Enantioselective Synthesis of Highly Functionalized Octahydro-6-oxo-1-phenylnaphthalene-2-carbaldehydes via Organocatalytic Domino Reactions.

Bor-Cherng Hong,* Roshan Y. Nimje, and Ju-Hsiou Liao
Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, R.O.C.
chebch@ccu.edu.tw

SUPPORTING INFORMATION:

Contents: (1) ORTEP plots for X-ray crystal structures of $\mathbf{5 a}$ and $\mathbf{5 j}$.
(2) Spectra copies for compounds 3a-8.
(3) Ee analysis by HPLC with chiral column, in Table 1-2.

Figure S1. ORTEP plots for X-ray crystal structures of 5a.
CCDC 716016 contains the supplementary crystallographic data for $\mathbf{5 a}$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Crystallographic data for 5a: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}, \mathrm{M}=254.31$, monoclinic, space group P 21, $\mathrm{T}=294(2) \mathrm{K}, a=6.1387(7), b=11.0076(13), c=10.7760(13) \AA, \beta=$ $103.653(2)^{\circ}, V=707.58(14) \AA^{3}, Z=2, D=1.194 \mathrm{~g} / \mathrm{cm}^{3}, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71073 \AA$, 7023 reflections collected, 2596 unique reflections, 173 parameters refined on $F^{2}, R=0.0435, w R 2\left[F^{2}\right]=0.1224$ [2392 data with $F^{2}>2 \sigma\left(F^{2}\right)$].

Figure S2. ORTEP plots for X-ray crystal structures of $\mathbf{5 j}$.
CCDC 716017 contains the supplementary crystallographic data for $\mathbf{5 j}$. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Crystallographic data for $5 \mathbf{j j}: \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrO}_{2}, \mathrm{M}=347.24$, monoclinic, space group P 21, $\mathrm{T}=292(2) \mathrm{K}, a=7.063(3), b=10.733(5), c=10.436(5) \AA, \beta=$ $91.248(8)^{\circ}, V=791.0(6) \AA^{3}, Z=2, D=1.458 \mathrm{~g} / \mathrm{cm}^{3}, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71073 \AA, 6951$ reflections collected, 3652 unique reflections, 191 parameters refined on $F^{2}, R=0.0415, w R 2\left[F^{2}\right]=0.0976$ [2717 data with $F^{2}>2 \sigma\left(F^{2}\right)$].

Fig S3. 1H NMR of 3a (500 MHz, CDCl3).

RYN-2-110-F1			$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\circ}$
exp 7	s2pul		$\dot{\sim} \dot{\sim}$
	s2pur		
	SAMPLE	DEC. s VT	
date	Sep 242008	dfrq	499.836
solvent	t cdcl3	dn	H1
file	exp	dpwr	39
açuisition		dof	0
sfrq	125.698	dm	yyy
tn	C13	dmm	
at	1.000	dmf	11905
np	62894	dseq	
sw	31446.5	dres	1.0
f b	17000	homo	
bs	16	PRocessing	
ss	2	1 b	1.00
tpwr	54	wtfile	
pw	4.0	proc	$f t$
d1	1.000	fn	not used
tof	2512.2	math	f
nt	10000		
ct	10000	werr	react
alock	y	wexp	procplot
gain FL	not used	wbs wnt	testsn
11	n		
in	n		
dp	y		
hs	nn		
DISPLAY			
sp	-1256.9		
wp	28906.3		
vs	50		
sc	0		
we	210		
hzmm	137.65		
is	500.00		
rff	10981.5		
rfp	9677.6		
th	3		
ins	100.000		
$\mathrm{nm} \quad \mathrm{ph}$	ph		

Fig S4. 13C NMR of 3 a ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S5. DEPT of 3a (CDCI3).
TYN-2-110-F1
exp9 DEPT

SAMPLE FLAGS date Sep 242008
solvent solvent edclu sspul $\begin{array}{cc}\text { sample undefined hsglvi } \\ \text { ACOUISITION } & \text { SPECIAL } \\ 4498, ~ t e m p ~ n o t ~\end{array}$ sw ACQUISITION $\quad 4498.4$ temp SPECIAL

EXP4 GHMOC
Fig S7. HMQC of 3 a (CDCI3).

date Sep 242008
solvent \quad cdc 13
sample undefined
sspul
$\begin{array}{cc}\text { sample undefined PFGfig } \\ \text { ACQUISITION } & \text { hsglvil }\end{array}$

$\begin{array}{lrlr} & \text { ACQUISITION } & \text { hsglvi } & 1026 \\ \text { sw } & 4498.4 & \text { SPECIAL } & \\ \text { at } & 0.228 & \text { temp } & \text { not } \\ \text { no } & 2048 & \text { gain } & \\ & 28\end{array}$

sw	4498.4	SPECIAL	
at	0.228	temp	not
$n \mathrm{n}$		2048	gain
fb	3000	spin	28
ss	32		GRADIENTS

ss	32	GRADIENTS	
di	1.000	gzlvil	1026
nt	16	gti	0.001000
2D ACQUISITION	gzlvi3	516	
swl	21367.5	$\mathrm{gt3}$	0.001000

ss	32	GRADIENTS	
di	1.000	gzlvil	1026
nt	16	gt1	0.001000
2d ACQUISITION	gzlvil	0.00516	
Swl	21367.5	gt3	0.001000

$\begin{array}{lllr}\text { 2D ACQUISITION } & \text { gzlvi3 } & 516 \\ \text { sw1 } & 21367.5 & \text { gt3 } & 0.001000 \\ \text { ni } & 128 & \text { gstab } & 0.000500 \\ \text { phase } & \text { arrayed } & \text { F2 PROCESSING }\end{array}$
phase arrayed
TRANSMITTER
$\begin{array}{lr}\text { TRANSMITTER } & \text { arrayed } \\ \text { tn } & \text { H1 } \\ \text { sfrq } & 499.836 \\ \text { tof } & 249.8\end{array}$
$\begin{array}{lrlr} & 49.836 & \text { fn } & \text { not } \\ \text { tof } & 2048 \\ \text { tpwr } & 249.8 & \text { F1 } & \text { PROCESSING } \\ & 56 & \text { gf1 } & 0.006\end{array}$
$\begin{array}{lrlr}\text { tpwr } & \text { pw } & \text { 12.006 } & \text { gf1 } \\ \text { pfs } & \text { not used }\end{array}$
pw DECOUPLER ${ }^{12.000}$
$\begin{array}{lr}\text { dn } & \text { CECOUPLER } \\ \text { dof } & -2515.1 \\ \text { dm } & \text { nny }\end{array}$
$d m$
$d m m$
$d m f$
$d p w r$
$p w x$
dpwr
pwxlvi
${ }_{\text {pwx }}^{\text {pw }}$
pwx HMQC
35
51
14.700
$\begin{array}{lr}\text { j1×h } & \text { HMQC } \\ \text { nullf1g } & 140.0 \\ y\end{array}$
$\begin{array}{cc}\text { F2 } & \text { PROCESSING } \\ \text { gfs } & \text { not used }\end{array}$
026
ACQUISITION ARRAYS
$\begin{array}{llr} & \begin{array}{l}\text { ACQUISITION } \\ \text { n } \\ \text { array }\end{array} & \text { phase } \\ y & \text { arraydim } & 256\end{array}$
julfig $\quad 140$
$8 \quad 2$
arraydim
phase
256
phase

```
6
$
```

phase
$\frac{1}{2}$
$\frac{1}{2}$

RYN-2-110-F1

date SAMPLE 2008 hs fags date
solvent solvent cdcl3

498.4 hsglv/ SPECIAL
\square
4498.4
0.228 $\begin{array}{ll}.228 & \text { temp not } \\ 2048 & \text { gain } \\ 3000 & \text { npin }\end{array}$ 3000
32 Spin
F2 PROCESSING

$$
\begin{aligned}
& d 1 \\
& \text { nt } \\
& \text { swi } 2 \mathrm{DCQUISIT}
\end{aligned}
$$.000

$$
\operatorname{tn}_{\text {sfra }}
$$

$$
\begin{aligned}
& \text { tn } \\
& \text { sfrqq } \\
& \text { tof }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tot } \\
& \text { tpwr }
\end{aligned}
$$

$$
\begin{aligned}
& \text { tpwr } \\
& \text { pw } \\
& \text { noesy }
\end{aligned}
$$ nnnn

0
0
0
C13
nnn 50 p
2048

$$
\pi \mathrm{PRESATURATION}^{0}
$$

$$
\begin{aligned}
& \text { PRESAT } \\
& \text { satmode } \\
& \text { satowr }
\end{aligned}
$$

$$
\begin{aligned}
& \text { satmoaes } \\
& \text { satpwr } \\
& \text { ctat }
\end{aligned}
$$

satdly
$d n$

$d m$ | C 13 |
| :---: |
| $\mathrm{n} \pi$ | 504.2

4494.0
504 504.2
594.0
504.2 400

$$
\text { atfrq } \quad \text { DECOUPLER }
$$ PLOT

hs
hsglv
temp
gain
sp F 2
gf
gfs
F1
gf 1
fn1
sp
wp
spl
wp 1
$r f 1$
rfp ${ }_{\text {rfl }}$
wc
sc
Wc2
sc2
vs
th
ai

ph

Fig S9. 1H NMR of 4 a ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

C13 spectrum of

Fig S12. 13 NMR of 4 a ($100 \mathrm{MHz}, \mathrm{CDCl} 3,42$ centidegree).

