Supplementary information for :

An investigation into the electrophilic cyclisation of *N*-acyl -pyrrolidinium ions: a facile synthesis of pyrrolo-tetrahydroisoquinolones and pyrrolo-benzazepinones

Frank D. King,* Abil A. Aliev, Stephen Caddick and Royston C. B. Copley

NMR of 2-(Phenyl)-N-(4,4-diethoxybutyl)acetamide (3):

2-(3-Methoxyphenyl)-N-(4,4-diethoxybutyl)acetamide (3a):

Isolated as an oil (99% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, 6H), 1.56-1.65 (m, 4H), 3.20 (q, 2H, J = 7 Hz), 3.33–3.48 (m, 2H), 3.51 (s 2H), 3.53–3.60 (m, 2H), 3.78 (s, 3H), 4.41 (t, J = 5 Hz, 1H), 5.63 (brs, 1H), 6.74–6.81 (m, 2H), 7.23 (t, J = 7.5 Hz, 1H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = \delta = 15.3$ (CH₃), 24.6 (CH₂), 30.8 (CH₂), 39.4 (CH₂), 44.1 (CH₂), 55.3 (CH₃), 61.3 (CH₂), 102.6 (CH), 112.9 (CH), 115.1 (CH), 121.8 (CH), 130.1 (CH), 136.5 (C), 160.1 (C), 170.9 (C);

2-(4-Chlorophenyl)-N-(4,4-diethoxybutyl)acetamide (3c)

Isolated as a waxy solid (98% yield) m pt 62-4°C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7 Hz, 6H), 1.48-1.60 (m, 4H), 3.24 (q, J = 7 Hz, 2H), 3.40 – 3.49 (m, 2H), 3.51 (s 2H), 3.54 – 3.65 (m, 2H), 4.43 (t, J = 5 Hz, 1H), 5.57 (brs, 1H), 7.20 (d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.4 (CH₂), 30.8 (CH₂), 39.4 (CH₂), 43.1 (CH₂), 61.36 (CH₂), 102.5 (CH), 129.0 (CH), 130.7 (CH), 133.2 (C), 133.5 (C), 170.3 (C); \mathbb{F}_{max}/cm^{-1} 3293, 2977, 2929, 2870, 1638, 1548, 1491, 1152, 1126, 1110, 1088, 1054, 1016, 1000, 805, 728, 688.

2-(4-Methoxyphenyl)-N-(4,4-diethoxybutyl)acetamide (3d):

Isolated as a waxy solid (96% yield) mpt $32-34^{\circ}$ C⁻¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7 Hz, 6H), 1.56-1.65 (m, 4H), 3.24 (q, J = 7 Hz, 2H), 3.33–3.50 (m, 2H), 3.52 – 3.60 (m, 2H), 3.48 (s 2H), 3.79 (s, 3H), 4.41 (t, J = 5 Hz, 1H), 5.54 (brs, 1H), 6.86 (d, J = 7 Hz, 2H), 7.14 (d, J = 7 Hz, 2H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.8 (CH₂), 39.3 (CH₂), 43.0 (CH₂), 55.3 (CH₃), 61.3 (CH₂), 102.5 (CH), 114.4 (CH), 127.0 (C), 130.5 (CH), 158.8 (C), 171.4 (C), ψ_{max}/cm^{-1} 2973, 2931, 1640, 1556, 1512, 1246, 1125, 1101, 1059, 1031, 1006, 817, 790, 720; HRMS: Theoretical Mass (M⁺ - OEt): 264.15997, Measured Mass: 264.15999.

2-(4-Bromophenyl)-N-(4,4-diethoxybutyl)acetamide (3e)

Isolated as a waxy solid (95% yield) mpt 66-67°C. NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7 Hz, 6H), 1.48-1.60 (m, 4H), 3.24 (q, J = 7 Hz, 2H), 3.40–3.49 (m, 2H), 3.47 (s 2H), 3.54–3.65 (m, 2H), 4.42 (t, J = 5 Hz, 1H), 5.64 (brs, 1H), 7.12 (d, J = 8 Hz, 2H), 7.44 (d, J = 8 Hz, 2H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.4 (CH₂), 30.8 (CH₂), 39.4 (CH₂), 43.2 (CH₂), 61.4 (CH₂), 102.5 (CH), 121.3 (C), 131.1 (CH), 132.0 (CH), 134.0 (C), 170.2 (C)

