Synthesis of Highly Substituted Allylic Alcohols by a Regioand Stereo-defined CuCl-Mediated Carbometallation Reaction of 3-Aryl Substituted Secondary Propargylic Alcohols with Grignard Reagents

Xiaobing Zhang, Zhan Lu, Chunling Fu, and Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.

E-mail: masm@mail.sioc.ac.cn Fax: (+86) 21-62609305

Materials	S2
Synthesis of Starting Materials: 3-Aryl Substituted Secondary Proparaylic Alcohols (12-1k)	S2-S7
Tiopargyne Alconois (1a-1k)	
Synthesis of Optically Active (S)-4-Phenyl-3-buten-2-ol ((S)-1a)	S7- S8
The Reaction of Propargylic Alcohols with Grignard Reagents Followed by Protonolysis (2a-2d and 5a)	S8-S12
The Reaction of Propargylic Alcohols with Grignard Reagents	S12-S23
Followed by Iodination (4a-4m and 6a)	
The Reaction of Propargylic Alcohols with Grignard Reagents Followed by Allylation (7a-7g)	S23-S28
The Reaction of 1a with n -C ₅ H ₁₁ MgBr Followed by Pd-catalyzed Kumada-type Coupling Reaction (8a-8e)	S29-S33
Synthesis of 5-Methyl-4-(<i>n</i> -pentyl)-3-phenyl-2(5 <i>H</i>)-furanone (9a)	S33-S34
References	S35
¹ H/ ¹³ C NMR Spectra of These Compounds	S36-S126

Table of Contents

Experimental Section

Materials. Et₂O and THF were distilled from Na/benzophenone, Et₃N was distilled from KOH, and DMSO was distilled from CaH₂. The commercially available chemicals were purchased and used without additional purification unless otherwise noted. Melting points were determined by a semi automatic melting point apparatus made by Shenguang in China.

1. Synthesis of 3-Aryl Substituted Secondary Propargylic Alcohols

General Procedure for Synthesis of 1a-d:¹

To a dry three-necked flask containing the magnesium turnings (2.88 g, 0.12 mol) and I₂ (a few crystals) in THF (120 mL) were added several drops of ethyl bromide. Upon the initiation of the Grignard reaction, the remaining ethyl bromide (0.12 mol) was added dropwise, which was followed by stirring until the magnesium disappeared. Phenylethyne (0.10 mol) was added dropwise into the solution at 55 °C followed by stirring for 1.5 h at this temperature. Then corresponding aldehyde (fresh distilled) or acetone (0.08 mol) was added at 55 °C and the resulting mixture was stirred at this temperature for 2 h. The reaction mixture was then quenched with an aqueous solution of saturated NH₄Cl and extracted with Et₂O. The combined organic layer was washed with 5 % HCl, sat. NaHCO₃ (aq.), brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation of the solvent, and distillation afforded the propargylic alcohols.

(1) **4-Phenyl-3-butyn-2-ol** (1a)

EtBr
$$\xrightarrow{Mg}$$
 EtMgBr \xrightarrow{Ph} \xrightarrow{Ph} Ph $\xrightarrow{}$ Ph $\xrightarrow{}$ MgBr $\xrightarrow{1) CH_3CHO, 60 °C, 2.3 h}$ Ph $\xrightarrow{}$ Ph $\xrightarrow{}$ And CH $\xrightarrow{}$ Ph $\xrightarrow{}$

The reaction of ethyl bromide (8.96 mL, d = 1.461 g/mL, 13.09 g, 0.12 mol), magnesium turnings (2.88 g, 0.12 mol), phenylethyne (11.0 mL, d = 0.930 g/mL, 10.20 g, 0.10 mol), and acetaldehyde (4.0 mL, d = 0.780 g/mL, 3.12 g, 0.07 mol) in THF (120 mL) afforded **1a**² (8.72 g, 84%, 126-128 °C/2.2 mmHg): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.38 (m, 2 H), 7.33-7.27 (m, 3 H), 4.81-4.72 (m, 1 H), 2.24 (bs, 1 H), 1.55 (d, J = 6.6 Hz, 3 H).

(2) 1-Phenyl-1-octyn-3-ol (1b)

EtBr
$$\xrightarrow{Mg}$$
 EtMgBr \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} $\xrightarrow{H_{1}CHO}$ $\xrightarrow{H_{1}CHO}$ $\xrightarrow{H_{1}CHO}$ $\xrightarrow{H_{1}-HO}$ $\xrightarrow{H_{1}-$

The reaction of ethyl bromide (8.96 mL, d = 1.461 g/mL, 13.09 g, 0.12 mol), magnesium turnings (2.88 g, 0.12 mol), phenylethyne (11.0 mL, d = 0.930 g/mL, 10.20 g, 0.10 mol), and hexanal (9.9 mL, d = 0.834 g/mL, 8.23 g, 0.08 mol) in THF (120 mL) afforded **1b**³ (11.12 g, 67%, 165.5 °C/10.5 mmHg): Liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.41 (m, 2 H), 7.35-7.27 (m, 3 H), 4.61 (t, J = 6.8 Hz, 1 H), 2.35-2.15 (m, 1 H), 1.88-1.74 (m, 2 H), 1.60-1.44 (m, 2 H), 1.40-1.28 (m, 4 H), 0.92 (t, J = 6.2 Hz, 3 H).

(3) 1,3-Diphenyl-2-propyn-1-ol (1c)

EtBr
$$\xrightarrow{Mg}$$
 EtMgBr \xrightarrow{Ph} \xrightarrow{Ph}

The reaction of ethyl bromide (6.9 mL, d = 1.461 g/mL, 10.08 g, 0.09 mol), magnesium turnings (2.10 g, 0.09 mol), phenylethyne (8.8 mL, d = 0.930 g/mL, 8.18 g, 0.08 mol), and benzaldehyde (8.2 mL, d = 1.045 g/mL, 8.57 g, 0.08 mol) in THF (70 mL) afforded **1c**⁴ (13.55 g, 81%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.63-7.56 (m, 2 H), 7.49-7.41 (m, 2 H), 7.40-7.25 (m, 6 H), 5.66 (s, 1 H), 2.59 (bs, 1 H).

(4) 2-Methyl-4-phenyl-3-butyn-2-ol (1d)

EtBr
$$\xrightarrow{Mg}$$
 EtMgBr \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{MgBr} $\xrightarrow{S5 \ ^{\circ}C, \ 2.5 \ h}$ Ph \xrightarrow{HgBr} $\xrightarrow{S5 \ ^{\circ}C, \ 2.0 \ h}$ Ph \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{HgBr} \xrightarrow{HgBr} \xrightarrow{Dh} \xrightarrow{Ph} \xrightarrow{HgBr} \xrightarrow{HgBr} \xrightarrow{Dh} \xrightarrow{Ph} \xrightarrow{HgBr} $\xrightarrow{$

The reaction of ethyl bromide (0.90 mL, d = 1.461 g/mL, 1.31 g, 0.012 mol), magnesium turnings (0.29 g, 0.012 mol), phenylethyne (1.1 mL, d = 0.930 g/mL, 1.02 g, 0.01 mol), and acetone (0.59 mL, d = 0.791 g/mL, 0.47 g, 0.008 mol) in THF (12 mL) afforded a crude product, which was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to afford 1d⁵ (1.22 g, 94%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.38 (m, 2 H), 7.32-7.25 (m, 3 H), 2.364 (s, 1 H), 1.62 (s, 6 H).

General Procedure for the Synthesis of 1e-k:⁶

To a dry three-necked flask were added aryl iodide (2 mmol), 3-butyn-2-ol (4 mmol, 2 equiv), CuI (2 mol%), Pd(PPh₃)₂Cl₂ (2 mol%), DMSO (5 mL), and Et₃N (5 mL). The resulting mixture was then heated at 40-45 °C. After complete conversion of the starting material as monitored by TLC, the reaction mixture was quenched with an aqueous solution of saturated NH₄Cl and extracted with Et₂O. The combined organic layer was washed with 5 % HCl, sat. NaHCO₃ (aq.), brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and chromatography on silica gel (eluent: petroleum ether/ethyl acetate = $10/1 \sim 2/1$) afforded the desired product.

(1) 4-(*m*-Methylphenyl)-3-butyn-2-ol (1e)

$$\bigvee H + = \bigvee OH \frac{2 \mod \% \operatorname{Pd}(\operatorname{PPh}_3)_2 \operatorname{Cl}_2/\operatorname{Cul}}{\operatorname{DMSO, Et}_3 \operatorname{N, 40-45 °C, 10.5 h}} \bigvee H$$

The reaction of 3-iodotoluene (1.0959 g, 5.0 mmol), 3-butyn-2-ol (0.6983 g, 9.9 mmol), CuI (0.0193 g, 0.10 mmol, 2 mol%), and Pd(PPh₃)₂Cl₂ (0.0675 g, 0.096 mmol, 2 mol%) in 12 mL of DMSO and 10 mL of Et₃N afforded $1e^7$ (0.7166 g, 89%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.27-7.08 (m, 4 H), 4.80-4.70 (m, 1 H), 2.32 (d, *J* = 0.3 Hz, 3 H), 2.04-1.98 (m, 1 H), 1.55 (d, *J* = 6.6 Hz, 3 H).

