+$ , 5%), 573 (50), 437 (25), 335 (60) and 199 (100).

**(8SR,9RS)-7-[(6E)-8-*tert*-Butyldiphenylsilyloxy-7-methyloct-6-en-2-yn-1-yloxy]methyl-8,9-dimethyl-8-hydroxymethyl-1,4-dioxaspiro[4.5]dec-6-ene 20**

Super-Hydride<sup>TM</sup> (1.0 M in THF, 3.14 cm<sup>3</sup>, 3.14 mmol) was added dropwise at 0 °C to ether **19** (0.9 g, 1.4 mmol) in THF (50 cm<sup>3</sup>) and the mixture stirred for 50 min. Water (100 cm<sup>3</sup>) and ether (50 cm<sup>3</sup>) were added and the organic extract washed with water (100 cm<sup>3</sup>) and brine (100 cm<sup>3</sup>), dried ( $MgSO_4$ ) and concentrated under reduced pressure. Flash column chromatography of the residue on silica gel, eluted with 5 – 20% ether in petrol, afforded the *title compound* **20** as a clear, viscous oil (0.8 g, 93%),  $R_f = 0.1$  (50% ether in petrol) (Found:  $M^+ + H$ , 603.3498.  $C_{37}H_{51}O_5Si$  requires  $M$ , 603.3505);  $\nu_{max}/cm^{-1}$  3439 (br), 2930, 2857, 1656, 1428, 1112 and 1060;  $\delta_H$  (300 MHz,  $CDCl_3$ ) 7.73 (4 H, m, Ar- $H$ ), 7.44 (6 H, m, Ar- $H$ ), 5.80 (1 H, s, 6- $H$ ), 5.54 (1 H, m, 6'- $H$ ), 4.24 – 4.06 (5 H, m, 3- $H_2$ , 7- $CH$  and 8'- $H_2$ ), 4.05 – 3.71 (5 H, m, 1'- $H_2$ , 2- $H_2$  and 7- $CH$ ), 3.64 and 3.43 (each 1 H, d,  $J$  12, 8- $CH$ ), 2.82 (1 H, br s, OH), 2.47 (1 H, m, 9- $H$ ), 2.30 (4 H, m, 4'- $H_2$  and 5'- $H_2$ ), 1.76 (2 H, m, 10- $H_2$ ), 1.66 (3 H, s, 8- $CH_3$ ), 1.11 [9 H, s,  $SiC(CH_3)_3$ ] and 0.92 (3 H, d,  $J$  7, 9- $CH_3$ );  $\delta_C$  (75 MHz,  $CDCl_3$ ) 143.8, 135.5, 133.7, 132.4, 130.1, 129.5, 127.5, 122.3, 105.2, 87.6, 76.6, 76.4, 74.9, 64.7, 64.3, 58.3, 57.6, 45.4, 43.1, 37.7, 30.1, 26.8, 19.0, 15.4, 13.5 and 7.9;  $m/z$  (EI) 602 ( $M^+$ , 0.5%), 572 (2.5), 545 (5), 471 (2.5), 335 (20), 333 (16) and 199 (100).

**(8SR,9RS)-8-*tert*-Butyldimethylsilyloxymethyl-7-[(6E)-8-*tert*-butyldiphenylsilyloxy-7-methyloct-6-en-2-yn-1-yloxy]methyl-8,9-dimethyl-1,4-dioxaspiro[4.5]dec-6-ene 21**

*tert*-Butyldimethylsilyl trifluoromethanesulfonate (58 µL, 0.253 mmol) was added to the alcohol **20** (100 mg, 0.166 mmol) and triethylamine (50 µL, 0.359 mmol) in dichloromethane (2 cm<sup>3</sup>) at room temperature and the mixture stirred for 45 min. Saturated aqueous ammonium chloride (10 cm<sup>3</sup>) was added and the mixture extracted with ether (3x10 cm<sup>3</sup>). The organic extracts were washed with water (10 cm<sup>3</sup>) and brine (10 cm<sup>3</sup>), dried, and concentrated under reduced pressure. Column chromatography of the residue, eluting with 10 – 25% ether in petrol, gave the *title compound* **21** (80 mg, 67%) as a colourless oil,  $R_f = 0.7$  (50% ether in petrol);  $\delta_H$  (300 MHz,  $CDCl_3$ ) 7.72 - 7.55 (4 H, m, Ar- $H$ ), 7.42 – 7.23 (6 H, m, Ar- $H$ ), 5.64 (1 H, s, 6- $H$ ), 5.44 (1 H, m, 6'- $H$ ), 4.17 – 3.78 (10 H, m, 1'- $H_2$ , 2- $H_2$ , 3- $H_2$ , 7- $CH_2$ , 8'- $H_2$ ), 3.51 and 3.40 (each 1 H, d,  $J$  10.5, 8- $CH$ ), 2.21 (4 H, m, 4'- $H_2$  and 5'- $H_2$ ), 1.82 – 1.60 (3 H, m, 9- $H$ , 10- $H_2$ ), 1.58 (3 H, s, 7'- $CH_3$ );  $\delta_C$  (75 MHz,  $CDCl_3$ ) 143.8, 135.5, 133.7, 132.4, 130.1, 129.5, 127.5, 122.3, 105.2, 87.6, 76.6, 76.4, 74.9, 64.7, 64.3, 58.3, 57.6, 45.4, 43.1, 37.7, 30.1, 26.8, 19.0, 15.4, 13.5 and 7.9;  $m/z$  (EI) 602 ( $M^+$ , 0.5%), 572 (2.5), 545 (5), 471 (2.5), 335 (20), 333 (16) and 199 (100).

$CH_3$ ), 1.03 and 0.84 [each 9 H, s,  $\text{SiC}(CH_3)_3$ ], 0.84 (3 H, s, 8- $CH_3$ ), 0.81 (3 H, d,  $J$  7.5, 9- $CH_3$ ), 0.00 [6 H, s,  $\text{Si}(CH_3)_2$ ];  $\delta_C$  (75 MHz,  $\text{CDCl}_3$ ) 144.7, 135.5, 135.3, 133.8, 130.8, 129.5, 127.5, 124.5, 122.5, 105.6, 86.4, 76.1, 69.4, 68.7, 65.2, 64.4, 64.2, 57.7, 42.2, 38.0, 30.8, 26.8, 25.8, 25.6, 19.2, 18.1, 15.4, 14.9, 13.4, -3.6 and -5.6;  $m/z$  (CI) 734 ( $M^{+}+18$ , 3%). Some of the analogous enone (*ca.* 12 mg, 10%) was also isolated.

