Supporting Information

Synthetic Studies of Neoclerodane Diterpenes from *Salvia divinorum*: Role of the Furan in Affinity for Opioid Receptors

Denise S. Simpson, Kimberly M. Lovell, Anthony Lozama, Nina Han, Victor W. Day, Christina

M. Dersch, Richard B. Rothman, and Thomas E. Prisinzano*

Contents of Supporting Information

- Preparation of 4 19, 22, and 24 30 S2 S14
- HPLC Analyses of 4 32 and 34 36

S15 - S46

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-6a,10b-dimethyl-4,10-dioxo-2-(phenylcarbamoyl)dodecahydro-1H-benzo[f]isochromene-7-carboxylate (5). Compound 5 was synthesized from 4 using Procedure A and aniline to afford 0.1891g (47.4%) as a white solid, mp 136 – 140 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.14 (s, 1H), 7.54 (dd, *J* = 1.0, 8.6, 2H), 7.38 – 7.31 (m, 2H), 7.18 – 7.13 (m, 1H), 5.18 (dd, *J* = 8.2, 11.9, 1H), 5.03 (dd, *J* = 6.1, 11.0, 1H), 3.72 (s, 3H), 2.77 (ddd, *J* = 5.3, 13.1, 16.8, 2H), 2.36 – 2.25 (m, 2H), 2.19 (d, *J* = 9.4, 4H), 2.15 – 2.03 (m, 2H), 1.82 – 1.74 (m, 1H), 1.72 – 1.60 (m, 2H), 1.60 – 1.51 (m, 1H), 1.42 (s, 3H), 1.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.62, 171.68, 170.29, 169.85, 167.32, 136.77, 129.27, 125.16, 120.18, 76.01, 74.84, 63.96, 53.49, 52.15, 51.21, 42.00, 39.18, 37.92, 35.52, 30.87, 20.73, 18.19, 16.44, 15.59. HRMS (*m*/*z*): [M+Na] calcd for C₂₆H₃₁NO₈Na, 508.1948; found, 508.1970. HPLC *t*_R = 5.568 min; purity = 98.23%.

(2S,4aR,6aR,7R,9S,10aS,10bR)-methyl9-acetoxy-2-(indoline-1-carbonyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate(6).Compound 6 was synthesized from 4 using Procedure A and indoline to afford 0.0866g(34.1%) as a white solid, mp 146 – 149 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.21 – 8.16 (m,1H), 7.22 (t, J = 7.0, 2H), 7.11 – 7.04 (m, 1H), 5.22 (t, J = 7.8, 1H), 5.19 – 5.11 (m, 1H),4.34 – 4.26 (m, 1H), 4.08 – 4.00 (m, J = 7.3, 9.5, 1H), 3.73 (s, 3H), 3.23 (t, J = 8.5, 2H), 2.77(dd, J = 6.1, 10.7, 1H), 2.54 (dd, J = 8.3, 13.5, 1H), 2.43 (dd, J = 3.2, 11.6, 1H), 2.33 – 2.26(m, 2H), 2.16 (s, 3H), 2.11 (dd, J = 3.2, 13.9, 1H), 1.92 (dd, J = 7.3, 13.5, 1H), 1.75 (dd, J = 3.1, 12.9, 1H), 1.72 – 1.54 (m, 3H), 1.42 (s, 3H), 1.07 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 202.44, 171.81, 171.30, 169.98, 166.93, 142.42, 131.61, 127.76, 124.92, 124.88, 117.53, 75.12, 73.58, 64.74, 53.33, 52.12, 49.15, 47.75, 42.15, 37.83, 37.50, 35.28, 30.80, 28.21,

20.74, 18.31, 17.17, 16.12. HRMS (*m/z*): [M+H] calcd for C₂₈H₃₄NO₈, 512.2285; found, 512.2294. HPLC $t_{\rm R} = 6.680$ min; purity = 98.00%.

(2S,4aR,6aR,7R,9S,10aS,10bR)-methyl9-acetoxy-2-(cyclohexylcarbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate(7).Compound 7 was synthesized from 4 using Procedure A and cyclohexylamine to afford0.0525g (21.0%) as a white solid, mp 141 – 145 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.26 (d, J= 8.3, 1H), 5.16 (dd, J = 8.0, 12.1, 1H), 4.86 (dd, J = 6.1, 10.8, 1H), 3.81 – 3.69 (m, 4H),2.77 – 2.66 (m, 2H), 2.35 – 2.20 (m, 2H), 2.17 (d, J = 3.8, 4H), 2.13 – 2.06 (m, 1H), 2.06 –2.00 (m, 1H), 1.88 (t, J = 15.0, 2H), 1.81 – 1.69 (m, 4H), 1.66 – 1.47 (m, 4H), 1.44 – 1.22(m, 7H), 1.10 (d, J = 8.9, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.56, 171.68, 170.65,169.80, 168.32, 76.01, 74.83, 64.07, 53.54, 52.09, 51.11, 48.38, 42.01, 39.35, 37.98, 35.46,33.17, 32.99, 30.92, 25.50, 24.99, 24.97, 20.69, 18.20, 16.41, 15.65. HRMS (m/z): [M+H]calcd for C₂₆H₃₈NO₈, 492.2598; found, 492.2597. HPLC $t_R = 5.793$ min; purity = 98.29%.