Fig S13. DEPT of $4 \mathrm{a}(100 \mathrm{MHz}, \mathrm{CDCl} 3,42$ centidegree $)$.

Current Data Parameters
NAME
PROCNO

F2-Acquisition Parameters	
Date_	20090122
Time	18.14
INSTRUM	spect
PROEHD	5 mm ONP 1H
pulprog	zgpg30
TD	65536
SOLVENT	COC13
NS	3956
OS	4
SWH	25125.629 Hz
FIDRES	0.383387 Hz
A 0	1.3042164 sec
HG	5792.6
OW	19.900 usec
DE	6.50 usec
TE	300.0 K
D1	2.00000000 sec
d11	0.03000000 sec
d12	0.00002000 sec
=======	CHANNEL $\mathrm{f} 1 \mathrm{=}=$
NUC1	13C
P1	10.80 usec
PL1	0.00 dB
SFO1	100.6237959 MHz

============ CHANNEL $f 2$ ============

CPOPAG2	Walt 216
NUC2	1 H
PCPD2	90.00 use
PL2	-3.00 dB
PL12	15.70 dB
PL13	18.70 dB
SF02	400.1326008 MHz

F2 - Processing parameters
SI 32768

SF	100.6127646 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.40

10 NMA plot parameters

CX	20.00 cm
F1P	220.000 ppm
F1	22134.81 Hz
F2P	-10.000 ppm
F2	-1006.13 Hz
PPMCM	$11.50000 \mathrm{ppm} / \mathrm{cm}$
HZCM	$1157.04700 \mathrm{~Hz} / \mathrm{cm}$

exp25 gHMQC

$\operatorname{exp10} \mathrm{gCOSY}$

SAMPLE	flags	
date Jan 162009	hs	nn
solvent caclu	sspul	n
sample undefined	hsglvl	1026
ACQUISITION		SPECIAL
sw 4498.4	temp	not used
at 0.228	gain	30
np 2048	spin	0
fb 3000	F2 PR	PROCESSING
ss 16	sb	-0.114
d1 1.000	sbs	not used
nt 16	f	2048
2 ACQUISITION	F1 PR	PROCESSING
Swl 4498.4	sb1	-0.028
TRANSMITTER	sbs 1	not used
	procl	
$t \mathrm{n}$ Hl	fn1	2048
sfrq 499.836		OISPLAY
tof 249.8	sp	495.7
tpwr 57	wp	4494.0
pw 13.000	spl	496.7
GRADIENTS	wp 1	4494.0
gzlvl1 1026	rfi	1386.6
gt1 0.001000	rfp	1877.9
gstab 0.000500	rfil	1385.5
DECOUPLER	rfpi	1877.9
dn C13		PLOT
dm nnn	wc	155.0
	sc	10.0
	wc2	155.0
	Sc2	0
	vs	1814
	th	9
	ai cde	dc av

Fig S16. NOESY of 4a (CDCl3).

Fig S17. 1H NMR of 5 a ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

RYN-2-115

 6
6
695
613
00
0
0
$n n$
c
200
1.0
n

Fig S18. 13C NMR of 5 a ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S19. DEPT of 5a (CDCI3).
RYN-2-115
exp23 DEPT

RYN-2-115
exp24 gCos Y

Fig S21. HMQC of 5a (CDCl3).
RYN-2-115
exp25 gHMQC

RYN-2-115
expzo noesy
date SAMPLE $\begin{aligned} & \text { Oct } 162008 \text { hs FLAGS }\end{aligned}$
solvent 162008
sample

$$
\begin{array}{lr}
2 \mathrm{D} & \text { ACQUISITION } \\
\mathrm{SWI} & 4298.5 \\
\mathrm{ni} & 200
\end{array}
$$

ni TRANSMITTER
tn TRANSMITTER
$\begin{array}{lr}\text { sfrq } & 499.836 \\ \text { tof } & 349.8 \\ \text { pwr } & 57\end{array}$

ix NOESY
$\stackrel{0}{\text { PRESATURATION }} \underset{ }{0.4010}$ satmode
satpwr
satdiy
DECOUPLER
$d n$
$d m$
${ }^{0.400}$
nnnn
0
0
0
$C 13$
$n n n$
nnn
ph

$$
\begin{aligned}
& \begin{array}{lr}
\text { gf1 } & 0.043 \\
\text { gfs } 1 & \text { not } u s e d
\end{array} \\
& \text { dISplay } \\
& \text { pp DISPLAY } \\
& \text { Plot } \\
& \text { PLOT } \\
& \begin{array}{ll}
\text { Sc } & \\
\text { wc2 } & \\
\text { sc2 } & \\
\text { vs } & \\
\text { th } & \\
\text { ai } & \text { ph }
\end{array}
\end{aligned}
$$

Fig S23. 1H NMR of 5 b ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S24. 13C NMR of 5b (125 MHz, CDCl3).

RYN-2-122
exp34 DEPT

RYN-2-122
exp31 gCos
date SAMPLE 0 Ot 222008 hs FLAG date
solvent $\quad \begin{array}{lll}22008 & \text { hs } \\ \text { cdcla } & \text { sspul }\end{array}$ solvent cdclu sspul
sample undefined hsglvi Samp
sw 4498.4 temp not
$\begin{array}{lrlr}\text { sw } & 4498.4 & \text { temp } & \text { not us } \\ \mathrm{at} & 0.228 & \text { gain } & \\ \mathrm{np} & 2048 & \text { spin } \\ \mathrm{fb} & 3000 & \mathrm{~F} 2 & \text { Processing } \\ \text { ss } & 16 & \mathrm{sb} & -0.1\end{array}$
$\begin{array}{lr}\text { ss } & 3000 \\ \text { d1 } & 16 \\ \mathrm{nt} & 1.000 \\ 20 & 16 \\ \text { 2D ACQUISITION }\end{array}$

$\mathrm{sw1}$
ni
4498
20
 $\begin{array}{rr}\text { frq } & 499.836 \\ \text { tof } & 249.8 \\ \text { tpwr } & 57\end{array}$ towr
GRADIENTS
$\begin{array}{lr}\text { gzlvil } & 1026 \\ \text { t1 } & 0.001000\end{array}$
gstab 0.0000000
dn DECOUPLER C13
C13
nnn

$d n$
$d m$

Fig S27. HMQC of 5b (CDCl3).
exp32 gHMQC

$\begin{array}{lrl}\text { ss } & 32 & \text { GRADIENTS } \\ \text { d1 } & 1.000 & \text { gzlvil }\end{array}$
1026
$\begin{array}{llr}\mathrm{nt} \\ 2 \mathrm{D} \text { ACQUISITION } & { }^{16} & \mathrm{gt1} \\ \mathrm{gzlv} \\ \mathrm{gzl3} & 0.001000 \\ 516\end{array}$
$\begin{array}{llll}\mathrm{swl} & 28912.2 & \mathrm{gt3} & 0.001000\end{array}$ $\begin{array}{lrl}\text { ni } & 128 & \text { gstab } 0.00050 \\ \text { phase } & \text { arrayed } & \text { F2 PROCESSING }\end{array}$
tn TRANSMITTER

$\begin{array}{lr}\text { tn } & \text { H1 } \\ \text { sfrq } & 499.836 \\ \text { tof } & 249.8\end{array}$ | gf | |
| :--- | ---: |
| gfs | not used |
| fn | 0.105 |

$\begin{array}{lrrr}\text { tof } & 249.8 & \text { F1 PROCESSING }\end{array}$

DECOUPLER
dof
$d m$
$d m m$
$d m \mathrm{mf}$
dpw
dpwr
pwxlvi
pwx
j1xh HMQC
jullfig

proc1 display

$\xrightarrow{\longrightarrow}(\mathrm{ppm})$ sp
wp
sp1
$w p 1$
rff
rfp
rf7
rfp
$w e$

RYN-2-122
 sample undefined $\begin{gathered}\text { cocla } \\ \text { PFGflo }\end{gathered}$

ACQUISITION hsglv
sw ACQUISITION 4498.
sw
$a t$
$n p$
fb
ss
$d i$
np
fb
$s s$
$d 1$
$n t$ $\begin{array}{lrr} & 3000 & \text { spin } \\ \text { d1 } & 32 & \mathrm{~F} 2 \\ \mathrm{nt} & 1.000 & \mathrm{gf}\end{array}$ 2 2DACQUSITION $^{8} \underset{\mathrm{gfs}}{\mathrm{gn}}$

$$
\begin{array}{llll}
& 0.041 \\
\text { TRANSMITTER } & \mathrm{gfi} & \text { not } \mathrm{gfs} 1
\end{array}
$$

$$
\begin{array}{lrl}
\text { sfrq } & 499.836 & f n 1 \\
\text { tof } & 249.8 & \\
\text { tnwer } & 57 & \mathrm{cn}
\end{array}
$$

$$
\begin{array}{lrrr}
\text { tof } & 249.8 & & \text { DISPLAY } \\
\text { tpwr } & 57 & \text { sp } & \\
\text { pw } & 13.000 & \text { wp } & 4
\end{array}
$$

pw noesy ${ }^{1}$
$\underset{\text { PRESATURATION }}{0} \stackrel{0}{0}$
satmode
satpwr
satdly
satfrq
DECOUPLER
$d n$
$d m$
nnnn
0
0
0
C13
nnn
ph

Fig S29. 1H NMR of 5c (500 MHz, CDCl3).

