Supporting Information

"Stabilizing Unusual Conformations in Small

Peptides and Glucopeptides using a Hydroxylated

Cyclobutane Amino Acid"

submitted to **Organic & Biomolecular Chemistry** as an ARTICLE by:

Alberto Fernández-Tejada, Francisco Corzana, * Jesús H. Busto, Alberto Avenoza, and

Jesús M. Peregrina*

CONTENTS:

- 1. NMR spectra for all new compounds (S2-S13)
- 2. Full assignment of protons and ${}^{n}J_{H,H}$ couplings for compound **2** (S14)
- 3. Sections of the 800 ms 2D NOESY spectra (400 MHz) in H₂O/D₂O (9:1) for compound 2 (S15)

S6

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

S13

Table S1. Full assignment of protons and ${}^{n}J_{H,H}$ couplings for 2^{a}

δ (in ppm)	proton	splitting ^b	ⁿ J _{H,H} (in Hz)
		(# protons)	
1.28-1.35	Me2,Me3	m (6H)	
1.57	Нба	m (1H)	
1.95	Mel	s (3H)	
1.95-2.06	Нүа	m (1H)	
2.25	Нүе	m (1H)	
2.54-2.63	Нбе	m (1H)	
2.67	Me4	s (3H)	
3.20-3.32	$H2s^c, H4s^c$	m (2H)	
3.35-3.44	H3s ^c , H5s ^c	m (2H)	
3.59-3.67	H6s ^c	m (1H)	
3.84-3.90	H6s ^c	m (1H)	
4.17	Ηα3	q (1H)	$^{3}J_{\text{H}\alpha3,\text{Me3}}=7.3$
4.24	Ηα2	q (1H)	${}^{3}J_{\text{H}\alpha2,\text{Me2}}$ =7.2
4.53	H1s	d (1H)	${}^{3}J_{\rm H1s,H2s}=7.9$
4.61	Нβ	't' (1H)	³ <i>J</i> _{Нβ,Нγ} =8.8
7.52-7.59 ^d	NH4 ^d	m (1H) ^d	
7.72 ^d	NH3 ^d	d (1H) ^d	${}^{3}J_{\rm H3,H\alpha3}=6.7^{\rm d}$
8.37 ^d	NH2 ^d	d (1H) ^d	${}^{3}J_{\rm H2,H\alpha2}=5.6^{\rm d}$
8.87 ^d	NH1 ^d	s (1H) ^d	

^{*a*} Data extracted from 1D ¹H NMR experiment carried out in D₂O (20 °C, pH = 5.2) at 400 MHz. ^{*b*} s = singlet, d = doublet, q = quartet, m = multiplet. ^{*c*} Letter 's' makes reference to sugar moiety. ^{*d*} Data extracted from 1D ¹H NMR experiment carried out in H₂O/D₂O (9/1) (20 °C, pH = 5.2) at 400 MHz.

Figure S1. Sections of the 800 ms 2D NOESY spectra (400 MHz) in H_2O/D_2O (9:1) at 25