(2) 4-(p-Methylphenyl)-3-butyn-2-ol (1f)

$$- \underbrace{\bigcirc}_{\mathsf{H}} + \underbrace{=}_{\mathsf{OH}} \underbrace{\overset{\mathsf{OH}}{\overset{\mathsf{2} \operatorname{mol} \% \operatorname{Pd}(\operatorname{PPh}_3)_2\operatorname{Cl}_2/\operatorname{Cul}}}_{\mathsf{DMSO, Et}_3\mathsf{N, 40-45 °C, 10.3 h}} - \underbrace{\bigcirc}_{\mathsf{H}} \underbrace{\xrightarrow}_{\mathsf{H}} \underbrace{\bigcirc}_{\mathsf{H}} \underbrace{\mathsf{OH}}_{\mathsf{H}}$$

The reaction of 4-iodotoluene (1.1127 g, 5.1 mmol), 3-butyn-2-ol (0.7260 g, 10.4 mmol), CuI (0.0202 g, 0.11 mmol, 2 mol%), and Pd(PPh₃)₂Cl₂ (0.0722 g, 0.10 mmol, 2 mol%) in 20 mL of DMSO and 20 mL of Et₃N afforded **1f**⁷ (0.7458 g, 91%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.29 (m, 2 H), 7.12-7.07 (m, 2 H), 4.80-4.70 (m, 1 H), 2.42 (bs, 1 H), 2.33 (s, 3 H), 1.54 (d, *J* = 6.6 Hz, 3 H).

(3) 4-(*p*-Methoxyphenyl)-3-butyn-2-ol (1g)

$$MeO - H + = - \begin{pmatrix} OH & 2 \mod \% \operatorname{Pd}(\operatorname{PPh}_3)_2\operatorname{Cl}_2/\operatorname{Cul} \\ DMSO, \operatorname{Et}_3N, 40-45 \ ^\circ\text{C}, 11.2 \ h \end{pmatrix} MeO - \begin{pmatrix} OH & OH \\ HO & HO \\ HO$$

The reaction of 4-iodoanisole (0.4880 g, 2.1 mmol), 3-butyn-2-ol (0.2808 g, 4.0 mmol), CuI (0.0080 g, 0.04 mmol, 2 mol%), and Pd(PPh₃)₂Cl₂ (0.0284 g, 0.04 mmol, 2 mol%) in 5 mL of DMSO and 5 mL of Et₃N afforded $1g^7$ (0.2863 g, 78%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.34 (m, 2 H), 6.86-6.80 (m, 2 H), 4.80-4.70 (m, 1 H), 3.81 (s, 3 H), 2.01 (d, J = 4.5 Hz, 1 H), 1.54 (d, J = 6.6 Hz, 3 H).

(4) 4-(p-Chlorophenyl)-3-butyn-2-ol (1h)

$$CI \longrightarrow I + = \bigvee OH \xrightarrow{2 \text{ mol } \% \text{ Pd}(PPh_3)_2CI_2/Cul} \xrightarrow{OH} CI \longrightarrow OH$$

The reaction of 4-chloroiodobenzene (0.4792 g, 2.0 mmol), 3-butyn-2-ol (0.2737 g, 3.9 mmol), CuI (0.0084 g, 0.044 mmol, 2 mol%), Pd(PPh₃)₂Cl₂ (0.0279 g, 0.039 mmol, 2 mol%) in 8 mL of DMSO and 8 mL of Et₃N afforded **1h**⁷ (0.3376 g, 93%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.33 (m, 2 H), 7.31-7.26 (m, 2 H), 4.80-4.70 (m, 1 H), 2.02-1.96 (m, 1 H), 1.55 (d, *J* = 6.6 Hz, 3 H).

(5) 4-(2-Pyridyl)-3-butyn-2-ol (1i)

$$\begin{array}{c|c} \hline \\ N \end{array} + \end{array} = \begin{array}{c} 2 \mod \% \operatorname{Pd}(\operatorname{PPh}_3)_2\operatorname{Cl}_2/\operatorname{Cul}} \\ \hline \\ DMSO, \operatorname{Et}_3N, 40-45 \ ^{\mathrm{o}}\mathrm{C}, 11.5 \ h \end{array} \xrightarrow[]{} N \end{array} \begin{array}{c} \hline \\ N \end{array} \begin{array}{c} \hline \\ 1i \end{array} \begin{array}{c} \hline \\ OH \end{array}$$

The reaction of 2-iodopyridine (0.4148 g, 2.0 mmol), 3-butyn-2-ol (0.2832 g, 4.0 mmol), CuI (0.0082 g, 0.043 mmol, 2 mol%), and Pd(PPh₃)₂Cl₂ (0.0280 g, 0.040 mmol, 2 mol%) in 5 mL of DMSO and 5 mL of Et₃N afforded **1i**⁸ (0.2801 g, 94%). The reaction mixture was extracted with ethyl acetate and washed with brine. **1i**: Liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.58-8.54 (m, 1 H), 7.65 (td, *J* = 7.7 and 1.5 Hz, 1 H), 7.43-7.38 (m, 1 H), 7.27-7.20 (m, 1 H), 4.86-4.76 (m, 1 H), 3.56 (d, *J* = 5.1 Hz, 1 H), 1.59 (d, *J* = 6.6 Hz, 3 H).

(6) 4-(2-Thienyl)-3-butyn-2-ol (1j)

The reaction of 2-bromothiophene (0.3548 g, 2.2 mmol), 3-butyn-2-ol (0.2792 g, 4.0 mmol), CuI (0.0099 g, 0.052 mmol, 2 mol%), and Pd(PPh₃)₂Cl₂ (0.0283 g, 0.040 mmol, 2 mol%) in 5 mL of DMSO and 5 mL of Et₃N afforded $1j^9$ (0.1921 g, 58%):

Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, *J* = 1.2 Hz, 1 H), 7.20 (dd, *J* = 3.6 and 1.2 Hz, 1 H), 6.99-6.95 (m, 1 H), 4.81-4.72 (m, 1 H), 2.01-1.95 (m, 1 H), 1.55 (d, *J* = 6.6 Hz, 3 H).

(7) 4-(*m*-Trifluoromethylphenyl)-3-butyn-2-ol (1k)

$$F_{3}C \longrightarrow Br + = \bigcirc OH \xrightarrow{2 \mod \% \operatorname{Pd}(\operatorname{PPh}_{3})_{2}\operatorname{Cl}_{2}/\operatorname{Cul}} \xrightarrow{F_{3}C} \xrightarrow{OH} \xrightarrow{H}$$

The reaction of 3-trifluoromethylphenyl bromide (0.4577 g, 2.0 mmol), 3-butyn-2-ol (0.2772 g, 4.0 mmol), CuI (0.0092 g, 0.048 mmol, 2 mol%), and Pd(PPh₃)₂Cl₂ (0.0296 g, 0.042 mmol, 2 mol%) in 5 mL of DMSO and 5 mL of Et₃N afforded **1k** (0.3224 g, 74%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.69 (s, 1 H), 7.61-7.51 (m, 2 H), 7.46-7.39 (m, 1 H), 4.82-4.73 (m, 1 H), 2.20-2.08 (m, 1 H), 1.57 (d, *J* = 6.6 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 134.7, 130.9 (q, *J* = 32.4 Hz, 1 C), 128.8, 128.4 (q, *J* = 3.6 Hz, 1 C), 124.9 (q, *J* = 3.7 Hz, 1 C), 123.6 (q, *J* = 270.8 Hz), 123.5, 92.5, 82.5, 58.7, 24.2; ¹⁹F NMR (CDCl₃, 282 MHz) δ -63.0; IR (neat, cm⁻¹) 3341, 2985, 2934, 1610, 1588, 1487, 1432, 1372, 1335, 1237, 1169, 1130, 1073, 1039; MS (m/z) 214 (M⁺, 10.52), 199 (100), HRMS calcd for C₁₁H₉F₃O (M⁺): 214.0605, found: 214.0604.

2. Synthesis of Optically Active Propargylic Alcohol (S)-4-Phenyl-3-butyn-2-ol ((S)-1a) from Racemic Propargylic Alcohol 1a^{10,11}

$$Ph = \begin{pmatrix} H + AcOCH=CH_2 & \frac{Novozym 435, 60 °C}{23.3 h} & Ph = \begin{pmatrix} H + Ph & H \end{pmatrix}$$

To a mixture of racemic **1a** (4.0032 g) and vinyl acetate (100 mL) was added Novozym 435 (0.7008 g). After shaking at 60 °C for 23.3 h as monitored by TLC, the reaction mixture was worked up by filtration and washing with ether. Evaporation and purification by flash chromatography on silica gel (eluent: petroleum ether/ether =

from 60/1 to 20/1) afforded (S)-1a (1.6780 g, 42%): ee > 99% (HPLC conditions:

Chiralcel OJ-H, *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, λ = 230 nm, tr 10.121 min

(major), 8.978 min (minor), $[\alpha]^{23}_{D} = -45.4^{\circ} (c = 1.06, Et_2O))$ and

(*R*)-4-Phenyl-3-butyn-2-ol acetate (2.7696 g, 54%): ee = 71% (ee value was determined after its conversion to the corresponding alcohol), $[\alpha]^{20}_{D} = +145.8^{\circ}$ (*c* =

1.03, CHCl₃). (S)-1a: Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.39 (m, 2 H),

7.34-7.27 (m, 3 H), 4.76 (q, *J* = 6.6 Hz, 1 H), 2.16 (bs, 1 H), 1.56 (d, *J* = 6.6 Hz, 3 H).