RYN-2-127			
exp22 s2pul m.			
SAMPLE DEC. \& VT			
date	Oct 302008	dfrq	125.695
solvent	$t \mathrm{cdcl3}$	dn	C13
file	exp	dpwr	30
ACQUISITION		dof	0
sfrq	499.836	dm	nnn
tn	H1	dmm	c
at	3.000	dimf	200
np	48000	dseq	
sw	8000.0	dres	1.0
$f \mathrm{~b}$	4000	homo	n
bs	4		SSING
tpwr	57	wtfi	
pw	4.8	proc	$f t$
d1	1.000	fn	not used
tof	499.7	math	f
nt	4		
ct	4	wer r	react
	y	wexp	procplot
alock gain F	not used FLAGS	wbs wnt	wft
i]	n		
in	n		
dp	y		
hs	nn		
	IISPLAY		
$s p$	-250.1		
wp	5498.0		
vs	85		
sc	0		
wc	210		
hzmm	26.18		
is	147.35		
rfi	4632.6		
rfp	3618.8		
th	4		
ins	100.000		
nm ph	ph		

Fig S30. 13C NMR of 5c (125 MHz, CDCl3).

Fig S31. DEPT of 5 c (CDCI3).
exp24 DEPT

Fig S32. COSY of 5c (CDCI3).

Fig S33. HMQC of 5 c (CDCI3).

ai cde ph $\begin{array}{ll}\text { solvent cdcla } & \text { sspul } \\ \text { sample undefined } \\ \text { PFGfig }\end{array}$
sw ACQUISITION 4498.4 hsgivl SPECIAL 1026
sw ACQUISITION 4498 .
np
fb
ss
d 1
$n t$
$\begin{array}{lr}\text { d1 } & 1.000 \\ \text { nt } & 16 \\ \text { 20 } & \text { ACQUISITION } \\ \text { swl } & 21367.5\end{array}$
$\begin{array}{lr}\text { Swl } & 21367.5 \\ \mathrm{ni} & 128 \\ \text { phase } & \text { arrayed }\end{array}$ tn TRANSMITTER $\begin{array}{lr}\text { tn } & \text { H1 } \\ \text { sfrq } & 499.836 \\ \text { tof } & 249.8 \\ \text { tpwr } & 57 \\ & 13.000\end{array}$

$$
\begin{array}{lrlr}
\text { sfrq } & 499.836 & \text { fn } & 204 \\
\text { tof } & 249.8 & \text { F1 } & \text { PROCESSING } \\
\text { tpwr } & 53.5 & \text { gf1 } & 0.00 \\
\text { ow } & 13.000 & \text { ofs1 } & \text { not use }
\end{array}
$$

$$
\begin{array}{lrlr}
\text { tpwr } & 57 & \text { gf1 } & 0.006 \\
\text { pw } & \text { 13.000 } & \text { gfs1 } & \text { not used } \\
\text { DECOUPLER } & \text { proc1 } & \text { fos }
\end{array}
$$

$$
\begin{array}{lr}
\text { dn DECOUPLER } \\
\text { dof } & -2515.1
\end{array}
$$

$$
\begin{array}{lr}
\text { dof } & -2515.1 \\
\text { dm } & \text { nny } \\
\text { dmm } & \text { ccp } \\
\text { dmf } & 32258
\end{array}
$$

$$
\begin{array}{lr}
\text { umm } & \text { ccp } \\
\text { dmf } & 32258 \\
\text { dpwr } & 35
\end{array}
$$

$$
p w \times l v 1
$$

$$
\begin{aligned}
& \text { pwx|vi } \\
& \text { pwx }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pwx } \\
& \text { j1xh }
\end{aligned} \quad \text { HMQC } \begin{aligned}
14.700 \\
140.0
\end{aligned}
$$

ACQUISITION ARRAYS
ACQUISITION ARRAYS
array array
a
$\begin{array}{lr}i & \text { phase } \\ 1 & 1\end{array}$

Fig S34. NOESY of 5c (CDCl3).

Fig S35. 1H NMR of 5 d ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S36. 13C NMR of 5 d ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S37. DEPT of 5d (CDCl3).
exp31 DEPT

exp32 gcosy

exp33 gHMQC
 ai cdc ph

ACQUISITION ARRAYS array phase arraydim

Fig S39. HMQC of 5d (CDCl3).

exp35 NOESY

SAMPLE	flags	
date Nov 32008	hs	ก
solvent cdcl3	sspul	y
sample undefined	PFGflg	$g \quad y$
ACQUISITION	hsglvi	1026
SW 4498.4		SPECIAL
at 0.228	temp	not used
np 2048	gain	28
fb 3000	spin	0
ss 32	F2 P	PROCESSING
d1 1.000	gf	0.105
nt 8	gfs	not used
2 A ACQUISITION	$f \mathrm{n}$	2048
SW1 4498.4	F1 P	PROCESSING
ni 200	gf1	0.041
TRANSMITTER	gfs 1	not used
$t \mathrm{n}$ H1	proc1	
sfrq 499.836	fn1	2048
tof 249.8		DISPLAY
tpwr 57	sp	485.9
pw 13.000	wp	4494.0
NOESY	spl	487.5
mix 0.400	wpl	4494.0
PRESATURATION	rfi	2452.5
satmode nnnn	rfp	2934.0
satpwr	rfil	2450.9
satdly	rfp1	2934.0
satfra		PLOT
DECOUPLER	wc	155.0
dn C13	Sc	10.0
dm nnn	wc2	155.0
	Sc2	0
	vs	28
	th	ph 3

Fig S41. 1H NMR of $5 \mathrm{e}(500 \mathrm{MHz}, \mathrm{CDCl} 3)$.

RYN-2-130			
exp11 s2pul m			
SAMPLE DEC. \& VT			
date	Nov 32008	dfrq	125.6915
solvent	$t \quad \mathrm{cdcl3}$	dn	C13
file	UISITION \exp	dpwr	30
	UISITION	dof	0
sfrq	499.836	$d m$	nnn
t	H1	dmm	c
at	3.000	dmf	200
np	48000	dseq	
SW	8000.0	dres	1.0
$f b$	4000	homo	n
bs	4		SSING
tpwr	57	wtfil	
pw	4.8	proc	$f t$
d1	1.000	fn	not used
tof	499.7	math	f
nt	4		
ct	4	werr	react
alock	y	wexp	procplot
gain	not used		wft
$\dagger 1$	n		
in	n		
dp	y		
DISPLAY			
sp	-250.1		
wp	5498.0		
vs	90		
sc	0		
wc	210		
hzmm	26.18		
is	119.62		
rfi	4632.1		
rfp	3618.8		
th	4		
ins	100.000		
nm cdc ph			

$\dot{\sim} \dot{\sim} \sim \dot{\sim} \dot{\sim}$

Fig S42. 13C NMR of 5 e ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S43. DEPT of $5 \mathrm{e}(\mathrm{CDCl} 3)$.
expl3 DEPT

Fig S44. COSY of 5 e (CDCl3).
expl4 gCosy
SAMPLE 2008 FL date Nov 32008
solvent hs
sdci3
sspul sample undefined hsgivi
ACQUISITION

Fig S45. HMQC of 5 e (CDCI3).

Fig S46. NOESY of 5e (CDCl3).