**(8*RS*,9*SR*)-8-*tert*-Butyldimethylsilyloxymethyl-6-[(6*E*)-1-hydroxy-8-*tert*-butyldiphenylsilyloxy-7-methyl-oct-6-en-2-yn-1-yl]-8,9-dimethyl-7-methylene-1,4-dioxaspiro[4.5]decane 22**

*n*-Butyllithium (2 M in hexanes, 241  $\mu\text{L}$ , 0.482 mmol) was added to the propargylic ether **21** (69 mg, 0.096 mmol) in tetrahydrofuran (1  $\text{cm}^3$ ) at -78 °C and the mixture stirred for 3 h. Saturated aqueous ammonium chloride (5  $\text{cm}^3$ ) was added and the mixture extracted with ether (3x5  $\text{cm}^3$ ). The organic extracts were washed with water (5  $\text{cm}^3$ ) and brine (5  $\text{cm}^3$ ), dried and concentrated under reduced pressure. Chromatography of the residue, eluting with 15% ether in petrol, gave the *title compound* **22** (57 mg, 83%), a mixture of two diastereoisomers (70 : 30), as a colourless oil,  $R_f = 0.66$  (50% ether in petrol) (Found:  $M^{+}$ , 716.4315.  $\text{C}_{43}\text{H}_{64}\text{O}_5\text{Si}_2$  requires  $M$ , 716.4292);  $\nu_{\text{max}}/\text{cm}^{-1}$  3500 (br), 2959, 2932, 2857, 2216, 1684, 1465, 1281 and 1112;  $\delta_H$  (300 MHz,  $\text{CDCl}_3$ ) 7.66 (4 H, m, Ar- $H$ ), 7.36 (6 H, m, Ar- $H$ ), 5.74 (0.7 H, s, 7- $CH$ ), 5.47 (0.3 H, s, 7- $CH$ ), 5.42 (1 H, m, 6'- $H$ ), 5.21 (0.3 H, s, 7- $CH'$ ), 5.18 (0.7 H, s, 7- $CH'$ ), 4.95 (0.7 H, m, 1'- $H$ ), 4.86 (0.3 H, m, 1'- $H$ ), 4.30 – 3.56 (7 H, 2- $H_2$ , 3- $H_2$ , 8'- $H_2$ , OH), 3.51 and 3.44 (each 1 H, d,  $J$  9.5, 8- $CH$ ), 2.82 (0.7 H, m, 6- $H$ ), 2.77 (0.3 H, m, 6- $H$ ), 2.22 (4 H, m, 4'- $H_2$ , 5'- $H_2$ ), 2.00 (1 H, m, 9- $H$ ), 1.58 (3 H, s, 7'- $CH_3$ ), 1.30 (2 H, m, 10- $H_2$ ), 1.04 [9 H, s,  $\text{SiC}(CH_3)_3$ ], 0.95 (2.1 H, s, 8- $CH_3$ ), 0.86 [12.9 H, m,  $\text{SiC}(CH_3)_3$ , 8- $CH_3$ , 9- $CH_3$ ], 0.04 [1.8 H, s,  $\text{Si}(CH_3)_2$ ] and 0.00 [4.2 H, s,  $\text{Si}(CH_3)_2$ ];  $\delta_C$  (75 MHz,  $\text{CDCl}_3$ ) 147.2, 146.3, 135.5, 130.9, 130.6, 129.6, 128.8, 128.5, 127.3, 121.6, 115.9, 111.4, 109.3, 108.3, 93.4, 84.7, 84.3, 82.5, 80.9, 68.6, 68.3, 67.2, 67.0, 66.0, 65.2, 64.9, 64.8, 63.6, 62.2, 52.3, 51.5, 44.2, 44.0, 37.7, 42.3, 31.3, 26.8, 26.1, 25.9, 25.8, 25.6, 19.4, 19.1, 17.2, 16.5, 15.8, 15.5, 13.6, 13.3, -5.6 and -5.8;  $m/z$  (CI) 734 ( $M^{+}+18$ , 3%).

**(8*RS*,9*SR*)-8-*tert*-Butyldimethylsilyloxymethyl-6-[(6*E*)-8-*tert*-butyldiphenylsilyloxy-7-methyl-1-oxo-oct-6-en-2-yn-1-yl]-8,9-dimethyl-7-methylene-1,4-dioxaspiro[4.5]decanes 23a,b**

Dess-Martin periodinane (150 mg, 0.354 mmol) was added to the mixture of diastereoisomeric alcohols **22** (57 mg, 0.080 mmol) in dichloromethane (2  $\text{cm}^3$ ) at room temperature and the mixture stirred for 30 min. Saturated aqueous sodium hydrogen carbonate (10  $\text{cm}^3$ ) containing sodium thiosulfate (2.5 g) was added and the mixture extracted with ether (3x5  $\text{cm}^3$ ). The ethereal extracts were washed with saturated aqueous sodium hydrogen carbonate (10  $\text{cm}^3$ ), water (10  $\text{cm}^3$ ) and brine (10  $\text{cm}^3$ ), dried, and concentrated under reduced pressure. Column chromatography of the residue, eluting with 15% ether in petrol, gave the *title compound* **23a** (19 mg, 33%), as a colourless oil  $R_f = 0.75$  (50% ether in petrol) (Found:  $M^{+}$ ,