(S)-1a was prepared by a different method in 98% ee, $[\alpha]^{25}_{D} = -44.8^{\circ} (c = 1.0, \text{ Et}_2\text{O}).^7$

3. General Procedure for the CuCl-Mediated Carbometallation of Propargylic Alcohols with Grignard Reagents Followed by Protonolysis

To a solution of CuCl (1.0 mmol, 1 equiv) and propargylic alcohol (1 mmol) in toluene (1.5 mL) under a nitrogen atmosphere was added the corresponding Grignard reagent (6 equiv, 6 mmol) dropwise at -78 °C in 15 min, which was followed by warming up to rt naturally. After complete conversion of the starting material as monitored by TLC, the reaction mixture was quenched with an aqueous solution of saturated NH₄Cl at 0 °C, and extracted with Et₂O. The combined organic layer was washed with 5 % HCl, sat. NaHCO₃ (aq.), brine, and dried over anhydrous Na₂SO₄. After filtration and evaporation, the NMR yield and ratio were determined by using 1,3,5-trimethylbenzene as the internal standard (35 μ L, 0.25 mmol). Chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 40/1~2/1) of the crude product

afforded the desired product.

(1) 3-(*n*-Pentyl)-4-phenyl-3(*E*)-buten-2-ol (*E*-2a)

The reaction of **1a** (0.1477 g, 1.0 mmol), CuCl (0.1005 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of *n*-C₅H₁₁MgBr in THF (1 M, 6 mL, 6 mmol, 6 equiv) afforded *E*-**2a** (0.1984 g, 90%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.38 (m, 2 H), 7.27-7.18 (m, 3 H), 6.56 (s, 1 H), 4.42 (q, *J* = 6.4 Hz, 1 H), 2.42-2.32 (m, 1 H), 2.22-2.10 (m, 1 H), 1.65-1.55 (m, 1 H), 1.55-1.43 (m, 2 H), 1.39 (d, *J* = 6.6 Hz, 3 H), 1.37-1.23 (m, 4 H), 0.91-0.83 (m, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 146.8, 137.7, 128.5, 128.1, 126.3, 124.0, 71.7, 32.2, 28.8, 28.4, 22.5, 22.3, 14.0; IR (neat, cm⁻¹) 3357, 3056, 3024, 2957, 2929, 2868, 1649, 1599, 1493, 1464, 1368, 1284, 1165, 1114, 1071; MS (m/z) 200 ((M⁺-H₂O), 10.73), 129 (100); Elemental analysis calcd for C₁₅H₂₂O: C, 82.52, H, 10.16; Found: C, 82.86, H, 10.03.

(2) 3-(*n*-Pentyl)-4-(2-thienyl)-3(*E*)-buten-2-ol (*E*-2b)

The reaction of **1j** (0.1530 g, 1.0 mmol), CuCl (0.0991 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of n-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv) afforded *E*-**2b** (0.1881 g, 83%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.22 (m, 1 H), 7.02-6.95 (m, 2 H), 6.67 (s, 1 H), 4.38 (q, *J* = 6.3 Hz, 1 H), 2.54-2.42 (m, 1 H), 2.34-2.22 (m, 1 H), 1.70 (bs, 1 H), 1.60-1.47 (m, 2 H), 1.45-1.32 (m, 7 H), 0.91 (t, *J* =

7.1 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 145.1, 140.2, 127.2, 126.7, 124.9, 117.4,
72.4, 32.5, 29.3, 28.4, 22.5, 22.4, 14.1; IR (neat, cm⁻¹) 3357, 2956, 2931, 2869, 1637,
1508, 1466, 1367, 1319, 1282, 1214, 1156, 1103, 1059, 1007; MS (m/z) 224 (M⁺,
28.70), 153 (100); Elemental analysis calcd for C₁₃H₂₀OS: C, 69.59, H, 8.98; Found:
C, 69.54, H, 8.96.

(3) 3-(*n*-Pentyl)-4-(2-pyridyl)-3(*E*)-buten-2-ol (*E*-2c)

The reaction of **1i** (0.1471 g, 1.0 mmol), CuCl (0.0993 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of *n*-C₃H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv) afforded *E*-**2c** (0.1720 g, 78%). The organic layer was washed with brine. *E*-**2c**: Liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.59-5.55 (m, 1 H), 7.62 (td, *J* = 7.8 and *J* = 2.1 Hz, 1 H), 7.21 (d, *J* = 8.1 Hz, 1 H), 7.08 (ddd, *J* = 7.5, 5.0 and 1.2 Hz, 1 H), 6.60 (s, 1 H), 4.42 (q, *J* = 2.8 Hz, 1 H), 2.75-2.64 (m, 1 H), 2.40-2.28 (m, 1 H), 2.08 (bs, 1 H), 1.54-1.44 (m, 2 H), 1.40 (d, *J* = 6.3 Hz, 3 H), 1.34-1.22 (m, 4 H), 0.86 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 156.9, 151.7, 149.1, 135.9, 123.8, 123.0, 120.9, 71.7, 32.2, 28.7, 28.6, 22.5, 22.3, 14.0; IR (neat, cm⁻¹) 3379, 2957, 2929, 2868, 1648, 1586, 1563, 1468, 1429, 1367, 1291, 1152, 1118, 1059; MS (m/z) 219 (M⁺, 7.65), 158 (100); HRMS calcd for C₁₄H₂₁NONa (M⁺+Na): 242.1515; found: 242.1510.

The reaction of **1c** (0.2092 g, 1.0 mmol), CuCl (0.1002 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv) afforded *E*-**2d** (0.1273 g, 45%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.45-7.40 (m, 2 H), 7.38-7.25 (m, 7 H), 7.25-7.17 (m, 1 H), 6.77 (s, 1 H), 5.31 (s, 1 H), 2.34-2.20 (m, 1 H), 2.05 (bs, 1 H), 2.02-1.90 (m, 1 H), 1.45-1.28 (m, 2 H), 1.25-1.12 (m, 4 H), 0.84-0.76 (m, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 144.3, 142.3, 137.6, 128.7, 128.4, 128.2, 127.7, 126.8, 126.5, 125.6, 77.8, 32.0, 28.6, 28.5, 22.2, 13.9; IR (neat, cm⁻¹) 3396, 3026, 2955, 2929, 2859, 1654, 1599, 1576, 1493, 1450, 1378, 1232, 1187, 1073, 1030; MS (m/z) 280 (M⁺, 6.55), 209 (100); Elemental analysis calcd for C₂₀H₂₄O: C, 85.67, H, 8.63; Found: C, 85.75, H, 8.62.

4. Synthesis of 4-deutero-3-(*n*-pentyl)-4-phenyl-3(*E*)-buten-2-ol (*E*-5a)

Following the procedure for the CuCl-mediated carbometallation of propargylic alcohols with Grignard reagents described above, the reaction was conducted using **1a** (0.1488 g, 1.0 mmol), CuCl (0.0998 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of n-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv). After complete conversion of the starting material as monitored by TLC, the reaction mixture was quenched with D₂O (0.5 mL) at -40 °C and warmed up to rt to afford *E*-**5a** (0.1961 g,

88%, D incorporation: 99%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.29 (m, 2 H), 7.27-7.17 (m, 3 H), 6.55 (s, 0.01 H), 4.41 (q, *J* = 6.4 Hz, 1 H), 2.42-2.30 (m, 1 H), 2.22-2.10 (m, 1 H), 1.77 (bs, 1 H), 1.56-1.42 (m, 2 H), 1.38 (d, *J* = 6.6 Hz, 3 H), 1.34-1.22 (m, 4 H), 0.90-0.83 (m, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 146.7, 137.6, 128.5, 128.1, 126.3, 71.7, 32.2, 28.8, 28.4, 22.5, 22.3, 14.0; IR (neat, cm⁻¹) 3363, 3056, 3021, 2957, 2929, 2868, 1639, 1597, 1493, 1464, 1370, 1285, 1114, 1063; MS (m/z) 219 (M⁺, 3.22), 148 (100); HRMS calcd for C₁₅H₂₁DO (M⁺): 219.1733, found 219.1730.

5. General Procedure for the CuCl-Mediated Carbometallation of Propargylic Alcohols with Grignard Reagents Followed by Iodination

Following the procedure for the CuCl-mediated carbometallation of propargylic alcohols with Grignard reagents described above, the reaction was conducted using propargylic alcohol (1 mmol), CuCl (1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of Grignard reagent in THF (6 equiv, 6 mmol). After complete conversion of the starting material as monitored by TLC, the reaction mixture was quenched by the dropwise addition of a solution of I₂ (6 mmol, 6 equiv) in 5 mL of THF at -40 °C, followed by warming up to rt naturally for 1 h, treatment with an aqueous solution of saturated Na₂S₂O₃ at 0 °C, and extraction with Et₂O. The combined organic layer was washed with 5 % HCl, sat. NaHCO₃ (aq.), brine, and dried over anhydrous Na₂SO₄. After filtration and evaporation, the NMR yield and ratio were determined by using 1,3,5-trimethylbenzene as the internal standard (35 μ L, 0.25 mmol). Chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 100/1~10/1) of the crude product

afforded the desired product.

(1) 4-Iodo-3-(*n*-pentyl)-4-phenyl-3(Z)-buten-2-ol (Z-4a)

The reaction of **1a** (0.1469 g, 1.0 mmol), CuCl (0.1007 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5243 g, 6.0 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4a** (0.2878 g, 83%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.28 (m, 2 H), 7.28-7.15 (m, 3 H), 4.97-4.87 (m, 1 H), 2.21-1.99 (m, 2 H), 1.93 (bs, 1 H), 1.40 (d, *J* = 6.3 Hz, 3 H), 1.36-1.20 (m, 2 H), 1.15-0.99 (m, 4 H), 0.74 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 149.3, 144.5, 128.2, 128.1, 127.6, 96.0, 77.0, 31.8, 29.8, 28.8, 22.0, 21.2, 13.8; IR (neat, cm⁻¹) 3363, 2956, 2928, 2865, 1620, 1592, 1486, 1458, 1442, 1367, 1285, 1222, 1175, 1104, 1060; MS (m/z) 344 (M⁺, 0.50), 327 ((M-H₂O)⁺, 22.04), 117 (100); HRMS calcd for C₁₅H₂₁OI (M⁺): 344.0637, found: 344.0642.