FLAGS
date Nov 32008 hs
olvent
sample undefined sspul sw ACQUISITION

$$
\begin{aligned}
& \text { PFGflg } \\
& \text { hsglvi }
\end{aligned}
$$

${ }_{20} 1$
$\begin{array}{lll}\text { SW1 } & 4308.5 & \text { fn } \\ \text { Fi PROCESSING }\end{array}$
TRANSMITTER $\begin{array}{lll}200 & \text { gfi } 1 & 0.043 \\ \text { gfs } 1 & \text { not used }\end{array}$

$\begin{array}{lrl}\text { of } & 344.8 & \text { sp } \\ \text { tpwr } & 535 P L A Y\end{array}$
pw noesy
mix
PRESATURATION
0. atmode ion satmode
satpwr
satfr
$d n$
$d m$

$$
\begin{array}{r}
\mathrm{N} \\
308.5 \\
0.238 \\
2048 \\
2000 \\
32 \\
1.000 \\
10 \mathrm{~B} \\
308.5 \\
200 \\
\mathrm{R} \\
\mathrm{H} 1 \\
9.836 \\
344.8 \\
57 \\
3.000 \\
0.600 \\
0 N \\
n n n n \\
0 \\
0
\end{array}
$$

lvi
not
not temp gain not used 20 2048 gain
2000 spin
32 F2 PROCESSING 32
1.000
gf 2
0.110 0
10
80会 0 DECOUPLER
ph

2048
680.6
4304.3
677.0
4304.3
2247.7
2924.0
2251.2
2924.0
155.0
10.0
155.0
0
113
2
whaturn , H

$$
\begin{aligned}
& \text { C13 } \\
& \text { nnn }
\end{aligned}
$$

Fig S47. 1H NMR of 5 f ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

RYN-2-133			
exp3 s	s2pul		$\stackrel{¢}{0}$
	SAMPLE	DEC. \&	\& VT
date	Jan 62009	dfrq	125.695
solvent	nt cdci3	dn	C13
file ${ }_{\text {ACQUI }}$	utsition exp	dpwr	30
	QUISITION		0
sfrq	499.836	dm	nnn
tr	H1	dmm	c
at	3.000	dmf	200
np	48000	dseq	
sw	8000.0	dres	1.0
fb	4000	homo	n
bs	4	PROCES	SSING
tpwr	57	wtfile	
pw	4.8	proc	$f t$
d1	1.000	f	not used
tof	499.7	math	f
nt	4		
ct	4	wer r	react
alock	y	wexp	procplot
gain FL	not used flags	wbs wnt	wft
il	n		
in	n		
dp	y		
hs	nn		
DISPLAY			
sp	-250.1		
wp	5498.0		
vs	34		
sc	0		
wc	210		
hzmm	26.18		
is	110.59		
rfi	4631.3		
rfp	3618.8		
th	8		
ins	100.000		
nm ph	ph		

Fig S48. 13C NMR of 5 f ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S49. DEPT of 5 f (CDCI3).
exp32 DEPT

Fig S50. COSY of $5 f(\mathrm{CDCl} 3)$.
exp33 gCos γ

exp34 gHMQC

Fig S52. NOESY of 5 f (CDCl3).
RYN-2-133
exp35 NOESY

Fig S53. 1H NMR of 5 g ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

N-2-138	
exp21 s2pul	-
SAMPLE	DEC. \& VT
date NOV 152008	dfrq 125.695
solvent cdcl3	dn C13
file exp	dpwr 30
ACQUISITION	dof 0
sfrq 499.836	dm nnn
tn H1	dmm
at 3.000	dmf 200
$\mathrm{np} \quad 48000$	dseq
sw 8000.0	dres 1.0
fb 4000	homo
bs 4	PROCESSING
tpwr 57	wtfile
pw 4.8	proc ft
d1 1.000	fn not used
tof 499.7	math
nt 4	
ct 4	werr react
alock y	wexp procplot
gain flags ${ }^{\text {not used }}$	whs wnt
il n	
in n	
dp y	
hs min	
DISPLAY	
sp $\quad-250.1$	
wp 5498.0	
vs 28	
Sc 0	
wc 210	
hzmm 26.18	
is 119.13	
rfl 4631.8	
rfp 3618.8	
$t \mathrm{th}$	
ins 100.000	
nm ph	

Fig S54. 13C NMR of 5 g ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S55. DEPT of 5 g (CDCI3).
exp23 DEPT

27 gcosy		
SAMPLE	flags	
date Nov 172008	hs	nn
solvent cdcl3	sspul	n
sample undefined	hsgivi	1026
ACQUISITION		SPECIAL
sw 4498.4	temp	not used
at 0.228	gain	30
np 2048	spin	0
fb 3000	F2 Pr	ROCESSING
ss 16	sb	-0.114
d1 1.000	sbs	not used
nt 16	fn	2048
2 D ACQUISITION	F1 Pr	ROCESSING
SW1 4498.4	sbl	-0.028
ni 128	sbs 1	not used
TRANSMITTER	proc1	1p
tn H1	fni	2048
sfrq 499.836		ISPLAY
tof 249.8	sp	486.0
tpwr 57	wp	4494.0
pw 13.000	spl	489.2
GRADIENTS	wp 1	4494.0
gzlv11 1026	rf1	2437.4
gt1 0.001000	rfp	2919.0
gstab 0.000500	rfil	2434.2
DECOUPLER	rfpl	2919.0
dn C13		PLOT
dm nnn	wc	155.0
	sc	10.0
	wc2	155.0
	sc2	0
	vs	18
	thic th	c av 8

Fig S57. HMQC of 5 g (CDCl3).
exp26 gHMQC

Fig S58. NOESY of 5 g (CDCI3).
exp24 NOESY

SAMPLE	flags	
date Nov 152008	hs	n
solvent cdcl3	sspul	y
sample undefined	PFGfig	g y
ACQUISITION	hsglv?	1026
SW 4498.4		SPECIAL
at 0.228	temp	not used
np 2048	gain	50
fb 3000	spin	0
ss 32	F2 P	PROCESSING
di 1.000	gf	0.105
nt 8	gfs	not used
2D ACQUISITION	fn	2048
SW1 4498.4	F1 P	PROCESSING
ni 200	gf1	0.041
TRANSMITTER	gfs 1	not used
$t \begin{aligned} & \text { tr }\end{aligned}$	proc1	$1 p$
sfrg 499.836	fn1	2048
tof 249.8		dISPLAY
tpwr 57	sp	489.7
pw 13.000	wp	4494.0
Noesy	spl	504.2
mix 0.200	wp1	4494.0
PRESATURATION	rff	2433.7
satmode nnnn	rfp	2919.0
satpwr	rfil	-499.8
satdly 0	rfpl	0
satfrq 0		PLOT
DECOUPLER	wc	155.0
dn C13	sc	10.0
dm nnn	wc2	155.0
	sc2	0
	vs	1814
	th	ph 4
	ai	ph

Fig S59. 1H NMR of 5 h ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S60. 13C NMR of 5 h ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S62. COSY of 5h (CDCI3).

RYN-2-140

exp14 gcosy
 $\begin{array}{lrr}\text { solvent } & \text { cdclis } & \text { sspul } \\ \text { sample } & \text { undefined } & \text { hsglvi } \\ & 1026\end{array}$
 $\begin{array}{lrlr}\text { sw } & 4498.4 & \text { temp } & \text { not used } \\ \text { at } & 0.228 & \text { gain } & 22 \\ \text { np } & 2048 & \text { spin } & 0 \\ \text { fb } & 3000 & \text { F2 } & \text { PROCESSING } \\ \text { ss } & 16 & \text { sb } & -0.114\end{array}$ $\begin{array}{lrlr} & 16 & \text { Sb } & -0.114 \\ \text { d1 } & 1.000 & \text { sbs } & \text { not used } \\ \text { it } & 16 & \text { fn } & 2048\end{array}$ ${ }_{\text {2D }}$ D ACQUISITION ${ }_{4}{ }^{16}$ F1 PROCESSING $\begin{array}{lrlr}\text { SW1 } & 4498.4 & \text { sb1 } & \text { not } \\ \text { ni } & 128 & \text { sbs1 } & \text { not } \\ \text { TRANSMITTER }\end{array}$

tn
sfra
tof tof

pw | 249.8 | sp | 482 |
| ---: | ---: | ---: |
| 57 | wp | 4494. |
| GRADIENTS | 1300 | sp1 | $\begin{array}{llr} & & 485.3 \\ \text { gzlvil } & \text { spidIENTS } & \text { wp1 }\end{array}$ $\begin{array}{llll}\text { gt1 } & 0.001000 & \text { rfp } & 2595 . \\ & 3074 .\end{array}$

 $\begin{array}{lll}\text { nnn } & \text { WC } & 155.0 \\ & \text { SC } & 10.0 \\ & \text { WC2 } & 155.0 \\ & \text { SC2 } & \end{array}$

Fig S63. HMQC of 5h (CDCl3).