714.4128.  $C_{43}H_{62}O_5Si_2$  requires  $M$ , 714.4136);  $\nu_{max}/cm^{-1}$  2958, 2930, 2859, 2213, 1729, 1681, 1465, 1283 and 1114;  $\delta_H$  (300 MHz,  $C_6D_6$ ) 7.58 (4 H, m, Ar- $H$ ), 7.32 (6 H, m, Ar- $H$ ), 5.35 (1 H, m, 6'- $H$ ), 5.09 and 4.83 (each 1 H, s, 7- $CH$ ), 4.02 (1 H, m, 2- $CH$ ), 3.96 (2 H, m, 2- $CH$ , 3- $CH$ ), 3.83 (3 H, 3- $CH$ , 8'- $H_2$ ), 3.70 (1 H, s, 6- $H$ ), 3.59 and 3.50 (each 1 H, d,  $J$  10.5, 8- $CH$ ), 2.26 (4 H, m, 4'- $H_2$ , 5'- $H_2$ ), 1.90 (1 H, m, 9- $H$ ), 1.52 (3 H, s, 7'- $CH_3$ ), 1.60 and 1.45 (each 1 H, m, 10- $H$ ), 0.98 [9 H, s,  $SiC(CH_3)_3$ ], 0.84 (3 H, s, 8- $CH_3$ ), 0.80 [9 H, s,  $SiC(CH_3)_3$ ], 0.76 (3 H, d,  $J$  7, 9- $CH_3$ ), 0.01 and 0.02 (each 3 H, s,  $SiCH_3$ );  $\delta_C$  (75 MHz,  $CDCl_3$ ) 185.8, 147.2, 135.5, 130.9, 129.6, 128.8, 127.6, 121.6, 111.4, 109.3, 93.2, 82.5, 68.6, 67.0, 65.2, 64.9, 62.2, 44.2, 40.7, 32.3, 26.8, 26.1, 25.9, 19.4, 16.5, 15.8, 13.6 and -5.6;  $m/z$  (CI) 715 ( $M^+ + 1$ , 4%) and 419 (100). The second fraction was the *title compound* **23b** (31 mg, 55%), as a colourless oil  $R_f$  = 0.70 (50% ether in petrol) (Found:  $M^+$ , 714.4150.  $C_{43}H_{62}O_5Si_2$  requires  $M$ , 714.4136);  $\nu_{max}/cm^{-1}$  2958, 2930, 2859, 2213, 1729, 1681, 1465, 1283 and 1114;  $\delta_H$  (500 MHz,  $CDCl_3$ ) 7.62 (4 H, m, Ar- $H$ ), 7.32 (6 H, m, Ar- $H$ ), 5.40 (1 H, m, 6'- $H$ ), 5.21 and 5.10 (each 1 H, s, 7- $CH$ ), 4.01 (2 H, m, 2- $CH$ , 3- $CH$ ), 3.86 (5 H, m, 2- $CH$ , 3- $CH$ , 6- $H$ , and 8'- $H_2$ ), 3.59 and 3.49 (each 1 H, d,  $J$  10, 8- $CH$ ), 2.30 (4 H, m, 4'- $H_2$ , 5'- $H_2$ ), 2.02 (1 H, m, 9- $H$ ), 1.57 (3 H, s, 7'- $CH_3$ ), 1.20 (2 H, m, 10- $H_2$ ), 1.01 [9 H, s,  $SiC(CH_3)_3$ ], 0.84 [12 H, s, 8- $CH_3$  and  $SiC(CH_3)_3$ ], 0.79 (3 H, d,  $J$  7.5, 9- $CH_3$ ) and 0.00 [6 H, s,  $Si(CH_3)_2$ ];  $\delta_C$  (75 MHz,  $CDCl_3$ ) 185.6, 146.3, 135.2, 130.6, 129.3, 128.5, 127.3, 121.3, 115.9, 108.3, 93.7, 80.9, 68.3, 67.2, 66.0, 64.8, 63.6, 44.2, 37.7, 31.3, 26.6, 25.8, 25.6, 19.1, 17.2, 15.5, 13.3, -5.8 and -5.9;  $m/z$  (CI) 715 ( $M^+ + 1$ , 6%) and 419 (100).

**(2SR,3SR,5RS,6SR)-2-[(1RS,6E)-(8-*tert*-Butyldiphenylsilyloxy-1-tri-isopropylsilyloxy-7-methyloct-6-en-2-yn-1-yl]-5,6-dimethyl-6-phenylsulfonylmethyl-3-(2-trimethylsilylethoxy)methoxy-1-methylene-cyclohexane 45**

2,6-Lutidine (0.29 cm<sup>3</sup>, 2.5 mmol) and tri-*iso*-propylsilyl methanesulphonate (0.29 cm<sup>3</sup>, 1.07 mmol) were added to the alcohol **37** (0.58 g, 0.713 mmol) in dichloromethane (9.7 cm<sup>3</sup>) at 0 °C and the solution stirred for 30 min prior to the addition of water (10 cm<sup>3</sup>) and ethyl acetate (10 cm<sup>3</sup>). The aqueous layer was extracted with ethyl acetate (3x10 cm<sup>3</sup>) and the organic extracts washed with brine (15 cm<sup>3</sup>), dried ( $MgSO_4$ ), and concentrated under reduced pressure. Column chromatography of the residue, eluting with 1 – 20% ether in petrol, afforded the *title compound* **45** (0.59 g, 87%) as a clear oil,  $R_f$  = 0.6 (50% ether in petrol)  $\nu_{max}/cm^{-1}$  3070, 2944, 2893, 1463, 1428, 1383, 1320, 1249, 1151, 1107, 1055, 883, 860, 834, 741 and 709;  $\delta_H$  (300 MHz,  $CDCl_3$ ) 7.91 (2 H, m, Ar- $H$ ), 7.68 (4 H, m, Ar- $H$ ), 7.59 (1 H, m, Ar- $H$ ), 7.53 (2 H, m, Ar- $H$ ), 7.33 – 7.43 (6 H, m, Ar- $H$ ), 5.41 (1 H, s, 1- $CH$ ), 5.39 (1 H, br t,  $J$  7, 6'- $H$ ), 5.30 (1 H, s, 1- $CH'$ ), 4.80 (1 H, m, 1'- $H$ ), 4.80 and 4.70 (each 1 H, d,  $J$  7, OCH $HO$ ), 4.04 (2 H, s, 8'- $H_2$ ), 3.78 (1 H, m, 3- $H$ ), 3.74 (1 H, td,  $J$  10, 7.5, CHHCH<sub>2</sub>Si), 3.50 (1 H, m, CHH'CH<sub>2</sub>Si), 3.49 and 3.34 (each 1 H, d,  $J$  14.5, 6- $CH$ ), 2.58 (1 H, m, 2- $H$ ), 2.18 (4 H, m, 4'- $H_2$  and 5'- $H_2$ ), 2.08 (1 H, m), 2.02 (1 H, m), 1.61 (3 H, s, 7'- $CH_3$ ), 1.54 (1 H, m), 1.36 (3 H, s, 6- $CH_3$ ), 1.01 – 1.04 [30 H, m,  $SiC(CH_3)_3$  and  $Si(CH(CH_3)_2)_3$ ], 0.95 (3 H, d,  $J$  6.5, 5- $CH_3$ ), 0.91 (2 H, m, CH<sub>2</sub>Si) and 0.02 [9 H, s,  $Si(CH_3)_3$ ];  $\delta_C$  (75 MHz,  $CDCl_3$ ) 146.9,