(2) (S)-4-Iodo-3-(*n*-pentyl)-4-phenyl-3(Z)-buten-2-ol ((S)-Z-4a)

The reaction of (*S*)-(–)-**1a** (0.1474 g, 1.0 mmol, ee > 99%), CuCl (0.0991 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of n-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂(1.4864 g, 5.9 mmol, 5.9 equiv) in THF (5 mL) afforded (*S*)-*Z*-**4a** (0.2541 g, 73 %): ee > 99% (HPLC conditions: Chiralcel AS-H,

n-hexane/*i*-PrOH = 95/5, 0.5 mL/min, λ = 230 nm, tr 9.474 min (major), 10.582 min (minor), $[\alpha]^{20}_{D}$ = +3.4 ° (*c* = 1.02, CHCl₃)). Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.29 (m, 2 H), 7.27-7.17 (m, 3 H), 4.92 (qd, *J* = 6.4 and *J* = 3.0 Hz, 1 H), 2.21-1.99 (m, 2 H), 1.96-1.84 (m, 1 H), 1.44-1.24 (m, 5 H), 1.15-0.98 (m, 4 H), 0.74 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 149.3, 144.4, 128.1, 128.0, 127.5, 95.9, 76.9, 31.8, 29.7, 28.7, 21.9, 21.2, 13.8; IR (neat, cm⁻¹) 3355, 2956, 2928, 2869, 1612, 1592, 1487, 1458, 1442, 1367, 1286, 1222, 1104, 1060; MS (m/z) 344 (M⁺, 3.33), 117 (100); HRMS calcd for C₁₅H₂₁OI (M⁺): 344.0637, found: 344.0645.

(3) 4-(p-Chlorophenyl)-4-iodo-3-(n-pentyl)-3(Z)-buten-2-ol (Z-4b)

The reaction of **1h** (0.1801 g, 1.0 mmol), CuCl (0.1001 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5261 g, 6.0 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4b** (0.2930 g, 78%): Solid: m.p. 70.5-71.0 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.26 (m, 2 H), 7.17-7.10 (m, 2 H), 4.89 (q, *J* = 6.6 Hz, 1 H), 2.20-1.98 (m, 2 H), 1.94 (bs, 1 H), 1.42-1.22 (m, 5 H), 1.18-1.00 (m, 4 H), 0.77 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 150.2, 142.9, 133.3, 129.5, 128.5, 94.1, 76.9, 31.8, 29.8, 28.9, 22.0, 21.2, 13.8; IR (KBr, cm⁻¹) 3363, 2956, 2929, 2869, 1587, 1486, 1465, 1395, 1367, 1221, 1088, 1060, 1015; MS (m/z) 380 (M⁺(³⁷Cl), 0.73), 378 (M⁺(³⁵Cl), 2.49), 125 (100); Elemental analysis calcd for C₁₅H₂₀OClI: C, 47.58, H, 5.32; Found:

C, 47.59, H, 5.32.

(4) 4-Iodo-3-(*n*-pentyl)-4-(*m*-trifluoromethylphenyl)-3(Z)-buten-2-ol (Z-4c)

The reaction of **1k** (0.2080 g, 0.97 mmol), CuCl (0.0992 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5324 g, 6.0 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4c** (0.3020 g, 75%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.43 (m, 3 H), 7.42-7.37 (m, 1 H), 4.92 (qd, *J* = 6.5 and 3.3 Hz, 1 H), 2.18-1.98 (m, 2 H), 1.92 (d, *J* = 3.3 Hz, 1 H), 1.41 (d, *J* = 6.6 Hz, 3 H), 1.38-1.23 (m, 2 H), 1.15-1.00 (m, 4 H), 0.74 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 151.0, 145.1, 131.6, 130.6 (q, *J* = 32.1 Hz, 1 C), 128.8, 125.0 (q, *J* = 3.9 Hz, 1 C), 124.3 (q, *J* = 3.8 Hz, 1 C), 123.8, (q, *J* = 271 Hz, 1 C), 93.1, 76.8, 31.8, 29.8, 28.9, 21.9, 21.3, 13.7; ¹⁹F NMR (CDCl₃, 282 MHz) -62.8; IR (neat, cm⁻¹) 3373, 2959, 2931, 2871, 1604, 1589, 1484, 1461, 1432, 1368, 1329, 1310, 1210, 1167, 1131, 1093, 1072, 1001; MS (m/z) 412 (M⁺, 1.47), 185 (100), HRMS calcd for C₁₆H₂₀F₃OI (M⁺): 412.0511, found: 412.0503.

(5) 4-Iodo-4-(*m*-methylphenyl)-3-(*n*-pentyl)-3(Z)-buten-2-ol (Z-4d)

The reaction of **1e** (0.1628 g, 1.0 mmol), CuCl (0.0966 g, 0.98 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5294 g, 6.0 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4d** (0.1795 g, 49%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.17 (m, 1 H), 7.06-6.97 (m, 3 H), 4.91 (q, *J* = 6.6 Hz, 1 H), 2.33 (s, 3 H), 2.20-1.98 (m, 2 H), 1.92-1.84 (m, 1 H), 1.42-1.25 (m, 5 H), 1.18-0.98 (m, 4 H), 0.75 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 149.1, 144.4, 137.8, 128.6, 128.4, 128.1, 125.1, 96.4, 77.0, 31.8, 29.8, 28.8, 22.0, 21.4, 21.2, 13.8; IR (neat, cm⁻¹) 3383, 2956, 2928, 2860, 1597, 1581, 1481, 1456, 1377, 1367, 1252, 1217, 1183, 1159, 1104, 1059, 1000; MS (m/z) 358 (M⁺, 7.08), 231 (100); Elemental analysis calcd for C₁₆H₂₃IO: C, 53.64, H, 6.47; Found: C, 53.67, H, 6.47.

(6) 4-Iodo-4-(*p*-methylphenyl)-3-(*n*-pentyl)-3(Z)-buten-2-ol (Z-4e)

The reaction of **1f** (0.0806 g, 0.50 mmol), CuCl (0.0498 g, 0.50 mmol, 1 equiv), 0.75 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (3 mL, 1 M, 3 mmol, 6 equiv), and I₂ (0.7532 g, 3.0 mmol, 6 equiv) afforded *Z*-**4e** (0.1191 g, 66%): Solid: m.p. 52.1-52.8 °C (hexane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.15-7.07 (m, 4 H), 4.90 (q, *J* = 6.5 Hz, 1 H), 2.34 (s, 3 H), 2.21-1.99 (m, 2 H), 1.93 (bs, 1 H), 1.43-1.25 (m, 5 H), 1.18-1.00 (m, 4 H), 0.75 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 149.1, 141.8, 137.3, 128.9, 128.0, 96.5, 77.1, 31.8, 29.8, 28.8, 22.0, 21.2, 13.8; IR (KBr, cm⁻¹) 3373, 3022, 2956, 2927, 2869, 1603, 1570, 1506, 1456, 1404,
1367, 1262, 1224, 1180, 1106, 1059, 1021; MS (m/z) 358 (M⁺, 0.50), 341 ((M⁺-OH),
1.83), 105 (100); HRMS calcd for C₁₆H₂₃OI (M⁺): 358.0794, found: 358.0780.

(7) 4-Iodo-4-(p-methoxyphenyl)-3-(n-pentyl)-3(Z)-buten-2-ol (Z-4f)

The reaction of **1g** (0.1591 g, 0.90 mmol), CuCl (0.1966 g, 2.0 mmol, 2.2 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (8 mL, 1 M, 8 mmol, 9 equiv), and a solution of I₂ (2.0013 g, 7.9 mmol, 9 equiv) in THF (7 mL) afforded *Z*-**4f** (0.1907 g, 56%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.16-7.11 (m, 2 H), 6.87-6.81 (m, 2 H), 4.90 (q, *J* = 6.5 Hz, 1 H), 3.81 (s, 3 H), 2.22-2.00 (m, 3 H), 1.42-1.25 (m, 5 H), 1.18-1.00 (m, 4 H), 0.76 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 158.6, 149.2, 137.1, 129.4, 113.5, 96.4, 77.1, 55.2, 31.8, 29.8, 28.8, 22.0, 21.1, 13.8; IR (neat, cm⁻¹) 3440, 2956, 2869, 1602, 1574, 1505, 1464, 1441, 1366, 1288, 1247, 1173, 1106, 1034; MS (m/z) 374 (M⁺, 0.80), 121 (100); Elemental analysis calcd for C₁₆H₂₃O₂I: C, 51.35, H, 6.19; Found: C, 51.31, H, 6.22.