Fig S64. NOESY of 5h (CDCl3).
RYN-2-140
expl6 NOES
date SAMPLE NOV 152008 hs FLAGS solvent cdci3 $\begin{array}{ll}\text { hs } \\ \text { spul }\end{array}$ $\begin{array}{lrll}\text { sample } & \text { undefined } & \text { pFGfig } & \\ \text { ACQUISITION } & \text { hsglvl } & \\ \text { sw } & 4498.4 & \text { temp SPECIAL } & \\ \text { at } & 0.228 & \text { not } \\ \text { np } & 2048 & \text { gain } & \end{array}$
$\begin{array}{lrlr}\text { at } & 2048 & \text { gain } & \\ \text { np } & 3000 & \text { spin } & \\ \text { fb } & 32 & \text { F2 } & \text { PROCESSING } \\ \text { ss } & 1.000 & \text { gf } & 0 .\end{array}$
$\begin{array}{ll}\text { di } \\ \text { nt } \\ 20 & 1 . \\ \end{array}$

$\begin{array}{lllll}\text { tn } & & \text { H1 } & \text { gfs1 } & \text { proci }\end{array} \quad$ not us
$\begin{array}{lrll}\text { sfrq } & 499.836 & \text { fni } & \\ \text { tof } & 249.8 & \text { DISPLAY } \\ \text { tpwr } & 57 & \text { sp } & \end{array}$
tpwr
pw NOESY
mix NOESY
satmode
satpwr
satdly
satfrq DECOUPLER
dn
dm

Fig S65. 1H NMR of 5 i ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S66. 13C NMR of 5 i ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S67. DEPT of 5i (CDCl3).
expl3 DEPT

Fig S68. COSY of 5i (CDCl3).

$\operatorname{expl} 14$ gCos Y

$\begin{array}{lll}\text { date Nov } 172008 & \text { hs } \\ \text { solvent } & \text { cdcl3 } & \text { sspul }\end{array}$
$\begin{array}{lrr}\text { solvent } & \text { cdcis } & \text { sspul } \\ \text { sample } & \text { undefined } & \text { hsglvil } \\ \text { ACQUISITION } & 1026\end{array}$

sw	and
at	4998.

$\begin{array}{lrrr}\text { at } & 0.205 & \text { gain } & \text { not used } \\ \text { np } & 2048 & \text { spin } & 30 \\ \text { fb } & 3000 & \text { F2 } & \text { PROCESSING } \\ \text { ss } & 16 & \text { sb } & -0.102\end{array}$
$\begin{array}{lrl}\mathrm{fb} & 3000 & \text { F2 PROCESSING } \\ \mathrm{ss} & 16 & \mathrm{sb} \\ \mathrm{d} & -0.102\end{array}$
$\begin{array}{ll}d 1 & 1.000 \\ \text { nt } \\ 20 \\ \text { 20 ACQUISITION }\end{array}$

SW1	
ni	4998.
12	

$\begin{array}{lr}\operatorname{tn} & H 1 \\ \text { sfra } & 499.836 \\ \text { tof } & -0.1 \\ \text { tpwr } & 57\end{array}$
tpwr
pw GRADIENTS
$\begin{array}{ll}27 v 11 & 0.001026 \\ & 0.0050\end{array}$ gt1
gstab Stab O.0
DECOUPLER C13 C 13
nnn
 $\begin{array}{cc} & \text { not used } \\ \text { fn } & 2048 \\ \text { F1 } & \text { PROCESSING } \\ \text { sb1 } & -0.026 \\ \text { bsi } & \text { not used }\end{array}$ dm

DISPLAY

PLOT
 i cdc av

都

RYN-2-141
expl5 gHMQC

flags
ags
$\begin{array}{lrl}\text { ds } & 32 & \text { GRADIENTS } \\ \text { d1 } & 1.000 & \text { gzlvil }\end{array}$
 $\begin{array}{lrlr}\text { ni } & 128 & \text { gt3 } & 0.001000 \\ \text { phase } & \text { arrayed } & \text { F2 } & 0.000500\end{array}$

Fig S69. HMQC of 5 i (CDCI3).

Fig S70. NOESY of 5 i (CDCl3).
RYN-2-141
exple noesy
SAMPLE

Fig S71. 1H NMR of 5j ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

RYN-2-145			
exp21 s2pul mm			
	SAMPLE 2008	$\mathrm{fra}^{\text {D }}$	\& VT
date	Nov 282008	dfrq	125.695
solvent	nt cdcl3	dn	C13
file	exp	dpwr	30
ACQUISITION		dof	0
sfrq	499.836	dm	nnn
tnat	H1	dmm	c
	3.000	dmf	200
np	48000	dseq	
sw	8000.0	dres	1.0
$f b$	4000	homo	n
bs	4	P	SSING
tpwr	57	wtfil	
pw	4.8	proc	$f t$
d1	1.000	fn	not used
tof	499.7	math	f
nt	4		
ct	4	werr	react
alock gain F	y	wexp	procplot
	not used FLAGS	wbs wnt	wft
i1	n		
in	n		
dp	y		
hs	nn		
display			
sp	-250.1		
wp	5498.0		
vs	77		
sc	0		
wc	210		
hzmm	26.18		
isrif	131.36		
	4626.2		
$r f p$	3618.8		
th	. 7		
ins	100.000		
$\mathrm{nm} \quad \mathrm{ph}$	ph		

$084.52 \square$
$100 \cdot 1 \varepsilon$

Fig S72. 13C NMR of 5 j ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S73. DEPT of 5 j (CDCl3).
exp22 DEPT

Fig S75. HMQC of 5 j (CDCI3).

ACQUISITION ARRAYS array $\begin{array}{r}\text { arraydim } \\ \end{array} \quad 256$ i phase phase
1
2

Fig S76. NOESY of 5 j (CDCl3).

Fig S77. 1H NMR of compound 6 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

RYN-2-148
exp24 s2pul

Fig S78. 13C NMR of compound 6 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

RYN-2-148
Fig S80. COSY of compound 6 (CDCI3).
exp27 gCOSY
SAMPLE FLAGS
date
solvent cdci3 sspul nn sample undefined hsglvi 1026 sample undefine ACQUISITION
$\begin{array}{lll}\text { SW } & \text { at } & \text { SPECIAL } \\ \text { at } & \text { not use }\end{array}$ $\begin{array}{lll}\text { at } & 0.138 & \text { gain } \\ \text { np } & 1024 & \text { spin } \\ \text { fb } & 2000 & \text { F2 PROCESSING } \\ \text { ss } & 10 & \text { sb }\end{array}$ $\begin{array}{llll}\text { ss } & 1.0 & \text { sb } & -0.069 \\ \text { d } 1 & 1.000 & \text { sbs } & \text { not used }\end{array}$ nt_{20} ACQUISITION ${ }^{16}$ SW1 $\quad 3698.7$ SbI PROCESSING ni

s
t
t $\begin{array}{llll}\text { tof } & -350.0 & \mathrm{Sp} & \text { DISLAY } \\ \text { tpwr } & 301.1\end{array}$ $\begin{array}{lll}\text { towr } & 57 \mathrm{wp} & 3691.5 \Longrightarrow\end{array}$
GRADIENTS 13.000 $g z l v 11$
$g t 1$ 026 $\begin{array}{ll}\text { gtt } & 0.00100 \\ \text { gstab } & 0.00050\end{array}$ DECOUPLER C13 nnn $\begin{gathered}\text { wc } \\ \\ \\ \\ \\ w c\end{gathered}$

PLOT
$\begin{array}{lll}\text { wc } & \\ \text { sc } & \\ \text { wc2 } & \\ \text { sc2 } & \\ v s & \\ \text { th } & \\ \text { ai cde av }\end{array}$

Fig S81. HMQC of compound 6 (CDCl3).
exp28 gHMQC

RYN-2-148
exp29 NOESY
SAMPLE
 $\begin{array}{lll}\text { solvent } & \text { cdclu } & \text { sspul } \\ \text { sample } & \text { undefined } & \text { PFGflg }\end{array}$ $\begin{array}{ccr}\text { sample } & \text { undefined } & \text { PFGflg } \\ \text { SW ACQUISITION } & \text { hsglvil } & \text { y } \\ 3698.7 & \text { SPECIAL } & \end{array}$
sw
at
n $\begin{array}{lll}\text { np } & 0.138 & \text { temp not used }\end{array}$
$\begin{array}{lrll}\text { fb } & 2000 & \text { gpin } & \\ \text { ss } & 32 & \text { F2 PROCESSING } \\ \text { d } & 1.000 & \text { gf } & \end{array}$
$\begin{array}{lrlr}\text { d1 } & 1.000 & \mathrm{gf} & 0.064 \\ \mathrm{nt} & 8 & \mathrm{gfs} & \text { not used }\end{array}$
20 ACQUISITION ${ }^{8} \mathrm{gn}^{2}$ RROCESSINO 1024
SW1 ACQUISITION $\quad 3698.7 \quad$ F1 PROCESSING
$\begin{array}{lrrr}\text { SW1 } & 3698.7 & \text { F1 } & \text { PROCESSING } \\ \text { ni } & 200 & \text { gfi } & 0.050\end{array}$

$\begin{array}{lrll}\text { sfrq } & 499.835 & \text { fn1 } & \\ \text { tof } & -350.0 & & \text { display } \\ \text { tpwr } & 57 & \text { sp } & \\ \text { pw } & 13.000 & \text { wp } & \end{array}$
pW NOESY
mix
PRESATURATION
13.000
0.200
satmode
satpwr nnnn
satpwr
satdly
satfrq
dn DECOUPLER
dn
dm
.200
$n n n n$
$\begin{array}{ll} \\ & \\ & \mathrm{C13} \\ \mathrm{nnn}\end{array}$

Fig S83. 1H NMR of compound 7 ($500 \mathrm{MHz}, \mathrm{CDCl} 3$).