(2S,4aR,6aR,7R,9S,10aS,10bR)-methyl9-acetoxy-2-(cyclopentylcarbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate(8).Compound 8 was synthesized from 4 using Procedure A and cyclopentylamine to afford0.0580g (24.4%) as a white solid, mp 188 – 190 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.30 (d, J= 7.6, 1H), 5.16 (dd, J = 7.9, 12.1, 1H), 4.86 (dd, J = 6.1, 10.8, 1H), 4.19 (dd, J = 7.2, 14.4, 1H), 3.72 (s, 3H), 2.77 – 2.66 (m, 2H), 2.35 – 2.20 (m, 2H), 2.17 (s, 4H), 2.10 (dd, J = 3.2, 14.0, 1H), 2.00 (m, 3H), 1.78 (d, J = 13.1, 1H), 1.73 – 1.49 (m, 7H), 1.44 – 1.30 (m, 5H), 1.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.55, 171.69, 170.63, 169.82, 168.82, 76.03, 100 (m, 2H), 2.17 (m, 2H), 2.16 (m, 2H), 2.17 (m, 2H), 2.16 (m, 2H), 2.17 (m, 2H), 2.17 (m, 2H), 2.10 (m, 5H), 1.09 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.55, 171.69, 170.63, 169.82, 168.82, 76.03, 1.09 (s, 2H).

74.84, 64.12, 53.59, 52.12, 51.17, 51.14, 42.03, 39.34, 38.01, 35.48, 33.15, 33.05, 30.94, 23.88, 23.87, 20.71, 18.22, 16.43, 15.64. HRMS (*m*/*z*): [M+H] calcd for C₂₅H₃₆NO₈, 478.2441; found, 478.2422. HPLC $t_{\rm R}$ = 5.098 min; purity = 95.33%.

(25,4aR,6aR,7R,9S,10aS,10bR)-methyl9-acetoxy-6a,10b-dimethyl-4,10-dioxo-2-(pyridin-3-ylcarbamoyl)dodecahydro-1H-benzo[f]isochromene-7-carboxylate(9).Compound 9 was synthesized from 4 using Procedure A and 3-aminopyridine to afford0.0870g (36.7%) as a white solid, mp 148 – 150 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.15 (s,1H), 8.60 (s, 1H), 8.26 (d, J = 4.1, 1H), 8.06 (d, J = 8.5, 1H), 7.20 (dd, J = 8.2, 4.7, 1H), 5.11(dd, J = 11.6, 8.4, 1H), 4.99 (dd, J = 10.8, 6.2, 1H), 3.63 (s, 3H), 3.01 (s, 1H), 2.79 – 2.50(m, 2H), 2.28 – 2.13 (m, 3H), 2.09 (S, 3H), 1.71 – 1.42 (m, 4H), 1.27 (s, 3H), 0.99 (s, 3H).1³C NMR (75 MHz, CDCl₃) δ 202.09, 171.80, 170.83, 170.07, 168.64, 145.65, 141.80,134.52, 128.03, 123.96, 76.15, 75.09, 63.62, 53.35, 52.11, 50.79, 42.04, 39.00, 37.88, 35.44,31.10, 30.91, 20.76, 16.44, 15.56. HRMS (m/z): [M+H] calcd for C₂₅H₃₁N₂O₈, 487.2080;found, 487.2068. HPLC $t_R = 8.904$ min; purity = 98.10%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-2-(2-methoxyphenylcarbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate

(10). Compound 10 was synthesized from 4 using procedure A and *o*-anisidine to afford 0.0472 g (38.4%) as a white solid, mp 127 – 128 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.66 (s, 1H), 8.30 (dd, J = 1.6, 8.0, 1H), 7.12 – 7.06 (m, 1H), 6.96 (dd, J = 4.5, 11.1, 1H), 6.89 (dd, J = 1.2, 8.2, 1H), 5.17 (dd, J = 8.2, 11.8, 1H), 5.03 (dd, J = 6.5, 10.3, 1H), 3.88 (s, 3H), 3.72 (s, 3H), 2.81 – 2.71 (m, 2H), 2.34 – 2.28 (m, 2H), 2.17 (s, 3H), 2.15 – 2.07 (m, 2H), 1.82 –

1.71 (m, 2H), 1.71 – 1.62 (m, 1H), 1.61 – 1.51 (m, 2H), 1.42 (s, 3H), 1.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.69, 171.77, 170.37, 169.88, 167.35, 148.58, 126.64, 124.84, 121.19, 120.19, 110.22, 77.48, 76.20, 74.95, 64.35, 55.96, 53.64, 52.19, 51.05, 42.13, 39.28, 38.02, 35.69, 20.79, 18.37, 16.48, 16.01. HRMS (*m*/*z*): [M+Na] calcd for C₂₇H₃₃NO₈Na, 538.2055; found, 538.2053. HPLC *t*_R = 6.932 min; purity = 98.38%.