(8) 1-Iodo-2-(*n*-pentyl)-1-phenyl-1(Z)-octen-3-ol (Z-4g)

The reaction of **1b** (0.2106 g, 1.0 mmol), CuCl (0.1038 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of n-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5382 g, 6.1 mmol, 6 equiv) in THF (5 mL) afforded Z-4g (0.1304 g, 31%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.27 (m, 2 H), 7.25-7.17 (m, 3 H), 4.72 (t, *J* = 6.6 Hz, 1 H), 2.20-1.96 (m, 3 H), 1.71-1.50 (m, 2 H), 1.48-1.20 (m, 8 H), 1.14-0.97 (m, 4 H), 0.96-0.88 (m, 3 H), 0.72 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 148.9, 144.6, 128.1, 128.0, 127.5, 96.7, 80.9, 35.3, 31.8, 31.7, 29.7, 28.9, 25.7, 22.6, 21.9, 14.1, 13.8; IR (neat, cm⁻¹) 3396, 3057, 2955, 2929, 2859, 1620, 1592, 1487, 1462, 1378, 1304, 1215, 1116, 1029; MS (m/z) 400 (M⁺, 0.49), 91 (100); Elemental analysis calcd for C₁₉H₂₉OI: C, 57.00, H, 7.30; Found: C, 57.00, H, 7.32.

(9) 3-Ethyl-4-iodo-4-phenyl-3(Z)-buten-2-ol (Z-4h)

The reaction of **1a** (0.1440 g, 0.99 mmol), CuCl (0.1008 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of EtMgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5325 g, 6.0 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4h** (0.2452 g, 82%): Solid: m.p. 100.2-101.0 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.29 (m, 2 H), 7.27-7.18 (m, 3 H), 4.98-4.89 (m, 1 H), 2.36-2.07 (m, 3 H), 1.41 (d, *J* = 6.6 Hz, 3 H), 0.92 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 150.3, 144.4, 128.2, 128.0, 127.5, 95.9, 77.0, 21.9, 21.2, 15.0; IR (KBr, cm⁻¹) 3318, 3052, 2976, 2967, 2930, 2870, 1615, 1576, 1485, 1440, 1373, 1367, 1342, 1288, 1218, 1184, 1103, 1072, 1052, 1015; MS (m/z) 302 (M⁺, 2.81), 131 (100); Elemental analysis calcd for C₁₂H₁₅OI: C, 47.70, H, 5.00; Found: C, 47.73, H, 5.01.

The reaction of **1a** (0.1426 g, 0.98 mmol), CuCl (0.1041 g, 1.1 mmol, 1 equiv), 1.5 mL of toluene, a solution of *i*-C₃H₇MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5432 g, 6.1 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4i** (0.2575 g, 83%): Solid: m.p. 88.7-89.2 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.28 (m, 2 H), 7.27-7.15 (m, 3 H), 4.84 (q, *J* = 6.6 Hz, 1 H), 2.88-2.73 (m, 1 H), 2.28 (bs, 1 H), 1.54 (d, *J* = 6.9 Hz, 3 H), 1.05 (d, *J* = 6.9 Hz, 3 H), 0.96 (d, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 152.8, 145.4, 128.2, 127.9, 127.5, 94.6, 74.3, 31.8, 21.9, 21.8, 21.3; IR (KBr, cm⁻¹) 3361, 2982, 2963, 2932, 2872, 1616, 1587, 1574, 1477, 1458, 1440, 1365, 1227, 1161, 1109, 1057; MS (m/z) 316 (M⁺, 0.80), 145 (100); Elemental analysis calcd for C₁₃H₁₇IO: C, 49.38, H, 5.42; Found: C, 49.40, H, 5.41.

(11) 3-Allyl-4-iodo-4-phenyl-3(Z)-buten-2-ol (Z-4j)

The reaction of **1a** (0.2973 g, 2.0 mmol), CuCl (0.2038 g, 2.1 mmol, 1 equiv), 3 mL of toluene, a solution of CH_2 =CHCH₂MgCl in THF (7 mL, 1.7 M, 12 mmol, 6 equiv), and a solution of I_2 (3.0215 g, 11.9 mmol, 6 equiv) in THF (10 mL) afforded *Z*-**4j** (0.3160 g, 49%): Solid: m.p. 47.7-49.9 °C (hexane/ethyl acetate); ¹H NMR (300

MHz, CDCl₃) δ 7.36-7.28 (m, 2 H), 7.27-7.18 (m, 3 H), 5.83-5.68 (m, 1 H), 5.01-4.88 (m, 3 H), 2.93 (qdt, *J* = 13.1, 6.3, and 1.7 Hz, 2 H), 2.23 (d, *J* = 3.3 Hz, 1 H), 1.39 (d, *J* = 6.6 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 146.2, 144.1, 137.0, 128.2, 128.0, 127.8, 116.1, 97.0, 77.0, 32.8, 21.2; IR (KBr, cm⁻¹) 3396, 3077, 3058, 2975, 2927, 1637, 1588, 1573, 1487, 1442, 1411, 1367, 1285, 1219, 1177, 1103, 1061, 1029, 1000; MS (m/z) 314 (M⁺, 5.86), 128 (100); Elemental analysis calcd for C₁₃H₁₅OI: C, 49.70, H, 4.81; Found: C, 49.66, H, 4.83.

(12) 4-Iodo-3,4-diphenyl-3-buten-2(Z)-ol (Z-4k)

The reaction of **1a** (0.1467 g, 1.0 mmol), CuCl (0.1032 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of PhMgCl in THF (3.4 mL, 1.8 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5237 g, 6.0 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4k** (0.2435 g, 69%): Solid: m.p. 99.1-100.8 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.19-7.10 (m, 3 H), 7.09-6.95 (m, 7 H), 5.18-5.08 (m, 1 H), 1.69 (bs, 1 H), 1.31 (d, *J* = 6.3 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 150.2, 143.7, 135.7, 130.0, 129.1, 127.7, 127.5, 127.2, 127.0, 100.7, 76.6, 21.4; IR (KBr, cm⁻¹) 3339, 2977, 1597, 1574, 1486, 1440, 1365, 1283, 1111, 1057; MS (m/z) 350 (M⁺, 5.03), 179 (100); Elemental analysis calcd for C₁₆H₁₅OI: C, 54.88, H, 4.32; Found: C, 54.87, H, 4.32.

The reaction of **1a** (0.1449 g, 1 mmol), CuCl (0.1013 g, 1 mmol, 1 equiv), 1.5 mL of toluene, a solution of PhMgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I_2 (1.5245 g, 6 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4k** (0.2174 g, 63%). The data of the compound are the same as those desribed in the previous experiment.

(13) 4-Iodo-3-(p-methylphenyl)-4-phenyl-3(Z)-buten-2-ol (Z-4l)

The reaction of **1a** (0.1473 g, 1.0 mmol), CuCl (0.0993 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of 4-MeC₆H₄MgBr in THF (3 mL, 2 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5244 g, 6.0 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**41** (0.3030 g, 83%): Solid: m.p. 112.0-112.4 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.09-6.87 (m, 9 H), 5.16-5.05 (m, 1 H), 2.20 (s, 3 H), 1.88-1.74 (m, 1 H), 1.30 (d, *J* = 6.6 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 150.1, 143.9, 136.7, 132.6, 129.8, 129.2, 128.5, 127.5, 127.1, 100.4, 76.6, 21.4, 21.1; IR (KBr, cm⁻¹) 3406, 3078, 3024, 2973, 2922, 2866, 1609, 1590, 1576, 1509, 1487, 1442, 1403, 1367, 1329, 1263, 1200, 1184, 1113, 1055; MS (m/z) 365 ((M⁺+1), 1.97), 364 (M⁺, 9.73), 193 (100); Elemental analysis calcd for C₁₇H₁₇OI: C, 56.06, H, 4.70; Found: C, 56.10, H, 4.70.

(14) 4-Iodo-3-(*p*-methoxyphenyl)-4-phenyl-3(*Z*)-buten-2-ol (*Z*-4m)

The reaction of **1a** (0.1442 g, 1.0 mmol), CuCl (0.1017 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of 4-MeOC₆H₄MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of I₂ (1.5241 g, 6.0 mmol, 6 equiv) in THF (5 mL) afforded *Z*-**4m** (0.2732 g, 73%): Solid: m.p. 97.1-98.3 °C (hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.11-6.99 (m, 5 H), 6.96-6.90 (m, 2 H), 6.70-6.64 (m, 2 H), 5.16-5.06 (m, 1 H), 3.70 (s, 3 H), 1.78 (d, *J* = 6.0 Hz, 1 H), 1.30 (d, *J* = 6.6 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 158.5, 149.8, 144.0, 131.2, 129.3, 127.8, 127.6, 127.2, 113.3, 100.7, 76.6, 55.1, 21.5; IR (KBr, cm⁻¹) 3424, 2971, 2930, 2835, 1605, 1573, 1508, 1488, 1463, 1441, 1366, 1287, 1246, 1177, 1112, 1056, 1031; MS (m/z) 380 (M⁺, 16.08), 209 (100); Elemental analysis calcd for C₁₇H₁₇O₂I: C, 53.70, H, 4.51; Found: C, 53.77, H, 4.56.

6. Synthesis of 4-Bromo-3-(*n*-pentyl)-4-phenyl-3(Z)-buten-2-ol (Z-6a)

Following the procedure for the CuCl-mediated carbometallation of propargylic alcohols with Grignard reagents described above, the reaction was conducted using **1a** (0.1408 g, 0.96 mmol), CuCl (0.0998 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of n-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv). After complete conversion of the starting material as monitored by TLC, the reaction mixture was

quenched with NBS (1.1170 g, 6.3 mmol, 6.3 equiv) at -40 °C to afford Z-6a (0.1545 g, 54%): Solid: m.p. 47.9-48.8 °C (hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.24 (m, 5 H), 5.09 (q, J = 6.5 Hz, 1 H), 2.18-1.98 (m, 2 H), 1.91 (bs, 1 H), 1.45-1.30 (m, 5 H), 1.17-1.01 (m, 4 H), 0.76 (t, J = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 144.0, 140.8, 128.6, 128.2, 127.9, 117.8, 71.3, 31.8, 29.5, 29.3, 22.0, 21.2, 13.8; IR (KBr, cm⁻¹) 3386, 3058, 2957, 2929, 2868, 1632, 1593, 1488, 1443, 1368, 1263, 1230, 1104, 1061, 1029; MS (m/z) 298 (M⁺(⁸¹Br), 0.83), 296 (M⁺(⁷⁹Br), 0.90), 217 (100); Elemental analysis calcd for C₁₅H₂₁BrO: C, 60.61, H, 7.12; Found: C, 60.57, H, 7.15.