RYN-2-153
$\begin{aligned} & \text { exp2 } \text { s2pul } \\ & \text { SAMPLE }\end{aligned}$

Dec 312008
DEC. \& VT $\begin{array}{lrrr}\text { date } & \text { Dec } 31 \begin{array}{rlr}2008 & d f \\ \text { solvent } & \text { cdcl3 } & d n \\ \text { file } & & \text { exp }\end{array} \quad d p\end{array}$ ACQUISITION exp dpwr sfrq
tn
tn
at
np
$\begin{array}{lrlr}\text { np } & \mathbf{4 8 0 0 0} & \text { dseq } & \\ \text { sw } & 8000.0 & \text { dres } & 1.0 \\ \text { fb } & 4000 & \text { homo } & \text { PROCESSING } \\ \text { bs } & 4 & \\ \text { tpwr } & 57 & \text { wtfile } & \\ \text { pw } & 4.8 & \text { proc } & \text { ft }\end{array}$

$\begin{array}{lr}\text { tof } & 499.7 \\ n t & 4 \\ c t & 4\end{array}$
alock
gain
il
in
in
dp
$h s$
hs Display nn
sp DISPLAY
$\begin{array}{lr}\text { sp } & -250.1 \\ w p & 4998.3 \\ \text { vs } & 48 \\ \text { sc } & 0 .\end{array}$
wC
hzmem
is
rf
rfp
rfp
th
ins
ins
$n \mathrm{~m}$
$\mathrm{cdc} \mathrm{ph}{ }^{1}$
react
cplot
flags not used wbs $\begin{aligned} & \text { wht } \\ & \text { wht }\end{aligned}$ 210
23.80 67.22 4630.6 3618.8
 695
013
30
0
$n n$
c

RYN-2-153
exp3 s2pul

Fig S84. 13C NMR of compound 7 ($125 \mathrm{MHz}, \mathrm{CDCl} 3$).

Fig S85. DEPT of compound 7 (CDCl3).
$\begin{array}{ll}\text { exp4 } & \text { DEPT } \\ & \text { SAMPLE }\end{array}$

$\begin{array}{ll}\text { bs } & \\ \text { ss } & \\ \text { d } 1 & 1 \\ n t & \\ c t & \end{array}$
TRANSMITTER 1800
tn TRANGMITER
tof C13 1p 77.
$\begin{array}{lrl}\text { tof } & 2512.2 & \text { ai } \\ \text { tode } & \text { cde ph } \\ \text { REFERENCE }\end{array}$

dn
n OECOUPLER
dof
dpwr
dpwr
dm
$d m m$
$\underset{d m m}{d m}$
pplv7
pp

$\begin{array}{cc}\mathrm{ccW} & \mathrm{hzmm} \\ 11905 & \text { th }\end{array}$
vs
hzmm
th
11905
49
29.400

Fig S86. COSY of compound 7 (CDCl3).
RYN-2-153
$\exp 5 \mathrm{gCOS} Y$

SAMPLE		flags	
date	c 312008	hs	nn
solvent	cdcl3	sspul	
sample	undefined	hsgiv	1026
ACQUISITION		SPECIAL	
Sw	3998.6	temp	not used
at	0.128	gain	34
$n \mathrm{p}$	1024	spin	0
fb	2000	F2	PROCESSING
ss	16	sb	-0.064
d1	1.000	sbs	not used
$n \mathrm{t}$	32	fn	1024
2D AC	ISITION	$F 1$	PROCESSING
sw1	3998.6	sbl	-0.032
ni	128	sbs 1	not used
TRANSMITTER		proc1	
tn	${ }^{\mathrm{H} 1}$	fnl	1024
sfrq	493.835		DISPLAY
tof	-499.9	sp	-5.6
tpwr	57	wp	3990.8
pw	13.000	sp1	7.9
GRADIENTS		wp1	3990.8
gzlvl1	1026	rfi	2348.7
gt1	0.001000	rfp	2335.2
gstab	0.000500	rfil	-0.1
DECOUPLER		rfp1	0
$\begin{aligned} & \mathrm{dn} \\ & \mathrm{dm} \end{aligned}$	C13		PLOT
	nnn	wc	155.0
		sc	10.0
		wc2	155.0
		Sc2	0
		vs	57
		th	8

RYN-2-153
Fig S87. HMQC of compound 7 (CDCl3).
EXp6 gHMQC

Fig S88. NOESY of compound 7 (CDCl3).
RYN-2-153
exp16 NOESY

Fig S89. 1H NMR of compound 8 (CDCl3).
RYN-2-166

exp2	s2pul		¢゙心
	SAMPLE	DEC. \& VT	
date	Feb 262009	dfrq	125.695
solvent	t cdcl3	dn	C13
file	exp	dpwr	30
ACQUISITION		dof	0
sfrq	499.836	dm	nnh
tn	H1	dmm	-
at	3.000	dmf	200
np	48000	dseq	
sw	8000.0	dres	1.0
fb	not used	homo	
bs	4		SSING
tpwr	57	wtfi	
pw	4.8	proc	$f t$
d1	1.000	fn	not used
tof	499.7	math	
nt	4		
ct	4	wer r	react
alock		wexp	procplot
gain	not used FLAGS	wbs wnt	wft
il	n		
in	n		
dp	y		
hs	DISPLAY		
sp	-250.1		
wp	5498.0		
vs	19		
sc	0		
wc	210		
hzmm	26.18		
is	193.87		
rff	4630.6		
rfp	3618.8		
th	3		
ins	100.000		
nm cdc	c ph		

Fig S91. DEPT of compound 8 (CDCl3).
RYN-2-166

Fig S92. DEPT of compound 8 (CDCI3), Expanded.
RYN-2-166
expl3 DEPT

Fig S93. HMQC of compound 8 (CDCI3).
RYN-2-166
exp14 gHMQC

Fig S94. HMQC of compound 8 (CDCl3), expanded.
RYN-2-166
exp14 gHMQC
date $\quad \begin{gathered}\text { SAMPLE } \\ \text { Feb } 26 \\ 2009\end{gathered}$ hs FLAG date
solvent
sample solvent
sample cdcl3 hs spul ACQUISITION
$\begin{array}{rr}\text { ACQUISITION } & \text { ARRAYS } \\ \text { array } \\ \text { arraydim } & \text { phase } \\ \text { i } & 256 \\ 1 & \text { phase } \\ 2 & 1 \\ 2 & 2\end{array}$ i $\begin{array}{ccc}4490.3 & \text { SpeCIAL } \\ 0.228 & \text { temp } & \text { not used }\end{array}$ 2048 gain
not used spin 32 gRADIENT
$\begin{array}{lrlr}\text { d1 } & 1.000 & \text { gzlvil } & \text { GRADIENTS } \\ \text { nt } & 1006 \\ \text { 2D ACQUISITION } & \text { gt1 } & \text { gzlvis } & 0.001000 \\ & 506\end{array}$
 $\begin{array}{lllr}\text { swl } & 21367.5 & \text { gts } & 0.001000 \\ \text { ni } & 128 & \text { gstab } & 0.000500 \\ \text { phase } & \text { arrayed } & \text { f2 } & \end{array}$ $\begin{array}{cc}\text { phase arrayed } \\ \text { TRANSMITTER F2 } \\ \mathrm{gf} & \text { FROCESSING } \\ 0.105\end{array}$
 $\begin{array}{llll}\text { tof } & 249.8 & \text { F1 PROCESSING } \\ \text { tow } & 57 & \mathrm{gf1} & 0.006\end{array}$ $\begin{array}{lrlr}\text { tpw } & 57 & \text { gf1 } & 0.006\end{array}$

DECOUPLER

cdc ph

Fig S95. COSY of compound 8 (CDCl3).
RYN-2-166

Fig S96. NOESY of compound 8 (CDCl3).
RYN-2-166
exp15 noesy
date SAMPLE FLAGS

Fig S97．HPLC analysis of the racemic 5a（Table 1，entry 19）．
（For comparison）
ryn－2－117 racemate col IA 20\％EA／Hex

Report produced on 2008／10／18 at 下午 02：21：29 by Put your name here

2008／10／18 aUaĖ 12：01：06 Flow set to 1.00 at 0.01 minutes
2008／10／18 aUaĖ 12：49：52 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	19.46	20.90	601	49.2	69.47	19.92	Baseline	
2	21.69	23.36	620	50.8	70.80	22.28	Baseline	