2-(3-Bromophenyl)-N-(4,4-diethoxybutyl)acetamide (3f)

Isolated as a waxy solid (95% yield) m pt = $36-8^{\circ}$ C: ¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7Hz, 6H), 1.46-1.63 (m, 4H), 3.24 (q, J = 7 Hz, 2H), 3.30–3.43 (m, 2H), 3.47–3.59 (m, 2H), 3.68 (s 2H), 4.43 (t, J = 5 Hz, 1H), 5.73 (brs, 1H), 7.15-7.22 (m, 2H), 7.36–7.45 (m, 2H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.4 (CH₂), 30.8 (CH₂), 39.4 (CH₂), 43.3 (CH₂), 61.4 (CH₂), 102.5 (CH), 122.9 (C), 128.0 (CH), 130.4 (CH), 132.4 (CH), 137.3 (C), 170.0 (C).

2-(2-Bromophenyl)-N-(4,4-diethoxybutyl)acetamide (3h)

Isolated as white solid (100% yield), mpt 75-6°C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7 Hz, 6H), 1.46-1.65 (m, 4H), 3.22 (q, J = 7 Hz, 2H), 3.36–3.52 (m, 4H including 3.49 s, 2H), 3.53–3.66 (m, 2H), 4.43 (t, J = 5 Hz, 1H), 5.70 (brs, 1H), 7.15 (dt, J = 8, 2Hz, 1H), 7.25–7.36 (m, 2H), 7.58 (d, J = 8 Hz, 1H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.8 (CH₂), 39.3 (CH₂), 44.1 (CH₂), 61.3 (CH₂), 102.5 (CH), 125.0 (C), 128.0 (CH), 129.1 (C), 131.7 (CH), 133.1 (CH), 135.0 (C), 169.4 (C).

N-(4,4-Diethoxybutyl)-2-[4-(1,3-dioxo-1,3-dihydroisoindoly-2-yl)-phenyl]acetamide (3i)

Isolated as a solid (73% yield) m.pt. 169-72°C (Et₂O/petrol); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ (t, J = 7 Hz, 6H), 1.46–1.70 (m, 4H), 3.24 (q, J = 6.5 Hz, 1H), 3.36–3.53 (m, 2H), 3.56–3.66 (m, 3H, including 3.58, s), 4.44 (t, J = 5 Hz, 1H), 5.69 (brs, 1H), 7.41 (d, J = 3.5 Hz, 2H), 7.44 (d, J = 3.5 Hz, 2H), 7.76-7.85 (m, 2H), 7.90-7.99 (m, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.6 (CH₂), 30.9 (CH₂), 39.5 (CH₂), 43.5 (CH₂), 61.3 (CH₂), 102.6 (CH), 123.8 (CH), 127.0 (CH), 130.2 (CH), 130.9 (C), 131.7 (C), 134.5 (C), 134.9 (C), 167.2 (C), 170.3 (C).

2-(4-Nitrophenyl)-N-(4,4-diethoxybutyl)acetamide (3j)

Isolated as a solid (98% yield) m.pt. 69-72°C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7 Hz, 6H), 1.50–1.65 (m, 4H), 3.27 (q, J = 6.8Hz, 2H), 3.40–3.52 (m, 2H), 3.55- 3.78 (m, 4H), 4.43 (t, J = 5 Hz, 1H), 5.64 (brs, 1H), 7.44 (d, J = 9 Hz, 2H), 8.21 (d, J = 9 Hz, 2H), ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.3 (CH₂), 30.9 (CH₂), 39.6 (CH₂), 43.3 (CH₂), 61.6 (CH₂), 102.6 (CH), 123.9 (CH), 130.2 (CH), 142.6 (C), 169.1 (C); v_{max}/cm^{-1} 3291, 2935, 1639, 1605, 1558, 1510, 1344, 1132, 1111, 1049, 911, 856, 744, 720, 679, 666.