7. General Procedure for the CuCl-Mediated Carbometallation of Propargylic Alcohols with Grignard Reagents Followed by Allylation

Following the procedure for the CuCl-mediated carbometallation of propargylic alcohols with Grignard reagents described above, the reaction was conducted using propargylic alcohol (1 mmol), CuCl (1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of Grignard reagent in THF (6 equiv, 6 mmol). After complete conversion of the starting material as monitored by TLC, the reaction mixture was quenched by the dropwise addition of a solution of allyl bromide in 2 mL of THF at -40 °C, followed by warming up to rt naturally. The resulting mixture was treated with an aqueous solution of saturated NH₄Cl at 0 °C, and extracted with Et₂O. The combined organic layer was washed with 5 % HCl, sat. NaHCO₃ (aq.), brine, and dried over anhydrous Na₂SO₄. After filtration and evaporation, the NMR yield and ratio were determined by using 1,3,5-trimethylbenzene as the internal standard (35 μ L, 0.25 mmol). Chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 40/1~10/1) of

the crude product afforded the desired product.

(1) 3-(*n*-Pentyl)-4-phenylhepta-3(*E*),6-dien-2-ol (*E*-7a)

The reaction of **1a** (0.1499 g, 1.0 mmol), CuCl (0.1041 g, 1.1 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of allyl bromide (0.54 mL, d = 1.398 g/mL, 0.7549 g, 6.2 mmol, 6.2 equiv) in THF (2 mL) afforded *E*-**7a** (0.2250 g, 85%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.27 (m, 2 H), 7.26-7.18 (m, 1 H), 7.11-7.07 (m, 2 H), 5.82-5.67 (m, 1 H), 5.05-4.89 (m, 3 H), 3.15 (qdt, J = 12.9, 6.3, and 1.5 Hz, 2 H), 2.02-1.85 (m, 2 H), 1.59 (bs, 1 H), 1.38 (d, J = 6.6 Hz, 3 H), 1.35-1.19 (m, 2 H), 1.15-0.96 (m, 4 H), 0.74 (t, J = 7.1 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 143.4, 140.3, 136.0, 135.5, 128.4, 127.9, 126.2, 115.2, 67.6, 38.7, 32.2, 30.3, 28.4, 22.1, 22.0, 13.9; IR (neat, cm⁻¹) 3382, 3077, 3057, 3019, 2956, 2929, 2870, 1636, 1599, 1491, 1456, 1441, 1368, 1283, 1106, 1177, 1072, 1056; MS (m/z) 258 (M⁺, 1.22), 130 (100); HRMS calcd for C₁₈H₂₆ONa (M⁺ + Na): 281.1876, Found: 281.1870.

(2) 3-Methyl-4-phenylhepta-3(*E*),6-dien-2-ol (*E*-7b)

The reaction of **1a** (0.1475 g, 1.0 mmol), CuCl (0.0984 g, 0.99 mmol, 1 equiv), 1.5 mL of toluene, a solution of CH₃MgCl in THF (2 mL, 3 M, 6 mmol, 6 equiv), and a solution of allyl bromide (0.54 mL, d = 1.398 g/mL, 0.7549 g, 6.2 mmol, 6.2 equiv) in THF (2 mL) afforded *E*-**7b** (0.1858 g, 91%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.27 (m, 2 H), 7.25-7.18 (m, 1 H), 7.13-7.08 (m, 2 H), 5.82-5.68 (m, 1 H), 5.05-4.91 (m, 3 H), 3.26-3.06 (m, 2 H), 1.75 (bs, 1 H), 1.58 (s, 3 H), 1.34 (d, J = 6.3Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 143.3, 136.1, 135.6, 133.9, 128.5, 127.9, 126.2, 115.1, 66.7, 38.2, 21.3, 13.1; IR (neat, cm⁻¹) 3364, 3077, 2975, 2926, 2862, 1636, 1601, 1492, 1442, 1405, 1376, 1290, 1091; MS (m/z) 202 (M⁺, 1.64), 130 (100); Elemental analysis calcd for C₁₄H₁₈O: C, 83.12, H, 8.97; Found: C, 83.10, H, 8.95.

(3) 3-Isopropyl-4-phenylhepta-3(*E*),6-dien-2-ol (*E*-7c)

The reaction of **1a** (0.1465 g, 1.0 mmol), CuCl (0.0978 g, 0.99 mmol, 1 equiv), 1.5 mL of toluene, a solution of *i*-C₃H₇MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of allyl bromide (0.7364 g, 6 mmol, 6 equiv) in THF (2 mL) afforded *E*-**7c** (0.1887 g, 82%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.26 (m, 2 H), 7.25-7.18 (m, 1 H), 7.08-7.03 (m, 2 H), 5.76-5.61 (m, 1 H), 4.99-4.87 (m, 2 H), 4.65 (q, *J* = 6.8 Hz, 1 H), 3.47-3.33 (m, 2 H), 2.48 (h, *J* = 6.9 Hz, 1 H), 1.82 (bs, 1 H), 1.52 (dd, *J* = 6.6 and 0.6 Hz, 3 H), 0.98 (dd, *J* = 6.9 and 0.3 Hz, 3 H), 0.87 (d, *J* = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 144.9, 143.2, 136.4, 136.3, 128.4, 127.8, 126.0, 115.4, 66.0, 39.4, 31.1, 23.7, 21.5, 21.2; IR (neat, cm⁻¹) 3439, 3076, 2962, 2930, 2870, 1634, 1597, 1574, 1490, 1462, 1441, 1412, 1370, 1259, 1111, 1071, 1049; MS (m/z) 230 (M⁺, 0.27), 212 ((M⁺-H₂O), 5.75), 187 (100); Elemental analysis calcd for $C_{16}H_{22}O$: C, 83.43, H, 9.63; Found: C, 83.50, H, 9.63.

(4) 3-Cyclohexyl-4-phenylhepta-3(E),6-dien-2-ol (E-7d)

The reaction of **1a** (0.1446 g, 1.0 mmol), CuCl (0.1033 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of c-C₆H₁₁MgCl in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of allyl bromide (0.7336 g, 6.1 mmol, 6.1 equiv) in THF (2 mL) afforded *E*-**7d** (0.2033 g, 76%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.19 (m, 3 H), 7.06-7.01 (m, 2 H), 5.68 (ddt, *J* = 17.3, 10.2, and 4.8 Hz, 1 H), 4.99-4.88 (m, 2 H), 4.66 (q, *J* = 6.7 Hz, 1 H), 3.39 (qdt, *J* = 13.2, 6.6, and 1.5 Hz, 2 H), 2.08 (tt, *J* = 11.8 and 3.5 Hz, 1 H), 1.65-1.57 (m, 4 H), 1.55-1.38 (m, 7 H), 1.05-0.95 (m, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 144.8, 143.3, 136.8, 136.4, 128.4, 127.8, 126.1, 115.4, 67.0, 42.3, 39.5, 31.6, 31.4, 26.4, 26.3, 25.9, 23.5; IR (neat, cm⁻¹) 3416, 3076, 2927, 2851, 1635, 1597, 1490, 1448, 1369, 1257, 1094, 1071; MS (m/z) 270 (M⁺, 0.92), 187 (100); Elemental analysis calcd for C₁₉H₂₆O: C, 84.39, H, 9.69; Found: C, 84.44, H, 9.65.

(5) 4-Phenyl-3-vinylhepta-3(*E*),6-dien-2-ol (*E*-7e)

The reaction of 1a (0.1465 g, 1.0 mmol), CuCl (0.0999 g, 1.0 mmol, 1 equiv),

1.5 mL of toluene, a solution of CH₂=CHMgCl in THF (3.55 mL, 1.69 M, 6 mmol, 6 equiv), and a solution of allyl bromide (0.54 mL, d = 1.398 g/mL, 0.7549 g, 6.2 mmol, 6.2 equiv) in THF (2 mL) afforded *E*-**7e** (0.1652 g, 77%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.20 (m, 3 H), 7.16-7.11 (m, 2 H), 6.11 (dd, J = 18 and 11.7 Hz, 1 H), 5.82-5.68 (m, 1 H), 5.45 (dd, J = 18 and 1.8 Hz, 1 H), 5.14-4.95 (m, 4 H), 3.38 (ddt, J = 15.3, 6.0, and 1.7 Hz, 1 H), 3.23 (ddt, J = 15.0, 6.0, and 1.7 Hz, 1 H), 2.04 (bs, 1 H), 1.52 (d, J = 6.6 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 142.6, 139.2, 137.8, 135.4, 133.7, 128.9, 127.9, 126.6, 115.7, 115.6, 67.0, 39.1, 22.2; IR (neat, cm⁻¹) 3405, 3078, 2976, 2930, 1635, 1620, 1490, 1442, 1414, 1369, 1280, 1074; MS (m/z) 214 (M⁺, 2.26), 129 (100); Elemental analysis calcd for C₁₅H₁₈O: C, 84.07, H, 8.47; Found: C, 84.02, H, 8.50.