142.7, 135.5, 133.8, 133.1, 129.5, 129.1, 128.3, 127.6, 127.5, 122.9, 115.5, 94.6, 86.3, 81.2, 76.4, 68.9, 64.9, 54.9, 44.5, 35.9, 35.8, 35.4, 26.9, 19.9, 19.3, 19.1, 18.2, 18.1, 17.7, 17.0, 13.5, 12.5, 12.3 and -1.42.

**(2RS,3SR,5RS,6SR)-5,6-Dimethyl-2-[(1RS,6E)-(1,8-dihydroxy-7-methyloct-6-en-2-yn-1-yl]-6-phenylsulfonylmethyl-3-(2-trimethylsilylethoxy)methoxy-1-methylenecyclohexane 46**

*tetra*-n-Butylammonium fluoride (1.0 M solution in tetrahydrofuran, 1.16 cm<sup>3</sup>, 1.16 mmol) was added to the bis-silyl ether **45** (0.56 g, 0.578 mmol) in tetrahydrofuran (3.6 cm<sup>3</sup>) at room temperature and the solution was stirred for 1.5 h before being concentrated under reduced pressure. Column chromatography of the residue, eluted with 5 – 60% ether in petrol, afforded the *title compound* **46** (0.31 g, 93%) as an oil, *R*<sub>f</sub> = 0.05 (50% ether in petrol) (Found; M<sup>+</sup> + NH<sub>4</sub>, 594.3294. C<sub>31</sub>H<sub>52</sub>O<sub>6</sub>NSSi requires *M*, 594.3284);  $\nu_{\text{max}}$ /cm<sup>-1</sup> 3467 (br), 2951, 2924, 1447, 1317, 1248, 1150, 1025, 859 and 836;  $\delta_{\text{H}}$  (500 MHz, CDCl<sub>3</sub>) 7.96 (2 H, d, *J* 7, Ar-H), 7.67 (1 H, t, *J* 7.5, Ar-H), 7.58 (2 H, m, Ar-H), 5.49 (1 H, m, 6'-H), 5.37 and 5.17 (each 1 H, s, 1-CH), 4.92 and 4.80 (each 1 H, d, *J* 7, OCH<sub>2</sub>O), 4.63 (1 H, br d, *J* 10, 1'-H), 4.10 (1 H, d, *J* 10, 1'-OH), 3.98 (2 H, br d, *J* 7, 8'-H<sub>2</sub>), 3.94 (1 H, td, *J* 10, 5, 3-H), 3.77 and 3.59 (each 1 H, td, *J* 11.5, 5.5, CH<sub>2</sub>CH<sub>2</sub>Si), 3.50 and 3.38 (each 1 H, d, *J* 15, 6-CH), 2.69 (1 H, br d, *J* 10, 2-H), 2.50 (1 H, br t, *J* 6.5, 8'-OH), 2.32 – 2.41 (5 H, m, 4'-H<sub>2</sub>, 5'-H<sub>2</sub> and 4-H), 2.06 (1 H, dt, *J* 13, 4.5, 4-H'), 1.92 (1 H, m, 5-H), 1.59 (3 H, s, 7'-CH<sub>3</sub>), 1.24 (3 H, s, 6-CH<sub>3</sub>), 0.97 (2 H, m, CH<sub>2</sub>Si), 0.92 (3 H, d, *J* 6.5, 5-CH<sub>3</sub>) and 0.03 [9 H, s, Si(CH<sub>3</sub>)<sub>3</sub>];  $\delta_{\text{C}}$  (75 MHz, CDCl<sub>3</sub>) 147.8, 142.7, 137.0, 133.7, 129.7, 127.6, 123.6, 111.7, 94.6, 87.1, 80.2, 79.9, 68.4, 66.0, 64.8, 63.4, 51.2, 45.8, 37.3, 36.2, 26.8, 19.6, 19.4, 18.2, 16.8, 14.1 and -1.2; *m/z* (CI) 594 (M<sup>+</sup> + 18, 1%), 277 (70), 172 (74), 170 (87), 135 (92) and 90 (100).

**(2RS,3SR,5RS,6SR)-2-[(1RS,6E)-(8-*tert*-Butyldimethylsilyloxy-1-hydroxy-7-methyloct-6-en-2-yn-1-yl]-5,6-dimethyl-6-phenylsulfonylmethyl-3-(2-trimethylsilylethoxy)methoxy-1-methylenecyclohexane 47**