(2S,4aR,6aR,7R,9S,10aS,10bR)-methyl9-acetoxy-2-(3-methoxyphenylcarbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate

(11). Compound 11 was synthesized from 4 using procedure A and *m*-anisidine to afford 0.0361 g (29.7%) as a white solid, mp 122 – 124 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.68 – 8.65 (m, 1H), 8.32 – 8.28 (m, 1H), 7.11 – 7.07 (m, 1H), 6.99 – 6.95 (m, 2H), 5.19 – 5.13 (m, 2H), 5.05 – 5.01 (m, 1H), 3.88 (s, 3H), 3.72 (s, 3H), 2.85 – 2.67 (m, 5H), 2.38 – 2.30 (m, 2H), 2.17 (s, 3H), 1.72 – 1.62 (m, 3H), 1.43 (s, 3H), 1.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.35, 171.85, 171.02, 168.98, 167.31, 148.72, 126.84, 124.62, 121.19, 120.97, 119.97, 110.00, 77.48, 75.97, 74.73, 64.13, 55.74, 53.42, 51.97, 50.83, 41.91, 39.06, 35.47, 20.57, 18.15, 16.25, 15.79. HRMS (*m*/*z*): [M+H] calcd for C₂₇H₃₄NO₈, 516.2216; found, 516.2234. HPLC *t*_R = 6.003 min; purity = 95.39%.

(2S,4aR,6aR,7R,9S,10aS,10bR)-methyl9-acetoxy-2-(4-methoxyphenylcarbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate(12).Compound 12 was synthesized from 4 using procedure A and p-anisidine to afford 0.0813 g(32.4%) as a white solid, mp 147 – 150 °C; ¹H NMR (300 MHz, acetone-d₆) δ 9.22 (s, 1H),7.60 (d, J = 9.1, 2H), 6.88 (d, J = 9.1, 2H), 5.27 (dd, J = 12.5, 7.5, 1H), 5.05 (dd, J = 10.8, 100 MHz)

6.4, 1H), 3.76 (s, 3H), 3.68 (s, 3H), 3.03 (dd, J = 13.2, 3.5, 1H), 2.52 (dd, J = 13.5, 6.4, 1H), 2.32 (ddd, J = 10.9, 7.7, 3.7, 2H), 2.25 – 2.13 (m, 1H), 2.09 (s, 3H), 2.07 – 1.99 (m, 2H), 1.66 (dtd, J = 18.3, 11.4, 5.0, 4H), 1.36 (s, 3H), 1.07 (s, 3H). ¹³C NMR (75 MHz, acetoned₆) δ 203.50, 172.70, 170.90, 169.91, 168.71, 157.35, 132.41, 122.40 (2C), 114.72 (2C), 76.65, 76.02, 63.39, 55.71, 53.50, 52.02, 50.82, 42.62, 39.97, 38.46, 36.02, 31.63, 20.60, 19.10, 16.55, 15.77. HRMS (*m*/*z*): [M+H] calcd for C₂₇H₃₄NO₉, 516.2155; found, 516.2227. HPLC *t*_R = 13.023 min; purity = 98.80%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-2-(3,5-dimethoxyphenyl-carbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate (13). Compound 13 was synthesized from 4 using procedure A and 3,5-dimethoxyaniline to afford 0.0364 g (18.3%) as a white solid, mp 130 – 133 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.24 (s, 1H), 6.81 (t, *J* = 6.0, 2H), 6.27 (t, *J* = 1.9, 1H), 5.17 (dd, *J* = 11.5, 8.5, 1H), 4.99 (dd, *J* = 10.9, 6.1, 1H), 3.79 (s, 6H), 3.72 (s, 3H), 2.81 – 2.64 (m, 2H), 2.34 – 2.19 (m, 3H), 2.16 (s, 3H), 2.04 (td, *J* = 13.1, 2.6, 2H), 1.81 – 1.49 (m, 4H), 1.38 (s, 3H), 1.08 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.81, 171.77, 170.49, 169.91, 167.60, 161.23 (2C), 138.73, 98.57 (2C), 97.64, 76.09, 74.95, 63.79, 55.59 (2C), 53.41, 52.08, 50.98, 42.01, 39.05, 37.89, 35.48, 30.94, 20.75, 18.24, 16.44, 15.59. HRMS (*m*/*z*): [M+H] calcd for C₂₈H₃₆NO₁₀, 546.2339; found, 546.2321. HPLC *t*_R = 6.388 min; purity = 98.30%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-2-(2,5-dimethoxyphenylcarbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate

(14). Compound 14 was synthesized from 4 using procedure A and 2,5-dimethoxyaniline to

afford 0.034 g (26.8%) as a white solid, mp 119 – 121 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.68 (s, 1H), 8.04 (d, *J* = 3.0, 1H), 6.62 (dd, *J* = 3.0, 8.9, 1H), 5.16 (dd, *J* = 8.2, 11.8, 1H), 5.02 (dd, *J* = 6.4, 10.3, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.72 (s, 3H), 2.82 – 2.71 (m, 3H), 2.37 – 2.28 (m, 2H), 2.18 (d, *J* = 9.6, 4H), 2.15 – 2.04 (m, 3H), 1.81 – 1.69 (m, 3H), 1.42 (s, 3H), 1.11 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.47, 171.55, 170.06, 169.68, 167.19, 153.70, 142.54, 127.01, 110.78, 109.58, 106.03, 77.22, 75.94, 74.74, 64.12, 56.22, 55.80, 53.44, 51.98, 50.87, 41.92, 39.08, 37.82, 35.47, 20.57, 18.14, 16.26, 15.74. HRMS (*m*/*z*): [M+Na] calcd for C₂₈H₃₅NO₁₀Na, 568.2161; found, 568.2164. HPLC *t*_R = 7.896 min; purity = 99.38%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-2-(3,4-dimethoxyphenylcarbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate

(15). Compound 15 was synthesized from 4 using procedure A and 3,4-dimethoxyaniline to afford 0.0632 g (48.5%) as a white solid, mp 124 – 126 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 6.98 (dd, J = 2.4, 8.6, 1H), 6.84 (d, J = 8.7, 1H), 5.19 (dd, J = 8.4, 11.7, 1H), 5.04 (dd, J = 6.1, 11.0, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 3.74 (s, 3H), 2.80 (d, J = 6.1, 1H), 2.74 (d, J = 5.0, 1H), 2.32 (dd, J = 4.3, 7.6, 2H), 2.19 (s, 3H), 2.17 – 2.05 (m, 2H), 1.81 (d, J = 13.0, 1H), 1.75 – 1.59 (m, 4H), 1.56 (d, J = 10.0, 1H), 1.46 (d, J = 12.3, 3H), 1.18 – 1.09 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.42, 171.52, 170.15, 169.70, 166.98, 149.07, 146.29, 122.79, 112.01, 111.24, 104.73, 76.71, 76.64, 74.74, 63.94, 56.08, 55.97, 52.00, 51.17, 50.38, 41.91, 39.17, 37.85, 35.42, 20.57, 18.11, 16.32, 15.47. HRMS (m/z): [M+Na] calcd for C₂₈H₃₅NO₁₀Na, 568.2161; found, 568.2154. HPLC $t_{\rm R} = 4.645$ min; purity = 98.44%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-2-(2,4-dimethoxyphenylcarbamoyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate

(16). Compound 16 was synthesized from 4 using procedure A and 2,4-dimethoxyaniline to afford 0.0244 g (18.4%) as a white solid, mp 121 – 123 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.17 (d, *J* = 9.6, 1H), 6.49 (d, *J* = 6.8, 2H), 5.18 (dd, *J* = 8.4, 11.6, 1H), 5.03 (dd, *J* = 6.5, 10.1, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.73 (s, 3H), 2.84 – 2.70 (m, 2H), 2.32 (dd, *J* = 4.4, 7.8, 2H), 2.19 (s, 3H), 2.12 (d, *J* = 9.5, 2H), 1.85 – 1.66 (m, 3H), 1.63 – 1.53 (m, 2H), 1.44 (s, 3H), 1.12 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.63, 174.11, 171.43, 169.99, 168.79, 160.07, 156.40, 141.81, 121.26, 120.01, 103.92, 98.68, 75.96, 74.70, 64.23, 55.76, 55.54, 53.35, 51.97, 50.81, 41.87, 39.16, 37.98, 35.46, 20.57, 18.09, 16.26, 15.80. HRMS (*m*/*z*): [M+Na] calcd for C₂₈H₃₅NO₁₀Na, 568.2161; found, 568.2175. HPLC *t*_R = 6.468 min; purity = 98.92%.

(2*S*,4*aR*,6*aR*,7*R*,9*S*,10*aS*,10*bR*)-methyl 9-acetoxy-2-(2-bromophenylcarbamoyl)-6a,10bdimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate (17). Compound 17 was synthesized from 4 using procedure A and *o*-bromoaniline to afford 0.0382 g (18.5%) as a white solid, mp 125 – 128 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.62 (s, 1H), 8.18 (d, *J* = 11.7, 1H), 7.48 (d, *J* = 8.0, 1H), 7.24 (dd, *J* = 15.3, 7.3, 1H), 6.97 (t, *J* = 7.8, 1H), 5.15 – 5.04 (m, 1H), 4.99 (dd, *J* = 10.5, 6.3, 1H), 3.64 (s, 3H), 2.79 – 2.59 (m, 2H), 2.36 – 2.13 (m, 3H), 2.06 (s, 3H), 2.01 (t, *J* = 10.2, 2H), 1.82 – 1.41 (m, 4H), 1.35 (s, 3H), 1.03 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.71, 171.72, 169.86, 169.78, 167.76, 134.79, 132.61, 128.59, 126.19, 122.22, 114.45, 76.10, 74.93, 64.06, 53.52, 52.13, 51.11, 42.07, 39.22, 37.94, 35.64, 30.95, 20.74, 18.31, 16.44, 15.75. HRMS (m/z): [M+NH₄] calcd for C₂₆H₃₄BrN₂O₈, 581.1498; found, 581.1492. HPLC t_R 8.011= min; purity = 95.03%.