Chromatogram Report
First line of organization＇s address Second line of organization＇s address ryn－2－121－col IA 20\％EA／Hex

Report produced on 2008／11／16 at 上午 12：22：48 by Put your name here

2008／10／18 aUaÈ 03：45：29 Flow set to 1.00 at 0.00 minutes
2008／10／18 aUםĖ 04：23：23 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	20.29	21.80	2429	100.0	104.17	20.66	Baseline

Fig S99．HPLC analysis of 5a obtained（Table 1，entry 10 and Table 2，entry 1）．

Chromatogram Report
First line of organization＇s address Second line of organization＇s address ryn－2－115 chiral col IA 20\％EA／Hex

Report produced on 2008／10／18 at 下午 02：24：56 by Put your name here

2008／10／18 aUaÈ 12：52：19 Flow set to 1.00 at 0.00 minutes
2008／10／18 aUםÈ 01：39：23 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	20.98	22.87	2565	100.0	123.54	21.43	Baseline

Fig S100．HPLC analysis of the mixture of racemic and chiral 5a obtained

Chromatogram Report

ryn－2－115－co－col IA 20\％EA／Hex
Report produced on 2008／10／18 at 下午 02：26：07 by Put your name here

2008／10／18 aUaÈ 01：42：02 Flow set to 1.00 at 0.01 minutes
2008／10／18 aUםĖ 02：18：07 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name	
1	18.72	19.84	215	9.5	66.08	19.15	Baseline	
2	20.64	22.49	2045	90.5	112.50	21.11	Baseline	

Chromatogram Report

ryn－2－119－col IA 20\％EA／Hex

Report produced on 2008／11／16 at 上午 12：21：30 by Put your name here

2008／10／18 aUaÉ 03：07：12 Flow set to 1.00 at 0.00 minutes
2008／10／18 aUםĖ 03：42：57 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	20.29	21.72	1975	100.0	94.23	20.67	Baseline

Fig S102．HPLC analysis of the racemic 5a（Table 1，entry 18）．

Chromatogram Report

ryn－2－117 racemate 3 col－IA 22\％EAI Hex blank
Report produced on 2008／11／16 at 上午 12：00：38 by Put your name here

2008／11／15 aUaÈ 02：37：55 Flow set to 1.00 at 0.00 minutes
2008／11／15 aUםÈ 03：03：12 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	12.80	13.73	718	48.7	75.66	13.16	Baseline
2	13.93	14.90	756	51.3	75.87	14.31	Baseline

Chromatogram Report
First line of organization＇s address Second line of organization＇s address ryn－2－125－D chiral col－IA 22\％EA／Hex blank

Report produced on 2008／11／16 at 上午 12：02：16 by Put your name here

2008／11／15 aUaÈ 03：05：19 Flow set to 1.00 at 0.03 minutes
2008／11／15 םUםÈ 03：29：12 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	13.22	14.39	1534	77.0	112.60	13.57	Baseline	
2	14.55	15.37	458	23.0	64.82	14.83	Baseline	

Fig S104．HPLC analysis of the mixture of racemic and chiral 5a obtained（Table 1，entry 18）．

Report produced on 2008／11／16 at 上午 12：04：15 by Put your name here

2008／11／15 aUaÈ 03：31：13 Flow set to 1.00 at 0.00 minutes
2008／11／15 aUםÈ 03：54：13 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	13.57	14.67	1123	68.2	92.99	13.93	Baseline	
2	14.86	15.78	523	31.8	67.52	15.21	Baseline	

Fig S105．HPLC analysis of the racemic 5b（Table 2，entry 2）．

Chromatogram Report

ryn－126 racemate IA 20\％ea／hex 1ml／min
Report produced on 2009／1／22 at 下午 04：22：36 by Put your name here

2009／1／22 aUxÈ 01：37：08 Flow set to 1.00 at 0.00 minutes
2009／1／22 aUaÈ 02：53：53 Run stopped by operator

PEAK REPORT

$\#$	begin	end	area	percent	maximum	time	begins as name	
1	49.38	52.89	6875	49.2	151.90	50.55	Baseline	
2	56.96	60.42	7098	50.8	145.08	58.19	Baseline	

Chromatogram Report

ryn－122 chiral IA 20\％ea／hex 1ml／min
Report produced on 2009／1／22 at 下午 04：24：18 by Put your name here

2009／1／22 aUxÈ 02：56：22 Flow set to 1.00 at 0.01 minutes
2009／1／22 aUaÈ 04：19：49 Run stopped by operator

PEAK REPORT

| \＃ | begin | end | area | percent | maximum | time | begins as |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 59.98 | 64.03 | 10203 | 100.0 | 158.08 | 61.28 | Baseline |

Fig S107．HPLC analysis of the mixture of racemic and chiral 5b obtained（Table 2，entry 2） （For comparison）

Chromatogram Report

ryn－2－122＋ryn－2－126 co inj col－IA 20\％EAI Hex
Report produced on 2008／11／16 at 上午 12：14：56 by Put your name here

2008／11／15 aUaÈ 07：17：54 Flow set to 1.00 at 0.01 minutes
2008／11／15 םUםĖ 08：57：04 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	51.02	53.42	3863	15.5	102.75	51.99	Baseline
2	58.11	61.95	21082	84.5	257.49	59.19	Baseline

Fig S108．HPLC analysis of the racemic 5c（Table 2，entry 3）．
ryn－2－128 racemate col－IA 20\％EA／Hex

Report produced on 2008／11／16 at 上午 12：16：03 by Put your name here

2008／11／15 aUaÈ 08：59：15 Flow set to 1.00 at 0.00 minutes

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name	
1	25.46	26.87	2266	48.2	93.31	25.92	Baseline	
2	27.04	28.46	2436	51.8	101.15	27.46	Baseline	

Chromatogram Report

ryn－2－127 chiral col－IA 20\％EAI Hex

Report produced on 2008／11／16 at 上午 12：17：23 by Put your name here

2008／11／15 aUaÈ 09：59：46 Flow set to 1.00 at 0.01 minutes
2008／11／15 aUםÈ 10：40：57 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	27.17	29.10	7089	100.0	180.17	27.61	Baseline

Fig S110．HPLC analysis of the mixture of racemic and chiral 5c obtained（Table 2，entry 3）
ryn－2－127＋ryn－2－128 co inj col－IA 20\％EAI Hex
Report produced on 2008／11／16 at 上午 12：18：31 by Put your name here

2008／11／15 aUaÈ 10：43：29 Flow set to 1.00 at 0.03 minutes
2008／11／15 aUaÈ 11：49：51 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	27.14	28.19	710	12.9	55.31	27.58	Baseline
2	28.35	30.11	4777	87.1	138.56	28.76	Baseline

Fig S111．HPLC analysis of the racemic 5d（Table 2，entry 4）．

Chromatogram Report

RYN－2－131 racemate col IA 20\％Ea／Hex
Report produced on 2008／11／17 at 下午 11：34：12 by Put your name here

2008／11／17 aUaÈ 12：10：18 Flow set to 1.00 at 0.00 minutes
2008／11／17 םUםEE 12：49：18 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	17.49	18.60	657	49.7	85.06	17.93	Baseline	
2	18.77	19.88	666	50.3	86.75	19.15	Baseline	

Fig S112．HPLC analysis of 5d obtained（Table 2，entry 4）．

Chromatogram Report
First line of organization＇s address Second line of organization＇s address

RYN－2－129 chiral col IA 20\％Ea／Hex

Report produced on 2008／11／17 at 下午 11：35：58 by Put your name here

2008／11／17 aUaÈ 12：51：08 Flow set to 1.00 at 0.00 minutes
2008／11／17 םUםÈ 01：57：19 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	19.75	21.10	1316	100.0	109.57	20.25	Baseline

Fig S113．HPLC analysis of the mixture of racemic and chiral 5d obtained（Table 2，entry 4） （For comparison）

RYN－2－129＋RYN－2－131 co inj col IA 20\％Ea／Hex
Report produced on 2008／11／17 at 下午 11：37：35 by Put your name here

2008／11／17 aUaÈ 02：00：51 Flow set to 1.00 at 0.00 minutes
2008／11／17 םUםÈ 02：40：20 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	20.36	21.11	138	16.3	80.64	20.80	Baseline	
2	21.28	22.35	708	83.7	103.68	21.56	Baseline	

Fig S114．HPLC analysis of the racemic 5 e （Table 2，entry 5）．

Chromatogram Report

First line of organization＇s address

 Second line of organization＇s address
RYN－2－132 racemate col IA 10\％Ea／Hex

Report produced on 2008／11／20 at 下午 02：09：27 by Put your name here

2008／11／19 aUaÈ 04：14：53 Flow set to 1.00 at 0.01 minutes
2008／11／19 aUםÈ 05：12：27 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as
1	32.93	34.88	221	52.6	39.89	33.98	Baseline
2	35.04	37.18	198	47.2	38.95	35.63	Baseline