Imidazole (8 mg, 0.117 mmol) was added to the diol **46** (45 mg, 0.078 mmol) in dichloromethane (0.4 cm<sup>3</sup>) at room temperature, the solution was cooled to 0 °C and *tert*-butyldimethylsilyl chloride (12 mg, 0.078 mmol) was added. After 30 min, water (1 cm<sup>3</sup>) and ethyl acetate (2 cm<sup>3</sup>) were added. The aqueous layer was extracted with ethyl acetate (3x2 cm<sup>3</sup>) and the organic extracts were washed with brine (4 cm<sup>3</sup>), dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Column chromatography of the residue, eluted with 1 – 30% ether in petrol, afforded the *title compound* **47** (48 mg, 89%) as a clear oil, *R*<sub>f</sub> 0.4 (50% ether in petrol) (Found; M<sup>+</sup> + NH<sub>4</sub>, 708.4140. C<sub>37</sub>H<sub>66</sub>O<sub>6</sub>NSSi<sub>2</sub> requires *M*, 708.4149);  $\nu_{\text{max}}$ /cm<sup>-1</sup> 3497 (br), 2952, 2929, 2894, 2858, 1638, 1584, 1465, 1449, 1379, 1316, 1250, 1150, 1105, 1027, 836 and 775;  $\delta_{\text{H}}$  (300 MHz, CDCl<sub>3</sub>) 7.94 (2 H, d, *J* 8, Ar-H), 7.64 (1 H, m, Ar-H), 7.57 (2 H, t, *J* 7.5, Ar-H), 5.42 (1 H, br s, 6'-H), 5.34 and 5.18 (each 1 H, s, 1-CH), 4.84 and 4.81 (each 1 H, d, *J* 7, OCH<sub>2</sub>O), 4.62 (1 H, br d, *J* 10, 1'-H), 4.09 (1 H, d, *J* 10, OH), 4.01 (2 H, s, 8'-H<sub>2</sub>), 3.89 (1 H, td, *J* 10, 5, 3-H), 3.81 and 3.58 (each 1 H, m,

CHHCH<sub>2</sub>Si), 3.49 and 3.38 (each 1 H, d, *J* 14.5, 6-CH), 2.69 (1 H, br d, *J* 10, 2-H), 2.27 (4 H, m, 4'-H<sub>2</sub> and 5'-H<sub>2</sub>), 2.10 (1 H, dt, *J* 13, 4.2, 4-H), 1.85 (1 H, m, 5-H), 1.61 (3 H, s, 7'-CH<sub>3</sub>), 1.53 (1 H, m, 4-H'), 1.27 (3 H, s, 6-CH<sub>3</sub>), 0.84 – 0.99 [14 H, m, SiC(CH<sub>3</sub>)<sub>3</sub>, 5-CH<sub>3</sub> and CH<sub>2</sub>Si], 0.01 (3 H, s, SiCH<sub>3</sub>) and 0.01 (12 H, s, 4 x SiCH<sub>3</sub>);  $\delta$ <sub>C</sub> (75 MHz, CDCl<sub>3</sub>) 133.4, 129.4, 127.4, 122.7, 117.8, 111.7, 106.9, 98.8, 94.7, 90.0, 79.6, 76.6, 73.1, 68.5, 65.7, 64.5, 58.3, 51.1, 45.4, 36.9, 36.2, 32.0, 27.2, 26.6, 19.2, 18.1, 16.6, 13.6, -1.4 and -5.2; *m/z* (CI) 708 (M<sup>+</sup> + 18, 20%), 647 (10), 575 (10), 442 (24), 365 (21), 294 (40), 277 (76), 269 (100), 242 (39), 135 (41) and 90 (77).

**(2SR,3SR,5RS,6SR)-2-[(1RS,6E)-(8-*tert*-Butyldimethylsilyloxy-1-tri-isopropylsilyloxy-7-methyloct-6-en-2-yn-1-yl]-5,6-dimethyl-6-phenylsulfonylmethyl-3-(2-trimethylsilylethoxy)methoxy-1-methylenecyclohexane 48**

2,6-Lutidine (0.0054 cm<sup>3</sup>, 0.0462 mmol) and tri-isopropylsilyl methanesulfonate (0.0117 cm<sup>3</sup>, 0.0435 mmol) were added to the alcohol **47** (29 mg, 0.0414 mmol) in dichloromethane (0.3 cm<sup>3</sup>) at 0 °C and the solution stirred for 30 min. Water (0.5 cm<sup>3</sup>) and ethyl acetate (1 cm<sup>3</sup>) were added, the aqueous phase was extracted with ethyl acetate (3x2 cm<sup>3</sup>), and the organic extracts were washed with brine (3 cm<sup>3</sup>), dried (MgSO<sub>4</sub>), and concentrated under reduced pressure. Column chromatography of the residue, eluted with 1 – 20% ether in petrol, afforded the *title compound* **48** (34 mg, 97%) as a clear oil,  $R_f$  = 0.8 (50% ether in petrol)  $\nu_{\text{max}}/\text{cm}^{-1}$  2928, 2894, 2864, 1528, 1461, 1321, 1249, 1150, 1054, 836 and 775;  $\delta$ <sub>H</sub> (300 MHz, CDCl<sub>3</sub>) 7.94 (2 H, d, *J* 7.5, Ar-H), 7.62 (1 H, 6, *J* 7, Ar-H), 7.55 (2 H, t, *J* 7.5, Ar-H), 5.43 (1 H, s, 1-CH), 5.39 (1 H, br t, *J* 5.5, 6'-H), 5.33 (1 H, s, 1-CH'), 4.82 (2 H, m, 1'-H and OCHHO), 4.72 (1 H, d, *J* 7, OCHH'O), 4.02 (2 H, s, 8'-H<sub>2</sub>), 3.81 (1 H, m, 3-H), 3.75 and 3.49 (each 1 H, m, CHHCH<sub>2</sub>Si), 3.52 and 3.36 (each 1 H, d, *J* 14.5, 6-CH), 2.59 (1 H, t, *m*, 3-H), 2.20 (4 H, m, 4'-H<sub>2</sub> and 5'-H<sub>2</sub>), 2.06 (2 H, m, 4-H and 5-H), 1.62 (3 H, s, 7'-CH<sub>3</sub>), 1.56 (1 H, m, 4-H'), 1.23 (3 H, s, 6-CH<sub>3</sub>), 1.06 [21 H, m, 3 x SiCH(CH<sub>3</sub>)<sub>2</sub>], 0.97 (3 H, d, *J* 6.5, 5-CH<sub>3</sub>), 0.90 [11 H, m, CH<sub>2</sub>Si and SiC(CH<sub>3</sub>)<sub>3</sub>], 0.08 and 0.05 (each 3 H, s, SiCH<sub>3</sub>) and 0.04 [9 H, s, Si(CH<sub>3</sub>)<sub>3</sub>];  $\delta$ <sub>C</sub> (75 MHz, CDCl<sub>3</sub>) 146.8, 142.6, 135.6, 133.1, 129.0, 127.4, 122.9, 115.3, 99.9, 94.5, 86.2, 81.1, 68.4, 64.8, 63.9, 54.8, 44.4, 35.9, 35.7, 26.7, 25.9, 23.7, 20.7, 19.7, 18.9, 18.1, 18.0, 16.9, 13.4, 12.4, -1.5 and -5.4; *m/z* (ES+) 870 (M<sup>+</sup> + 23, 68%), 869 (72%), 729 (19) and 145 (14).