(2*S*,4*aR*,6*aR*,7*R*,9*S*,10*aS*,10*bR*)-methyl 9-acetoxy-2-(3-bromophenylcarbamoyl)-6a,10bdimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate (18). Compound 18 was synthesized from 4 using procedure A and *m*-bromoaniline to afford 0.0600 g (29.1%) as a white solid, mp 145 – 148 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.46 (s, 1H), 7.80 (s, 1H), 7.49 (d, *J* = 8.0, 1H), 7.32 – 7.12 (m, 2H), 5.25 – 5.08 (m, 1H), 5.01 (dd, *J* = 6.1, 10.8, 1H), 3.71 (s, 3H), 2.83 – 2.61 (m, 2H), 2.38 – 2.11 (m, 6H), 2.11 – 1.87 (m, 2H), 1.82 – 1.44 (m, 4H), 1.38 (s, 3H), 1.08 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.79, 171.72, 170.52, 169.92, 167.80, 138.39, 130.54, 128.05, 123.31, 122.72, 118.88, 76.09, 74.93, 63.80, 53.44, 52.11, 51.02, 42.00, 39.05, 37.91, 35.50, 30.92, 20.75, 18.26, 16.44, 15.59. HRMS (*m*/z): [M+Na] calcd for C₂₆H₃₀BrNO₈Na, 586.1052; found, 586.1050. HPLC *t*_R = 9.178 min; purity = 100%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-2-(4-bromophenylcarbamoyl)-6a,10bdimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate (19). Compound 19 was synthesized from 4 using procedure A and *p*-bromoaniline to afford 0.0486 g (23.6%) as a white solid, mp 159 – 162 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.41 (s, 1H), 7.53 – 7.37 (m, 4H), 5.25 – 5.09 (m, 1H), 5.00 (dd, *J* = 6.1, 11.0, 1H), 3.73 (d, *J* = 12.6, 3H), 2.83 – 2.60 (m, 2H), 2.38 – 2.11 (m, 6H), 2.02 (t, *J* = 14.3, 2H), 1.76 (d, *J* = 12.3, 1H), 1.71 – 1.43 (m, 3H), 1.37 (s, 3H), 1.08 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.79, 171.69, 170.43, 169.94, 167.65, 136.16, 132.21, 121.96, 117.80, 76.08, 74.96, 63.81, 53.47, 52.12, 51.06, 42.00, 39.05, 37.92, 35.48, 30.91, 20.74, 18.24, 16.44, 15.54. HRMS (m/z): [M+NH₄] calcd for C₂₆H₃₄BrN₂O₈, 581.1498; found, 581.1497. HPLC $t_{\rm R} = 8.672$ min; purity = 100%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-6a,10b-dimethyl-4,10-dioxo-2-(pyrrolidine-1-carbonyl)dodecahydro-1H-benzo[f]isochromene-7-carboxylate (22). Compound 22 was synthesized from 4 using procedure A and pyrrolidine to afford 0.0640 g (56.6%) as a white solid, mp 234 – 236 °C (dec.); ¹H NMR (300 MHz, CDCl₃) δ 5.19 – 5.03 (m, 2H), 3.67 (s, 3H), 3.59 (dd, *J* = 11.7, 5.0, 1H), 3.52 – 3.29 (m, 3H), 2.76 (dd, *J* = 10.7, 6.0, 1H), 2.44 – 2.30 (m, 3H), 2.30 – 2.18 (m, 2H), 2.14 (s, 3H), 1.93 (dd, *J* = 12.7, 6.3, 2H), 1.89 – 1.51 (m, 7H), 1.33 (s, 3H), 1.02 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 202.43, 171.82, 171.39, 169.88, 167.47, 75.11, 73.26, 64.47, 53.25, 51.98, 49.19, 46.53, 46.50, 42.10, 37.80, 37.68, 35.16, 30.84, 26.16, 24.05, 20.68, 18.27, 16.90, 16.10. HRMS (*m*/*z*): [M+Na] calcd for C₂₄H₃₃NO₈Na, 486.2104; found, 486.2095. HPLC *t*_R = 7.314 min; purity = 98.67%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-2-(4-bromopiperidine-1-carbonyl)-6a,10b-dimethyl-4,10-dioxododecahydro-1H-benzo[f]isochromene-7-carboxylate (24). Compound 24 was synthesized from 4 using procedure A and 4-bromopiperidine hydrochloride to afford 0.1770 g (64.5%) as a white solid, mp 198 – 201 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.36 – 5.25 (m, 1H), 5.24 – 5.12 (m, 1H), 4.42 (dd, *J* = 31.6, 27.9, 1H), 3.95 – 3.82 (m, 1H), 3.81 – 3.63 (m, 4H), 3.61 – 3.33 (m, 2H), 2.82 (dd, *J* = 12.2, 4.4, 1H), 2.49 – 2.22 (m, 5H), 2.21 – 2.11 (m, 4H), 2.10 – 1.92 (m, 4H), 1.89 – 1.53 (m, 4H), 1.41 – 1.33 (m, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.35, 171.73, 171.07, 169.73, 167.34, 74.98, 71.34, 64.28, 53.07, 51.93, 49.00, 44.04, 43.10, 41.96, 39.92, 37.65, 36.06, 35.52, 35.06, 30.75, 21.08, 20.63, 18.21, 16.93, 16.04. HRMS (m/z): [M+H] calcd for C₂₅H₃₅BrNO₈, 556.1546; found, 556.1539. HPLC $t_{\rm R} = 15.039$ min; purity = 98.40%.