(6) 6-Bromo-3-(*n*-pentyl)-4-phenylhepta-3(*E*),6-dien-2-ol (*E*-7f)

The reaction of **1a** (0.1455 g, 1.0 mmol), CuCl (0.0999 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of 2-bromoallyl bromide (1.1931 g, 6.0 mmol, 6 equiv) in THF (2 mL) afforded *E*-**7f** (0.1612 g, 48%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.19 (m, 3 H), 7.14-7.08 (m, 2 H), 5.41 (d, *J* = 1.8 Hz, 1 H), 5.40 (d, *J* = 1.5 Hz, 1 H), 4.93 (q, *J* = 6.5 Hz, 1 H), 3.55 (s, 2 H), 2.05-1.92 (m, 2 H), 1.86 (bs, 1 H), 1.40 (d, *J* = 6.6 Hz, 3 H), 1.36-1.20 (m, 2 H), 1.15-0.97 (m, 4 H), 0.73 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 143.1, 141.8, 133.0, 131.4, 128.5, 127.9, 126.5, 118.2, 67.4, 45.7, 32.2, 30.0, 28.5, 22.0, 21.7, 13.8; IR (neat, cm⁻¹) 3419, 2956, 2929, 2870, 1626, 1599, 1576, 1491, 1465, 1441, 1377, 1262, 1106, 1056, 1023; MS (m/z) 338 (M⁺(⁸¹Br), 1.03), 336 (M⁺(⁷⁹Br), 0.99), 129 (100); Elemental analysis calcd for C₁₈H₂₅BrO: C, 64.10, H, 7.47; Found: C, 64.16, H, 7.56.

(7) 6-(n-Butyl)-3-(n-pentyl)-4-phenylhepta-3(E),6-dien-2-ol

The reaction of **1a** (0.1439 g, 0.99 mmol), CuCl (0.1004 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of n-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), and a solution of 2-(n-butyl)allyl bromide (0.9897 g, 6.1 mmol, 6.1 equiv) in THF (2 mL) afforded *E*-**7g** (0.2433 g, 79%): Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.24 (m, 2 H), 7.23-7.16 (m, 1 H), 7.14-7.09 (m, 2 H), 4.88-4.76 (m, 3 H), 3.15-3.00 (m, 2 H), 2.08-1.90 (m, 4 H), 1.52 (bs, 1 H), 1.40-1.20 (m, 9 H), 1.17-0.98 (m, 4 H), 0.85 (t, J = 7.2 Hz, 3 H), 0.74 (t, J = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 147.9, 143.8, 141.1, 135.2, 128.4, 127.8, 126.1, 109.9, 67.8, 40.9, 36.5, 32.3, 30.4, 29.8, 28.1, 22.4, 22.1, 21.7, 13.93, 13.88; IR (neat, cm⁻¹) 3406, 2957, 2929, 2871, 1645, 1599, 1576, 1491, 1465, 1441, 1378, 1263, 1179, 1055; MS (m/z) 314 (M⁺, 4.03), 243 (100); Elemental analysis calcd for C₂₂H₃₄O: C, 84.02, H, 10.90; Found: C, 84.07, H, 10.91.

8. General Procedure for the Pd-catalyzed Kumada-type Coupling Reaction

Following the procedure for the CuCl-mediated carbometallation of propargylic

alcohols with Grignard reagents described above, the reaction was conducted using propargylic alcohol (1 mmol), CuCl (1.0 mmol, 1 equiv), 1.5 mL of toluene, and a solution of Grignard reagent in THF (6 equiv, 6 mmol). After complete conversion of the starting material as monitored by TLC, Pd(PPh₃)₄ (2 mol %, 0.02 mmol) and a solution of aryl or vinyl iodide (6 equiv, 6 mmol) in THF (2 mL) were added sequentially at rt. The resulting mixture was then heated at 80 °C and monitored by TLC until the starting material disappeared. This mixture was then quenched with an aqueous solution of saturated NH₄Cl, and extracted with Et₂O (15 mL x 3). The combined organic layer was washed with 5 % HCl, sat. NaHCO₃ (aq.), brine, and dried over anhydrous Na₂SO₄. After filtration and evaporation, the NMR yield and ratio were determined by using 1,3,5-trimethylbenzene as the internal standard (35 µL, 0.25 mmol). Chromatography on silica gel (eluent: petroleum ether/ethyl acetate = $20/1 \sim 10/1$) of the crude product afforded the desired product.

(1) 3-(*n*-Pentyl)-4,4-diphenyl-3-buten-2-ol (8a)

The reaction of **1a** (0.1458 g, 1.0 mmol), CuCl (0.0992 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of n-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), Pd(PPh₃)₄ (0.0237 g, 0.02 mmol, 2 mol%), and PhI (1.2537 g, 6.2 mmol, 6 equiv)/ THF (2 mL) afforded **8a** (0.2204 g, 75%). According to ¹H NMR analysis of the crude reaction mixture before separation, product **8a** was formed in 80% yield together with 7% of the protonolysis product **2a**. **8a**: Liquid; ¹H NMR (300 MHz,

CDCl₃) δ 7.29-7.20 (m, 4 H), 7.19-7.10 (m, 6 H), 4.63 (q, *J* = 6.6 Hz, 1 H), 2.22-2.10 (m, 2 H), 1.77 (s, 1 H), 1.52-1.33 (m, 2 H), 1.30 (d, *J* = 6.6 Hz, 3 H), 1.18-1.03 (m, 4 H), 0.75 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 142.6, 142.2, 141.5, 139.9, 128.8, 128.7, 128.1, 128.0, 126.4, 126.3, 68.3, 32.2, 30.2, 27.3, 22.0, 21.9, 13.8; IR (neat, cm⁻¹) 3405, 3077, 3055, 3020, 2956, 2929, 2870, 1597, 1576, 1490, 1465, 1443, 1367, 1257, 1100, 1073, 1054, 1031, 1002; MS (m/z) 294 (M⁺, 2.19), 167 (100); Elemental analysis calcd for C₂₁H₂₆O: C, 85.67, H, 8.90; Found: C, 85.66, H, 8.83.

(2) 4-(*m*-Methylphenyl)-3-(*n*-pentyl)-4-phenyl-3(Z)-buten-2-ol (Z-8b)

The reaction of **1a** (0.1421 g, 0.97 mmol), CuCl (0.1004 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), Pd(PPh₃)₄ (0.0343 g, 0.03 mmol, 3 mol%), and 3-iodotoluene (1.3033 g, 6.0 mmol, 6 equiv)/THF (2 mL) afforded *Z*-**8b** (0.2234 g, 75%). According to ¹H NMR analysis of the crude reaction mixture before separation, product *Z*-**8b** was formed in 77% yield together with 6% of the protonolysis product **2a**. *Z*-**8b**: Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.24 (m, 2 H), 7.22-7.14 (m, 4 H), 7.04-6.98 (m, 1 H), 6.97-6.92 (m, 2 H), 4.64 (q, *J* = 6.5 Hz, 1 H), 2.29 (s, 3 H), 2.20-2.13 (m, 2 H), 1.45-1.35 (m, 3 H), 1.31 (d, *J* = 6.6 Hz, 3 H), 1.19-1.05 (m, 4 H), 0.76 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 142.7, 142.3, 141.3, 140.3, 137.7, 129.4, 128.7, 128.1, 128.0, 127.3, 126.3, 125.9, 68.5, 32.3, 30.3, 27.4, 22.1, 22.0, 21.4, 13.9; IR (neat, cm⁻¹) 3418, 3054, 3020, 2956, 2928, 2868, 1599, 1581, 1490, 1461, 1443, 1377, 1258, 1098, 1054, 1004; MS (m/z) 308 (M⁺, 2.05), 181 (100); HRMS calcd for C₂₂H₂₈O (M⁺): 308.2140, Found: 308.2141.

(3) 4-(*p*-Methoxyphenyl)-3-(*n*-pentyl)-4-phenyl-3(Z)-buten-2-ol (Z-8c)

The reaction of **1a** (0.1467 g, 1.0 mmol), CuCl (0.1002 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₃H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), Pd(PPh₃)₄ (0.0236 g, 0.02 mmol, 2 mol%), and 4-iodoanisole (1.3891 g, 5.9 mmol, 5.9 equiv)/THF (2 mL) afforded *Z*-**8c** (0.2412 g, 74%). According to ¹H NMR analysis of the crude reaction mixture before separation, product *Z*-**8c** was formed in 80% yield together with 9% of the protonolysis product **2a**. *Z*-**8c**: Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.24 (m, 2 H), 7.21-7.13 (m, 3 H), 7.08-7.02 (m, 2 H), 6.84-6.78 (m, 2 H), 4.69 (q, *J* = 6.4 Hz, 1 H), 3.76 (s, 3 H), 2.24-2.08 (m, 2 H), 1.57-1.48 (m, 1 H), 1.47-1.25 (m, 5 H), 1.20-1.02 (m, 4 H), 0.76 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 158.2, 143.0, 141.2, 139.8, 134.7, 130.1, 128.8, 128.1, 126.3, 113.5, 68.5, 55.2, 32.3, 30.3, 27.5, 22.1, 22.0, 13.9; IR (neat, cm⁻¹) 3422, 3055, 2955, 2931, 2870, 1606, 1574, 1508, 1463, 1442, 1367, 1283, 1244, 1175, 1103, 1072, 1037; MS (m/z) 324 (M⁺, 2.03), 197 (100); HRMS calcd for C₂₂H₂₈O₂ (M⁺): 324.2089, Found: 324.2088.