**(2SR,3SR,5RS,6SR)-5,6-Dimethyl-2-[(1RS,6E)-(8-hydroxy-1-tri-isopropylsilyloxy-7-methyloct-6-en-2-yn-1-yl]-6-phenylsulfonylmethyl-3-(2-trimethylsilylethoxy)methoxy-1-methylenecyclohexane 49**

Acetic acid, tetrahydrofuran and water (3 : 1 : 1 v/v, 3.1 cm<sup>3</sup>) were added to the bis-silyl ether **48** (0.15 g, 0.177 mmol) in tetrahydrofuran (1.07 cm<sup>3</sup>) at 0 °C and the solution stirred for 30 min at 0 °C and then at room temperature for 24 h. Saturated aqueous sodium bicarbonate was added at 0 °C (2.5 cm<sup>3</sup>) followed by ethyl acetate (2 cm<sup>3</sup>). The aqueous phase was extracted with ethyl acetate (4x5 cm<sup>3</sup>) and the organic

extracts washed with brine (10 cm<sup>3</sup>), dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Column chromatography of the residue, eluted with 1 – 50% ether in petrol, afforded the *title compound 49* (0.106 g, 82%) as a clear oil,  $R_f$  = 0.2 (50% ether in petrol) (Found; M<sup>+</sup> + NH<sub>4</sub>, 750.4623. C<sub>40</sub>H<sub>72</sub>O<sub>6</sub>Si<sub>2</sub>SN requires M, 750.4619);  $\nu_{\text{max}}$ /cm<sup>-1</sup> 3487 (br), 2895, 2857, 1447, 1377, 1320, 1249, 1151, 1027 and 836;  $\delta_{\text{H}}$  (300 MHz, CDCl<sub>3</sub>) 7.95 (2 H, d, *J* 7, Ar-H), 7.64 (1 H, t, *J* 7.5, Ar-H), 7.40 (2 H, t, *J* 7.5, Ar-H), 5.51 (1 H, br t, *J* 6.5, 6'-H), 5.41 and 5.35 (each 1 H, s, 1-CH), 4.88 (1 H, d, *J* 7, OCHHO), 4.81 (1 H, m, 1'-H), 4.71 (1 H, d, *J* 7, OCHH' O), 4.01 (2 H, s, 8'-H<sub>2</sub>), 3.79 (2 H, m, 3-H and CHHCH<sub>2</sub>Si), 3.53 (1 H, d, *J* 14.5, 6-CH), 3.51 (1 H, m, CHH'CH<sub>2</sub>Si), 3.38 (1 H, d, *J* 14.5, 6-CH'), 2.62 (1 H, dd, *J* 7, 4, 2-H), 2.27 (4 H, m, 4'-H<sub>2</sub> and 5'-H<sub>2</sub>), 2.08 (1 H, dt, *J* 13.5, 4.5, 4-H), 1.97 (1 H, m, 5-H), 1.67 (3 H, s, 7'-CH<sub>3</sub>), 1.60 (1 H, m, 4-H'), 1.40 (3 H, s, 6-CH<sub>3</sub>), 1.07 [21 H, m, 3 x SiCH(CH<sub>3</sub>)<sub>2</sub>], 0.97 (3 H, d, *J* 6.5, 5-CH<sub>3</sub>), 0.94 (2 H, m, CH<sub>2</sub>Si) and 0.05 [9 H, s, Si(CH<sub>3</sub>)<sub>3</sub>];  $\delta_{\text{C}}$  (75 MHz, CDCl<sub>3</sub>) 147.2, 142.6, 136.3, 133.1, 129.1, 127.4, 123.4, 114.6, 94.6, 86.3, 81.3, 76.9, 68.1, 64.9, 64.3, 63.8, 54.4, 44.6, 36.2, 35.4, 26.4, 19.2, 18.9, 18.1, 17.9, 16.9, 13.7, 12.4 and -1.5; *m/z* (CI) 750 (M<sup>+</sup> + 18, 0.3%), 294 (42), 277 (82) and 90 (100).

**(2*S*,3*S*,5*R*,6*S*)-2-[(1*R**S*,6*E*)-(8-Bromo-1-tri-isopropylsilyloxy-7-methyloct-6-en-2-yn-1-yl]-5,6-di-methyl-6-phenylsulfonylmethyl-3-(2-trimethylsilylethoxy)methoxy-1-methylenecyclohexane 50**