(25,4aR,6aR,7R,9S,10aS,10bR)-methyl 9-acetoxy-6a,10b-dimethyl-4,10-dioxo-2-((*R*)-tetrahydrofuran-3-ylcarbamoyl)dodecahydro-1H-benzo[f]isochromene-7-carboxylate (25). Compound 25 was synthesized from 4 using procedure A and *R*-(+)-3-aminotetrahydrofuran toluene-4-sulfonate to afford 0.1490 g (63.9%) as a white solid, mp 134 – 137 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.86 (d, *J* = 9.7, 1H), 5.13 (dd, *J* = 11.7, 8.3, 1H), 4.84 (dt, *J* = 12.4, 6.2, 1H), 4.44 (td, *J* = 10.2, 5.3, 1H), 3.92 – 3.80 (m, 2H), 3.80 – 3.70 (m, 2H), 3.65 (d, *J* = 12.3, 3H), 3.59 (dd, *J* = 9.5, 2.7, 1H), 2.72 (dd, *J* = 12.1, 4.7, 1H), 2.62 (dd, *J* = 13.7, 5.9, 1H), 2.31 – 2.15 (m, 4H), 2.15 – 2.08 (m, 3H), 1.86 – 1.66 (m, 3H), 1.51 (ddd, *J* = 14.3, 13.0, 8.0, 3H), 1.32 (s, 3H), 1.03 (s, *J* = 11.3, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.70, 171.65, 170.51, 169.76, 169.25, 76.01, 74.83, 73.22, 66.96, 63.71, 53.40, 52.01, 50.99, 50.23, 41.93, 39.31, 37.89, 35.37, 32.84, 30.86, 20.64, 18.13, 16.36, 15.33. HRMS (*m*/*z*): [M+H] calcd for C₂₄H₃₄NO₉, 480.2234; found, 480.2226. HPLC *t*_R = 10.948 min; purity = 95.30%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-6a,10b-dimethyl-4,10-dioxo-2-(((*R*)-tetrahydrofuran-2-yl)methylcarbamoyl)dodecahydro-1H-benzo[f]iso-chromene-7-

carboxylate (26). Compound 26 was synthesized from 4 using procedure A and *R*-(-)tetrahydrofurfurylamine to afford 0.1660 g (69.2%) as a white solid, mp 111 – 113 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.86 (t, *J* = 5.6, 1H), 5.18 (dd, *J* = 11.7, 8.3, 1H), 4.92 (dd, *J* = 10.4, 6.3, 1H), 4.02 – 3.78 (m, 2H), 3.78 – 3.66 (m, 4H), 3.61 – 3.45 (m, 1H), 3.26 – 3.07 (m, 1H), 2.77 (dt, J = 13.9, 6.9, 1H), 2.64 (dd, J = 13.8, 6.3, 1H), 2.35 – 2.21 (m, 3H), 2.16 (s, 3H), 2.13 – 2.03 (m, 2H), 2.02 – 1.82 (m, 3H), 1.81 – 1.70 (m, 1H), 1.67 – 1.46 (m, 4H), 1.37 (s, 3H), 1.09 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.73, 171.68, 170.51, 169.72, 169.60, 77.36, 75.85, 74.81, 68.10, 63.81, 53.30, 51.95, 50.71, 43.24, 41.90, 39.11, 37.84, 35.33, 30.83, 28.82, 25.80, 20.62, 18.15, 16.29, 15.65. HRMS (*m*/*z*): [M+H] calcd for C₂₅H₃₆NO₉, 494.2390; found, 494.2383. HPLC *t*_R = 9.580 min; purity = 98.10%.

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-methyl 9-acetoxy-6a,10b-dimethyl-4,10-dioxo-2-(((*S*)-tetrahydrofuran-2-yl)methylcarbamoyl)dodecahydro-1H-benzo[f]iso-chromene-7-

carboxylate (27). Compound **27** was synthesized from **4** using procedure A and (*S*)-(+)tetrahydrofurfurylamine to afford 0.1470 g (61.3%) as a white solid, mp 99 – 101 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.82 (t, *J* = 5.5, 1H), 5.14 (dd, *J* = 11.4, 8.5, 1H), 4.87 (dd, *J* = 10.9, 6.0, 1H), 3.99 – 3.86 (m, 1H), 3.81 (dd, *J* = 14.6, 6.8, 1H), 3.75 – 3.63 (m, 4H), 3.58 – 3.40 (m, 1H), 3.20 – 3.03 (m, 1H), 2.69 (ddd, *J* = 19.7, 12.7, 5.4, 2H), 2.32 – 2.22 (m, 2H), 2.13 (s, 3H), 2.03 (dd, *J* = 14.2, 7.5, 3H), 1.90 (ddt, *J* = 26.7, 13.6, 6.7, 3H), 1.74 (d, *J* = 10.1, 1H), 1.64 – 1.43 (m, 4H), 1.31 (d, *J* = 15.3, 3H), 1.06 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.71, 171.72, 170.44, 169.77, 169.65, 77.47, 75.99, 74.86, 68.20, 63.87, 53.43, 52.02, 50.97, 43.16, 42.00, 39.42, 37.95, 35.44, 30.91, 28.78, 25.90, 20.67, 18.18, 16.38, 15.53. HRMS (*m*/*z*): [M+H] calcd for C₂₅H₃₆NO₉, 494.2390; found, 494.2378. HPLC *t*_R = 9.114 min; purity = 99.20%.