Fig S115．HPLC analysis of the chiral 5e obtained（Table 2，entry 5）．

Chromatogram Report

RYN－2－130 chiral col IA 10\％Ea／Hex

Report produced on 2008／11／20 at 下午 02：10：37 by Put your name here

2008／11／19 aUaÈ 05：14：50 Flow set to 1.00 at 0.01 minutes
2008／11／19 aUםĖ 06：18：47 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	33.24	37.26	2035	100.0	64.69	34.55	Baseline

Fig S116．HPLC analysis of the mixture of racemic and chiral 5e obtained，（Table 2，entry 5） （For comparison）

Chromatogram Report

RYN－2－130＋ 132 co injection col IA 10\％Ea／Hex
Report produced on 2008／11／20 at 下午 02：12：44 by Put your name here

2008／11／19 aUaÈ 06：20：31 Flow set to 1.00 at 0.00 minutes
2008／11／19 aUםĖ 07：29：38 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	35.11	38.62	766	87.0	48.78	36.78	Baseline	
2	39.19	41.13	114	13.0	38.94	40.05	Baseline	

RYN－2－136 racemate 2 col IA 20\％Ea／Hex
Report produced on 2008／11／17 at 下午 11：45：00 by Put your name here

2008／11／17 aUaÈ 04：43：12 Flow set to 1.00 at 0.00 minutes
2008／11／17 aUםĖ 06：05：21 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	33.53	36.70	3423	53.1	133.20	34.47	Baseline	
2	40.75	52.80	3026	46.9	96.82	49.55	Baseline	

Fig S118．HPLC analysis of chiral 5f obtained（Table 2，entry 6）

Chromatogram Report

RYN－2－133 chiral 2 col IA 20\％Ea／Hex

Report produced on 2008／11／17 at 下午 11：46：39 by Put your name here

2008／11／17 aUaÈ 06：08：00 Flow set to 1.00 at 0.01 minutes
2008／11／17 aUםĖ 07：14：40 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	34.85	38.69	8587	100.0	198.94	35.93	Baseline

Fig S119．HPLC analysis of the mixture of racemic and chiral 5f obtained（Table 2，entry 6）

Chromatogram Report

RYN－2－133＋RYN－2－136 co inj col IA 20\％Ea／Hex
Report produced on 2008／11／17 at 下午 11：50：27 by Put your name here

2008／11／17 aUaÈ 07：16：45 Flow set to 1.00 at 0.01 minutes
2008／11／17 aUaÈ 08：46：06 Run stopped by operator
PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	34.76	38.44	6831	84.7	182.09	35.67	Baseline	
2	51.45	55.17	1238	15.3	88.84	52.78	Baseline	

Fig S120．HPLC analysis of racemic 5 g （Table 2，entry 7） （For comparison）

Chromatogram Report

RYN－2－139 racemate col IA $20 \% \mathrm{Ea} / \mathrm{Hex}$
Report produced on 2008／11／20 at 下午 02：49：39 by Put your name here

2008／11／17 aUaÈ 08：48：14 Flow set to 1.00 at 0.00 minutes
2008／11／17 aUaÈ 09：47：36 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	22.25	24.56	4155	50.3	170.42	22.94	Baseline
2	24.99	27.92	4111	49.7	173.18	26.38	Baseline

Chromatogram Report

RYN－2－138 chiral col IA 20\％Ea／Hex
Report produced on 2008／11／17 at 下午 10：35：07 by Put your name here

2008／11／17 aUaÈ 09：50：39 Flow set to 1.00 at 0.00 minutes
2008／11／17 םUםĖ 10：33：58 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	25.63	28.09	8798	100.0	269.31	26.40	Baseline

Fig S122．HPLC analysis of the mixture of racemic and chiral 5 g obtained（Table 2，entry 7） （For comparison）

Chromatogram Report

RYN－2－138＋RYN－2－139 co inj col IA 20\％Ea／Hex
Report produced on 2008／11／17 at 下午 11：25：31 by Put your name here

2008／11／17 aUaĖ 10：40：01 Flow set to 1.00 at 0.00 minutes
2008／11／17 aUaÈ 11：24：03 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	23.03	25.20	1699	19.5	110.35	23.74	Baseline	
2	26.15	29.12	7006	80.5	222.86	26.97	Baseline	

Fig S123．HPLC analysis of racemic 5h（Table 2，entry 8）

Chromatogram Report

RYN－2－143 racemate col IA 10\％Ea／Hex
Report produced on 2008／11／20 at 下午 02：01：44 by Put your name here

2008／11／19 aUaÈ 02：29：54 Flow set to 1.00 at 0.00 minutes
2008／11／19 aUםÈ 03：03：42 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name	
1	14.37	15.91	2761	53.9	150.47	15.11	Baseline	
2	16.08	17.64	2362	46.1	129.75	16.39	Baseline	

Chromatogram Report
First line of organization＇s address Second line of organization＇s address

RYN－2－140 chiral col IA 10\％Ea／Hex
Report produced on 2008／11／20 at 下午 02：03：47 by Put your name here

2008／11／19 aUaÈ 03：05：33 Flow set to 1.00 at 0.03 minutes
2008／11／19 aUםÈ 03：38：06 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	15.21	17.03	4515	99.5	198.15	15.80	Baseline

Fig S125．HPLC analysis of the mixture of racemic and chiral 5h obtained（Table 2，entry 8） （For comparison）

Chromatogram Report

RYN－2－140＋RYN－2－143 co inj col IA 10\％Ea／Hex
Report produced on 2008／11／20 at 下午 02：05：01 by Put your name here

2008／11／19 aUaÈ 03：40：05 Flow set to 1.00 at 0.00 minutes
2008／11／19 aUםÈ 04：12：38 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as	name
1	15.72	17.57	3768	77.9	169.61	16.42	Baseline	
2	17.74	19.24	1068	22.1	73.93	18.15	Baseline	

Fig S126．HPLC analysis of racemic 5i（Table 2，entry 9）

RYN－2－144 racemate Col IA 15\％Ea／Hex

Report produced on 2008／11／24 at 下午 05：56：34 by Put your name here

2008／11／24 aWaÈ 11：29：28 Flow set to 1.00 at 0.01 minutes
2008／11／24 aUםÈ 12：45：49 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name	
1	49.99	54.81	8855	49.4	141.88	51.32	Baseline	
2	56.49	61.39	9061	50.6	137.44	58.00	Baseline	

Chromatogram Report

RYN－2－141 chiral Col IA 15\％Ea／Hex

Report produced on 2008／11／24 at 下午 05：59：34 by Put your name here

2008／11／24 aUaÉ 12：47：01 Flow set to 1.00 at 0.00 minutes
2008／11／24 aUaÈ 02：10：39 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	
1	57.59	64.76	19950	100.0	205.82	60.18	Basegins as

Fig S128．HPLC analysis of the mixture of racemic and chiral 5i obtained（Table 2，entry 9） （For comparison）

Chromatogram Report

Report produced on 2008／11／24 at 下午 06：00：40 by Put your name here

2008／11／24 aUaÈ 02：18：50 Flow set to 1.00 at 0.03 minutes
2008／11／24 aUaÈ 03：47：36 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name	
1	47.48	52.14	4336	20.4	123.18	49.91	Baseline	
2	52.30	57.41	16920	79.6	236.47	53.35	Baseline	

Chromatogram Report

RYN－2－146 Racemate col IA 10\％ea／hex

Report produced on 2008／11／28 at 下午 04：06：12 by Put your name here

2008／11／28 aUaÈ 12：23：44 Flow set to 1.00 at 0.00 minutes
2008／11／28 aUםĖ 02：09：07 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name	
1	33.75	36.82	2042	49.7	69.63	34.57	Baseline	
2	39.41	44.61	2069	50.3	59.61	41.75	Baseline	

Chromatogram Report

RYN－2－145 chiral col IA 10\％ea／hex

Report produced on 2008／11／28 at 下午 04：07：24 by Put your name here

2008／11／28 aUaÈ 02：11：15 Flow set to 1.00 at 0.01 minutes
2008／11／28 aUםĖ 03：03：54 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name
1	34.06	38.16	6861	100.0	119.79	34.81	Baseline

Fig S131．HPLC analysis of the mixture of racemic and chiral 5 j obtained（Table 2，entry 10）

Chromatogram Report

RYN－2－145＋RYN－2－146 co inj 2 col IA 10\％ea／hex
Report produced on 2008／11／28 at 下午 05：39：50 by Put your name here

2008／11／28 aUaÈ 04：10：25 Flow set to 1.00 at 0.00 minutes
2008／11／28 aUםĖ 05：16：03 Run stopped by operator

PEAK REPORT

\＃	begin	end	area	percent	maximum	time	begins as name	
1	35.40	38.98	3792	73.5	85.15	36.14	Baseline	
2	43.84	47.69	1364	26.5	51.16	44.94	Baseline	