Triethylamine (0.097 cm<sup>3</sup>, 0.7 mmol) and methanesulfonyl chloride (0.033 cm<sup>3</sup>, 0.44 mmol) were added to the alcohol **49** (0.19 g, 0.175 mmol) in dichloromethane (2.8 cm<sup>3</sup>) at 0 °C and the solution allowed to warm to room temperature and stirred for 30 min. After cooling to 0 °C, lithium bromide (0.23 g, 2.63 mmol) in acetone (1.4 cm<sup>3</sup>) was added and the mixture stirred for 30 min at ambient temperature then filtered through a pad of celite. The filter-cake was washed with dichloromethane and the filtrate was concentrated under reduced pressure. The residue was taken up in ethyl acetate (5 cm<sup>3</sup>) and washed with saturated aqueous sodium bicarbonate (5 cm<sup>3</sup>). The aqueous phase was washed with ethyl acetate (4x5 cm<sup>3</sup>) and the organic extracts were washed with brine (10 cm<sup>3</sup>), dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Column chromatography of the residue, eluted with 1 – 15% ether in petrol, afforded the *title compound 50* (0.159g, 86%) as a clear oil,  $R_f$  = 0.65 (50% ether in petrol) (Found; M<sup>+</sup> - Br<sup>79</sup>, 715.4237. C<sub>40</sub>H<sub>67</sub>O<sub>5</sub>Si<sub>2</sub>S requires M, 715.4248);  $\nu_{\text{max}}$ /cm<sup>-1</sup> 2943, 2896, 2865, 1465, 1446, 1320, 1248, 1150, 1106, 1052, 1033, 861 and 835;  $\delta_{\text{H}}$  (400 MHz, CDCl<sub>3</sub>) 7.94 (2 H, d, *J* 7, Ar-H), 7.63 (1 H, t, *J* 7.5, Ar-H), 7.56 (2 H, dd, *J* 8, 7, Ar-H), 5.65 (1 H, m, 6'-H), 5.47 and 5.34 (each 1 H, s, 1-CH), 4.85 (1 H, br d, *J* 4, 1'-H), 4.81 and 4.71 (each 1 H, d, *J* 7, OCHHO), 3.96 (2 H, s, 8'-H<sub>2</sub>), 3.76 (2 H, m, 3-H and CHHCH<sub>2</sub>Si), 3.50 (2 H, m, 6-CH and CHH'CH<sub>2</sub>Si), 3.36 (1 H, d, *J* 14.5, 6-CH'), 2.57 (1 H, dd, *J* 7, 4.5, 2-H), 2.22 (4 H, m, 4'-H<sub>2</sub> and 5'-H<sub>2</sub>), 2.07 (1 H, dt, *J* 13.5, 4.5, 4-H), 1.98 (1 H, m, 5-H), 1.77 (3 H, d, *J* 1, 7'-CH<sub>3</sub>), 1.54 (1 H, m, 4-H'), 1.36 (3 H, s, 6-CH<sub>3</sub>), 1.05 [21 H, m, 3 x SiCH(CH<sub>3</sub>)<sub>2</sub>], 0.95 (3 H, d, *J* 7, 5-CH<sub>3</sub>), 0.89 (2 H, m, CH<sub>2</sub>Si), 0.03 [9 H, s, Si(CH<sub>3</sub>)<sub>3</sub>];  $\delta_{\text{C}}$  (75 MHz, CDCl<sub>3</sub>) 146.8, 142.7, 133.1, 129.5,

129.1, 127.4, 114.9, 94.7, 85.5, 81.6, 76.6, 64.9, 63.9, 54.3, 44.6, 41.2, 36.2, 36.0, 27.3, 23.7, 19.4, 18.5, 18.1, 18.0, 16.9, 15.7, 14.7, 12.4 and -1.5;  $m/z$  (CI) 715 ( $M^+ - 79$ , 0.04%), 277 (29) and 90 (100).

**(1SR,2RS,7E,11SR,12RS,14SR)-15-Methylene-10-phenylsulfonyl-8,11,12-trimethyl-2-tri-isopropyl-silyloxy-14-(2-trimethylsilylethoxy)methoxybicyclo[9.3.1]pentadec-7-en-3-yne 51**

Sodium hexamethyldisilazide (1.0 M solution in tetrahydrofuran, 0.125 cm<sup>3</sup>, 0.125 mmol) was added to the bromide **50** (33 mg, 0.0415 mmol) in tetrahydrofuran (0.25 cm<sup>3</sup>) at 0 °C over 30 min using a syringe pump and the solution stirred for 30 min. Saturated aqueous ammonium chloride (1.5 cm<sup>3</sup>) and ethyl acetate were added. The aqueous layer was extracted into ethyl acetate (3x3 cm<sup>3</sup>) and the organic extracts were washed with brine (5 cm<sup>3</sup>), dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Column chromatography of the residue, eluted with 0 – 5% ether in petrol, afforded the *title compound* **51** (19 mg, 64%) as a clear oil,  $R_f$  = 0.65 (50% ether in petrol) (Found;  $M^+ + NH_4$ , 732.4525. C<sub>40</sub>H<sub>70</sub>O<sub>5</sub>NSSi<sub>2</sub> requires  $M$ , 732.4513);  $\nu_{max}/cm^{-1}$  2927, 2865, 1718, 1652, 1540, 1463, 1373, 1309, 1145 and 1045;  $\delta_H$  (300 MHz, CDCl<sub>3</sub>) 7.98 (2 H, d, *J* 8, Ar-*H*), 7.62 (3 H, d, m, Ar-*H*), 6.19 (1 H, s, 15-*CH*), 6.02 (1 H, s, 15-*CH'*), 5.55 (1 H, m, 7-*H*), 5.00 (1 H, m, 2-*H*), 4.79 and 4.75 (each 1 H, d, *J* 6.5, OCHHO), 3.82 (1 H, td, *J* 9.5, 5.5, CHHCH<sub>2</sub>Si), 3.62 (2 H, m, 10-*H* and 14-*H*), 3.46 (1 H, td, *J* 9, 6.5, CHH'CH<sub>2</sub>Si), 3.23 (1 H, t, *J* 10.5, 9-*H*), 2.95 (1 H, m, 12-*H*), 2.22 – 1.95 (7 H, m), 1.57 (1 H, m, 13-*H*), 1.43 (3 H, s, 8-CH<sub>3</sub>), 1.17 – 1.05 [24 H, m, 11-CH<sub>3</sub> and 3 x SiCH(CH<sub>3</sub>)<sub>2</sub>], 0.97 – 0.90 [5 H, m, 12-CH<sub>3</sub> and CH<sub>2</sub>Si] and 0.06 [9 H, s, Si(CH<sub>3</sub>)<sub>3</sub>];  $m/z$  (CI) 732 ( $M^+ + 18$ , 1.3%), 567 (15), 428 (10), 425 (15), 269 (12), 253 (18), 251 (22), 215 (11), 160 (13) and 90 (100).