(2S,4aR,6aR,7R,9S,10aS,10bR)-2-((3aS,4R,6aS)-hexahydro-2H-cyclopenta[b]furan-4-yl)

7-methyl 9-acetoxy-6a,10b-dimethyl-4,10-dioxododecahydro-1*H***-benzo**[**f**]isochromene-**2,7-dicarboxylate** (**28**). Compound **28** was synthesized from **4** using procedure A and (3aR,4R,6aS)-hexahydro-2*H*-cyclopenta[b]furan-4-ol⁵⁶ to afford 0.1820 g (72.4%) as a white solid, mp 229 – 231 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.21 – 4.90 (m, 3H), 4.37 (t, *J* = 6.0, 1H), 3.97 – 3.81 (m, 1H), 3.72 (s, 3H), 3.58 (dd, *J* = 15.4, 7.8, 1H), 2.99 – 2.83 (m, 1H), 2.77 (dd, *J* = 10.6, 6.0, 1H), 2.58 (dd, *J* = 13.4, 7.0, 1H), 2.37 – 2.02 (m, 8H), 1.98 – 1.47 (m, 10H), 1.37 (s, 3H), 1.08 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 201.97, 171.59, 170.08, 169.89, 169.79, 83.33, 77.66, 75.04, 74.07, 69.15, 64.31, 53.47, 52.06, 50.18, 44.80, 42.14, 39.10, 37.95, 35.34, 30.80, 29.03, 28.79, 27.65, 20.66, 18.26, 16.25, 15.84. HRMS (*m*/*z*): [M+H] calcd for C₂₇H₃₇O₁₀, 521.2387; found, 521.2388. HPLC *t*_R = 5.704 min; purity = 95.70%.

(2S,4aR,6aR,7R,9S,10aS,10bR)-7-methyl 2-((R)-tetrahydrofuran-3-yl) 9-acetoxy-6a,10bdimethyl-4,10-dioxododecahydro-1*H*-benzo[f]isochromene-2,7-dicarboxylate (29). Compound 29 was synthesized from **4** using procedure A and (R)-(-)-3hydroxytetrahydrofuran to afford 0.1820 g (40.6%) as a white solid, mp 161 – 163 °C; 1 H NMR (400 MHz, CDCl₃) δ 5.39 – 5.31 (m, 1H), 5.20 – 5.11 (m, 1H), 4.97 (dd, J = 10.1, 7.0, J = 10.1, 7.0,1H), 3.97 - 3.80 (m, 4H), 3.72 (s, 3H), 2.74 (dt, J = 12.9, 5.9, 1H), 2.59 (dd, J = 13.4, 7.0, 1H), 2.37 - 2.26 (m, 2H), 2.24 - 2.08 (m, 7H), 2.07 - 1.99 (m, 1H), 1.78 (dd, J = 12.5, 3.3, 1H), 1.67 – 1.47 (m, 3H), 1.37 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.94, 171.67, 170.14, 170.08, 170.06, 77.55, 77.23, 76.91, 75.12, 74.00, 73.17, 67.21, 64.42, 53.58, 52.20, 52.19, 50.41, 42.19, 35.47, 32.66, 20.80, 18.30, 16.33, 15.80. HRMS (*m/z*): [M+Na] calcd for $C_{24}H_{32}O_{10}Na$, 503.1893; found, 503.1898. HPLC $t_{R} = 4.304$ min; purity =

(2*S*,4a*R*,6a*R*,7*R*,9*S*,10a*S*,10b*R*)-7-methyl 2-((*S*)-tetrahydrofuran-3-yl) 9-acetoxy-6a,10bdimethyl-4,10-dioxododecahydro-1*H*-benzo[f]isochromene-2,7-dicarboxylate (30). Compound 30 was synthesized from 4 using procedure A and (*S*)-(+)-3-hydroxytetrahydrofuran to afford 0.1110 g (47.4%) as a white solid, mp 159 – 161 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.28 (dd, *J* = 6.0, 4.5, 1H), 5.13 (dd, *J* = 11.3, 8.6, 1H), 4.92 (dd, *J* = 9.7, 7.1, 1H), 3.96 – 3.73 (m, 4H), 3.64 (d, *J* = 19.7, 3H), 2.74 (dd, *J* = 11.7, 5.0, 1H), 2.52 (dd, *J* = 13.5, 7.0, 1H), 2.31 – 1.85 (m, 10H), 1.81 – 1.43 (m, 4H), 1.37 (s, 3H), 1.10 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 202.00, 171.63, 170.12, 170.00, 169.92, 76.75, 74.96, 73.89, 72.73, 66.99, 64.08, 53.29, 52.01, 50.11, 42.02, 38.79, 37.83, 35.31, 32.77, 30.78, 20.65, 18.19, 16.25, 15.87. HRMS (*m*/*z*): [M+H] calcd for C₂₄H₃₃O₁₀, 481.2074; found, 481.2072. HPLC *t*_R = 9.502 min; purity = 98.40%.