(4) 4-(*p*-Chlorophenyl)-3-(*n*-pentyl)-4-phenyl-3(Z)-buten-2-ol (Z-8d)

The reaction of **1a** (0.1450 g, 1.0 mmol), CuCl (0.1012 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of *n*-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), Pd(PPh₃)₄ (0.0234 g, 0.02 mmol, 2 mol%), and 4-chloroiodotoluene (1.4257 g, 6.0 mmol, 6 equiv) in THF (2 mL) afforded *Z*-**8d** (0.2269 g, 69%). According to ¹H NMR analysis of the crude reaction mixture before separation, product *Z*-**8d** was formed in 71% yield together with 10% of the protonolysis product **2a**. *Z*-**8d**: Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.16 (m, 5 H), 7.16-7.05 (m, 4 H), 4.62 (q, *J* = 6.4 Hz, 1 H), 2.24-2.12 (m, 2 H), 1.46-1.30 (m, 6 H), 1.15-1.04 (m, 4 H), 0.76 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 142.24, 142.19, 140.7, 138.9, 132.4, 130.3, 128.8, 128.4, 128.2, 126.6, 68.4, 32.3, 30.2, 27.4, 22.11, 22.06, 13.9; IR (neat, cm⁻¹) 3405, 3056, 2956, 2929, 2868, 1596, 1488, 1464, 1443, 1395, 1376, 1259, 1192, 1090, 1055, 1015; MS (m/z) 330 (M⁺(³⁷Cl), 0.37), 328 (M⁺(³⁵Cl), 1.12), 201 (100); HRMS calcd for C₂₁H₂₅³⁵ClO (M⁺): 328.1594, Found: 328.1595.

(5) 3-(*n*-Pentyl)-4-phenyl-3(*E*),5(*E*)-decadien-2-ol ((3*E*,5*E*)-8e)

The reaction of **1a** (0.1446, 0.99 mmol), CuCl (0.1032 g, 1.0 mmol, 1 equiv), 1.5 mL of toluene, a solution of n-C₅H₁₁MgBr in THF (6 mL, 1 M, 6 mmol, 6 equiv), Pd(PPh₃)₄ (0.0263 g, 0.02 mmol, 2 mol%), and 1(*E*)-hexenyl iodide (1.2556 g, 6.0

mmol, 6 equiv)/THF (2 mL) afforded (3*E*,5*E*)-**8**e (0.1431, 48%): Liquid; ¹H NMR (300 MHz, CDCl₃) 7.37-7.20 (m, 3 H), 7.10-7.00 (m, 2 H), 6.71 (d, J = 15.3, 1 H), 5.12 (q, J = 6.6 Hz, 1 H), 5.05-4.94 (m, 1 H), 2.08-1.98 (m, 2 H), 1.92-1.80 (m, 2 H), 1.61 (bs, 1 H), 1.41 (d, J = 6.6 Hz, 3 H), 1.35-1.16 (m, 6 H), 1.12-0.95 (m, 4 H), 0.88-0.81 (m, 3 H), 0.73 (t, J = 6.9 Hz, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 140.8, 140.3, 137.1, 135.0, 129.6, 128.2, 127.8, 126.2, 67.3, 33.0, 32.2, 31.5, 30.3, 29.4, 22.2, 22.1, 13.90, 13.86; IR (neat, cm⁻¹) 3376, 3056, 3029, 2957, 2927, 2859, 1632, 1601, 1574, 1491, 1462, 1376, 1284, 1176, 1098, 1057, 1026; MS (m/z) 282 ((M⁺-H₂O), 40.66), 169 (100); Elemental analysis calcd for C₂₁H₃₂O: C, 83.94, H, 10.73; Found: C, 83.84, H, 10.79.

9. Synthesis of 5-methyl-4-(*n*-pentyl)-3-phenyl-2(5*H*)-furanone (9a)

To a Schlenk tube were added Pd(PPh₃)₄ (0.0242 g, 0.02 mmol, 5 mol%), Z-4a (0.1372 g, 0.40 mmol), Et₃N (0.0828 g, 0.82 mmol, 2 equiv), and CH₃CN (4 mL) at rt. This mixture was degassed using greeze-pump-thaw cycles with CO and then heated at 70 °C. After complete conversion of the starting material as monitored by TLC, the reaction mixture was quenched by H₂O (5 mL) and extracted with Et₂O (20 mL x 3). The combined organic layer was washed with 5 % HCl (10 mL), sat. NaHCO₃ (aq.) (10 mL), brine (10 mL), and dried over anhydrous Na₂SO₄. Chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1) of the crude product afforded **9a** (0.0656 g, 67%). Liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.32 (m, 5 H), 5.06 (q, J

= 6.7 Hz, 1 H), 2.77-2.65 (m, 1 H), 2.42-2.30 (m, 1 H), 1.60-1.40 (m, 5 H), 1.35-1.20 (m, 4 H), 0.91-0.82 (m, 3 H); ¹³C NMR (CDCl₃, 75 MHz) δ 172.6, 166.1, 130.0, 128.8, 128.3, 128.2, 126.4, 77.9, 31.6, 27.4, 26.7, 22.1, 18.3, 13.8; IR (neat, cm⁻¹) 2954, 2931, 2866, 1752, 1656, 1601, 1493, 1446, 1376, 1322, 1150, 1100, 1062; MS (m/z) 244 (M⁺, 58.66), 91 (100); Elemental analysis calcd for C₁₆H₂₀O₂: C, 78.65, H, 8.25; Found: C, 78.64, H, 8.26.

References:

- 1. W. Parker, R. A. Raphael and D. I. Wilkinson, J. Chem. Soc., 1958, 3871.
- 2. J. T. Caroline, M. Majid and J. R. Christopher, Organometallics, 2006, 25, 2899.
- 3. M. C. Pacheco and V. Gouverneur, Org. Lett., 2005, 7, 1267.
- 4. D. A. Engel and G. B. Dudley, Org. Lett., 2006, 8, 4027.
- 5. Y. Kayaki, M. Yamamoto and T. Ikariya, J. Org. Chem., 2007, 72, 647.
- 6. S. Ma, H. Ren and Q. Wei, J. Am. Chem. Soc., 2003, 125, 4817.
- 7. K. Nakamura, K. Takenaka and A. Ohno, Tetrahedron: Asymmetry, 1998, 9, 4429.
- 8. D. Chernyak, S. B. Gadamsetty and V. Gevorgyan, Org. Lett., 2008, 10, 2307.
- 9. M. Havránek and D. Dvořák, J. Org. Chem., 2002, 67, 2125.
- 10. D. Xu, Z. Li and S. Ma, Tetrahedron Lett., 2003, 44, 6343.
- 11. U. Kazmaier and F. L. Zumpe, Eur. J. Org. Chem., 2001, 4067.

Data File D:\HPCHEM\1\DATA\ZXB\ZXB00000.D

Sample Name: zxb-1-119-2

n-hexane/i-propanol=90/10; 230 nm; 1.0 ml/min; OJ-H

Injection Date Sample Name Acq. Operator Method	: 4/10/2008 8:53:29 PM : zxb-1-119-2 : zxb : D:\HPCHEM\1\METHODS\ERIC.M	Location : -	
Last changed	: 4/10/2008 8:40:09 PM by cb (modified after loading)	Pn———— 1a OH	

Instrument 1 4/10/2008 9:12:49 PM zxb

Page 1 of 1

nstrument 1 4/10/2008 9:21:30 PM zxb

Page 1 of 1

nstrument 1 4/24/2008 9:09:14 PM mao

Page 1 of 1

Page 1

rument 1 4/24/2008 9:11:41 PM mao

Page 1

Page 1 of 1

000.0------

290.1 240.0 240.0	

	_
2.315	
7.757	_
2.780	$ \rightarrow $
2.804	
828.S	
2.850	

Ę

0.962 0.9850 0.956 **†**96.0 986.0 286.0 - 3.385 - 1.574 - 2.624 - 2.456 - 2.456 - 1.536 - 1.534 - 1.534 - 1.513 - 1.513 - 1.513 - 1.513 - 1.513 - 1.513 - 1.511 - 1.513 - 1.511 - 1.511 - 1.511 - 1.511 - 1.511 - 1.511 - 1.511 - 1.511 - 1.515 - 1.5111 - 1.5111 - 1.5111 - 1.5111 - 1.5111 - 1.5111 - 1.5111 - 1.511 4.612 3.407 3.407 3.407 4'932 789.4 4.680 4.883 4.882 4.882 4.882 4.882 **968.**4 619.4 4.925 4.925 179.4 170.4 170.4 086.4 986 7 619.3 149.3 **4**78.8 617.8 -269.8 -207.8 -269.8 -269.8 -269.8 -7.050 - 7.050 - 7.050 - 7.050 - 7.050 - 7.324 - 7.235 - 7.255 - 7.25

Б

ደ

20 800 20 800 20 800 21 3 800 22 8008 23 8008 23 8008 23 8008 23 8008 23 8008 24 8008 25 8008 25 8008 25 8008 26 8008 27 8008 28 80		
078.04 — 36.490 — 572.6 —		
99/1/9	-	- - - - - -
₽24.77 000.77 672.87	Ph C ₅ H ₁₁₋ r 6 <i>E</i> - 7g XB-1-159-C	- - - - - - - - - - - - - - - - - - -
	n-C₄H ,	- - 100
109.925		120
001.141 001.361 001.361 077.751 077.751		
678.741		
		- 180