**(1RS,2RS,7E,11SR,12RS,14SR)-15-Methylene-10-phenylsulfonyl-8,11,12-trimethyl-14-(2-trimethylsilylethoxy)methoxybicyclo[9.3.1]pentadec-7-en-3-yn-2-ol 52**

tetra-*n*-Butylammonium fluoride (1.0 M solution in tetrahydrofuran, 0.026 cm<sup>3</sup>, 0.026 mmol) was added to the silyl ether **51** (17 mg, 0.0238 mmol) in tetrahydrofuran (0.3 cm<sup>3</sup>) at room temperature. The solution was stirred for 1.5 h then concentrated under reduced pressure. Column chromatography of the residue, eluting with 1 – 25% ether in petrol, afforded the *title compound* **52** (7.5 mg, 73%) as a clear oil,  $R_f$  = 0.25 (50% ether in petrol)  $\nu_{max}/cm^{-1}$  3465 (br), 2952, 2922, 1733, 1644, 1446, 1369, 1304, 1249, 1142, 1030, 921, 860 and 836;  $\delta_H$  (300 MHz, CDCl<sub>3</sub>) 7.97 (2 H, d, *J* 7.5, Ar-*H*), 7.60 (3 H, m, Ar-*H*), 6.14 and 6.02 (each 1 H, s, 15-*CH*), 5.57 (1 H, m, 7-*H*), 4.92 (1 H, m, 2-*H*), 4.74 and 4.69 (each 1 H, d, *J* 6.5, OCHHO), 3.83 (1 H, d, 4.5, OH), 3.75 (1 H, m, CHHCH<sub>2</sub>Si), 3.64 – 3.52 (3 H, m, 10-*H*, 14-*H* and CHH'CH<sub>2</sub>Si), 3.16 (1 H, dd, *J* 13.5, 10.5, 9-*H*), 2.93 (1 H, quin, *J* 7, 12-*H*), 2.38 (2 H, m, 5-H<sub>2</sub>), 2.30 (1 H, m, 1-*H*), 2.17 – 2.00 (4 H, m, 6-H<sub>2</sub>, 9-*H'* and 13-*H*), 1.46 (3 H, s, 8-CH<sub>3</sub>), 1.42 (1 H, m, 13-*H'*), 1.13 (3 H, d, *J* 6.5, 12-CH<sub>3</sub>), 1.09 (3 H, s, 11-CH<sub>3</sub>), 1.01 (2 H, m, CH<sub>2</sub>Si) and 0.05 [9 H, s, Si(CH<sub>3</sub>)<sub>3</sub>];  $\delta_C$  (75 MHz, CDCl<sub>3</sub>) 145.5, 142.0, 133.5, 133.1, 129.6, 129.0, 128.1, 115.3, 95.4, 85.1, 83.1, 80.5, 72.2, 65.9, 61.1, 53.2, 53.0,

39.2, 39.0, 37.7, 26.2, 22.6, 18.3, 18.1, 17.9, 17.2 and -1.6;  $m/z$  (ES-) 593 ( $M^+ + 35$ , 99%), 157 (89) and 111 (100).

**(1SR,2RS,7E,11SR,12RS,14SR)-15-Methylene-8,11,12-trimethyl-2-tri-isopropylsilyloxy-14-(2-trimethylsilylethoxy)methoxybicyclo[9.3.1]pentadec-7-en-3-yne 53**

Sodium dihydrogen phosphate (0.05 g, 0.35 mmol) was added to the sulfone **51** (25 mg, 0.035 mmol) in tetrahydrofuran (0.2 cm<sup>3</sup>) and methanol (0.2 cm<sup>3</sup>) and the resulting suspension cooled to 0 °C. Sodium-mercury amalgam (5% sodium, 0.16 g, 0.35 mmol) was added and the suspension allowed to warm to room temperature and stirred for 2 h. Saturated aqueous ammonium chloride (1 cm<sup>3</sup>) was added and the mixture diluted with ethyl acetate (2 cm<sup>3</sup>) and decanted from the residue. The aqueous phase was extracted with ethyl acetate (3x2 cm<sup>3</sup>) and the organic extracts washed with brine (4 cm<sup>3</sup>), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated under reduced pressure. Column chromatography of the residue, eluted with 0 – 5% ether in petrol, afforded the *title compound* **53** (14 mg, 69%) as a clear oil,  $R_f$  = 0.8 (50% ether in petrol)  $\nu_{\text{max}}/\text{cm}^{-1}$  2928, 2866, 1463, 1379, 1249, 1162, 1106, 1052, 1035, 859 and 836;  $\delta_{\text{H}}$  (300 MHz, CDCl<sub>3</sub>) 5.61 (1 H, s, 15-CH), 5.01 (1 H, d,  $J$  9, 7-H), 4.94 (1 H, s, 15-CH'), 4.90 (1 H, d,  $J$  3.5, 2-H), 4.79 and 4.73 (each 1 H, d,  $J$  6.5, OCH<sub>2</sub>), 3.85 (1 H, m, CHHCH<sub>2</sub>Si), 3.57 (1 H, td,  $J$  10, 5.5, 14-H), 3.44 (1 H, m, CHH'CH<sub>2</sub>Si), 2.50 (1 H, dd,  $J$  10.5, 3.5, 1-H), 2.25 – 1.95 (7 H, m, 5-H<sub>2</sub>, 6-H<sub>2</sub>, 9-H<sub>2</sub> and 13-H), 1.62 (3 H, s, 8-CH<sub>3</sub>), 1.48 (1 H, m, 13-H'), 1.29 (3 H, m, 10-H<sub>2</sub> and 12-H), 1.14 (18 H, d,  $J$  6, 3 x SiCH(CH<sub>3</sub>)<sub>2</sub>], 1.05 (3 H, s, 11-CH<sub>3</sub>), 0.91 [5 H, 3 x SiCH(CH<sub>3</sub>)<sub>2</sub> and CH<sub>2</sub>Si], 0.79 (3 H, d,  $J$  6.5, 12-CH<sub>3</sub>) and 0.06 [9 H, s, Si(CH<sub>3</sub>)<sub>3</sub>];  $\delta_{\text{C}}$  (75 MHz, CDCl<sub>3</sub>) 151.7, 136.1, 126.8, 108.8, 96.3, 83.9, 81.6, 65.1, 62.5, 53.0, 44.9, 43.4, 40.4, 35.6, 30.4, 30.0, 27.5, 19.0, 18.53, 18.5, 18.3, 18.2, 16.5, 15.9, 12.8 and -1.2;  $m/z$  (ES+) 597 ( $M^+ + \text{Na}$ , 96%), 575 ( $M^+ + 1$ , 12%), 464 (25), 242 (100); (ES-) 573 ( $M^+ - 1$ , 11%), 339 (27), 247 (37), 230 (66), 219 (20) and 113 (100).