DAD1 A, Sig=209,4 Ref=360,100 (KIM\KML-2-151000001.D)

2

mAU pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm sample size: 100 microliters sample concentration: 2.3 mg/mL mobile phase: 60% acetonitrile - 40% water 2000 flow rate: 5 mL/min purity: 98.23% O_{\sim} ш 1500 -ŌO₂Me 1000 -5 500 886 6.427 3.01 ത 0

6

8

10

S15

12

min

DAD1 A, Sig=209,4 Ref=360,100 (KIM\KML-1-267000001.D)

mAU ______

2000 -

1500 -

1000 -

500

0

pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm sample size: 100 microliters sample concentration: 1.2 mg/mL mobile phase: 60% acetonitrile - 40% water flow rate: 5 mL/min purity: 98.00%

6

10

218

5

807

CN.

14

min

DAD1 A, Sig=209,4 Ref=360,100 (KIM\KML-1-263000001.D)

min

pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm sample size: 100 microliters sample concentration: 1.1 mg/mL mobile phase: 60% acetonitrile - 40% water flow rate: 2 mL/min purity: 98.1%

Ο

 \sim

ö

2000 -

1500 -

1000 ·

500

0

6

8

10

12

ğ

S19

14

min

DAD1 A, Sig=209,4 Ref=360,100 (AL\AL-1-249000005.D)

200 -

0

14

min

얻 0.7

12

10

DAD1 C, Sig=254,8 Ref=360,100 (DENISE\NH-1-29000001.D)

mAU T

pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm S22 sample size: 100 microliters sample concentration: 1.8 mg/mL mobile phase: 60% acetonitrile - 40% water 2000 flow rate: 2 mL/min purity: 98.8% 1500 OMe ČO₂Me 1000 12 500 833 1 0 6 10 12 14 16 min

S23

min

DAD1 A, Sig=209,4 Ref=360,100 (KIM\NH-1-35000004.D)

	DAD1 C, Sig=254,8 Ref=360,100 (DENISE/NH-1-33000001.D)	
mAU 1	9.872	
350 -	pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm sample size: 100 microliters	S29
300 -	mobile phase: 60% acetonitrile - 40% water flow rate: 5 mL/min purity: 100%	
250 -		
200 -		
150 -	СО ₂ Ме 19	
100 -		
50 -		
0 -		
. i		14 г

min

DAD1 A, Sig=209,4 Ref=360,100 (DENISE\DS-1-242000009.D) mAU 1 pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm sample size: 100 microliters sample concentration: 1.1 mg/mL mobile phase: 60% acetonitrile - 40% water flow rate: 2.5 mL/min 300 purity: 98.67% 250 200 -ČO₂Me 22 150 100 -50 0

2

8.330

8

min

S32

314

6

] DAD1 A, Sig=209,4 Ref=360,100 (DENISE\DS-3-224000004.D)
mAU -	
1750 - -	pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C18, 5 micron, 10 x 250 mm sample size: 100 microliter sample concentration: 2.1 mg/mL
1500 - 1	mobile phase: 60% acetonitrile - 40% water flow rate: 2 mL/min purity: 98.4%
1250 -	s s
- 1000 - -	
750 -	
500 -	23
250 -	

6

0

 S33

min

2

120

100

80

60

40

20

0

pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C18, 5 micron, 10 x 250 mm sample size: 100 microliter sample concentration: 0.1 mg/mL mobile phase: 60% acetonitrile - 40% water flow rate: 1.5 mL/min purity: 95.3%

S35

14

min

8

9.818

10

12

9.341

8

DAD1 A, Sig=209,4 Ref=360,100 (DENISE\DS-1-291000004.D)

mAU _

1400 -

1200 -

1000

800

600

400

200

0

pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm sample size: 100 microliters sample concentration: 1.5 mg/mL mobile phase: 60% acetonitrile - 40% water flow rate: 2 mL/min purity: 98.1%

26

2

12

min

8

10

6.698

6

255

DAD1 A, Sig=209,4 Ref=360,100 (DENISE\DS-1-292000002.D)

min

DAD1 A, Sig=209,4 Ref=360,100 (DENISE\DS-3-145000007.D)

mAU

250 -

200 -

150

100

50

0

pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm sample size: 100 microliters sample concentration: 3.0 mg/mL mobile phase: 60% acetonitrile - 40% water flow rate: 5 mL/min purity: 97.10%

2

S39

8

ю

min

DAD1 A, Sig=209,4 Ref=360,100 (KIM\KML-ALDEHYDE003.D)

mAU

pump: Agilent 1100 series quaternary pump column: Phenomenex Luna C-18, 5 micron, 10 x 250 mm sample size: 100 microliters sample concentration: 3.0 mg/mL mobile phase: 60% acetonitrile - 40% water flow rate: 5 mL/min purity: 95.63%

2000 -

1500 -

ñ

ČO₂Me

32

1000

500

0

min

8

6

DAD1 C, Sig=254,8 Ref=360,100 (DENISE\DS-2-61B000004.D)

137

10

8

S46

. 12 min