2-(4-Methylphenyl)-N-(4,4-diethoxybutyl)acetamide (3k)

Isolated as white solid (98% yield) m pt 53-5°C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.15$ (t, J = 7 Hz, 6H), 1.40–1.58 (m, 4H), 2.32 (s, 3H), 3.19 (q, J = 6.8Hz, 2H), 3.34–3.62 (m, 6H including 3.50, s, 2H), 4.41 (t, J = 5 Hz, 1H), 5.56 (brs, 1H), 7.12 (s, 4H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 21.1 (CH₃), 24.5 (CH₂), 30.8 (CH₂), 39.3 (CH₂), 43.5 (CH₂), 61.3 (CH₂), 102.5 (CH), 129.3 (CH), 129.7 (CH), 131.9 (C), 137.0 (C), 171.2 (C)

2-(3-Methylphenyl)-N-(4,4-diethoxybutyl)acetamide (3l)

Isolated as an oil (97% yield). ¹H NMR (500 MHz, CDCl₃): $\delta = 1.15$ (t, J = 7 Hz, 3H), 1.45 – 1.57 (m, 4H), 2.33 (s, 3H), 3.20 (q, J = 7 Hz, 2H), 3.38 – 3.48 (m, 2H), 3.50 (s, 2H), 3.55 – 3.65 (m, 2H), 4.41 (t, J = 5 Hz, 1H), 5.59 (brs, 1H), 7.00–7.10 (m, 3H), 7.21 (dt, J = 7.5, 3.5 Hz, 1H). ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 21.3 (CH₃), 24.5 (CH₂), 30.8 (CH₂), 39.3 (CH₂), 43.8 (CH₂), 61.3 (CH₂), 102.5 (CH), 126.4 (CH), 128.0 (CH), 128.9 (CH), 130.2 (CH), 134.9 (C), 138.7(C), 171.0 (C); F_{max}/cm^{-1} 2974, 2928, 2874, 1643, 1549, 1125, 1058, 993, 766, 691.

2-(2-Methylphenyl)-N-(4,4-diethoxybutyl)acetamide (3m)

Isolated as a solid (97%) mpt 56-8°C (Et₂O/petrol). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.14$ (t, J = 7 Hz, 3H), 1.40–1.57 (m, 4H), 2.27 (s, 3H), 3.19 (q, J = 7Hz, 2H), 3.35–3.48 (m, 2H), 3.50–3.64 (m, 4H including 3.55, s), 4.39 (t, J = 5 Hz, 1H), 5.44 (brs, 1H), 7.10–7.22 (m, 4H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 19.5 (CH₃), 24.6 (CH₂), 30.7 (CH₂), 39.2 (CH₂), 41.9 (CH₂), 61.2 (CH₂), 102.5 (CH), 126.6 (CH), 127.8 (CH), 130.5 (CH), 130.8 (CH), 133.4 (C), 137.2(C), 170.6 (C); ψ_{max}/cm^{-1} 2970, 1838, 1549, 1125, 1059, 1038, 997, 749, 730, 696.

2-(1-Naphthyl)-N-(4,4-diethoxybutyl)acetamide (3n)

Isolated as a solid (100%), mpt 73-6°C (Et₂O/petrol). NMR (300 MHz, CDCl₃): $\delta = 1.10$ (t, J = 7 Hz, 6H), 1.32–1.40 (m, 4H), 3.10-3.18 (m, 2H), 3.24–3.35 (m, 2H), 3.37–3.48 (m, 2H), 4.01 (s, 2H), 4.47 (t, J = 5 Hz, 1H), 5.44 (brs, 1H), 7.35–7.56 (m, 4H), 7.76–7.88 (m, 2H), 7.95 (d, J = 7 Hz, 1H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.2$ (CH₃), 24.5 (CH₂), 30.5 (CH₂), 39.1 (CH₂), 41.9 (CH₂), 61.0 (CH₂), 102.3 (CH), 123.9 (CH), 125.6 (CH2), 126.2 (CH), 126.8 (CH), 128.4 (CH), 128.5 (CH), 128.8 (CH), 131.2 (C), 132.1 (C), 134.0 (C), 170.8 (C).

2-(2-Naphthyl)-N-(4,4-diethoxybutyl)acetamide (30)

Isolated as an oil which gave a sticky solidified on standing (100% yield). NMR (300 MHz, CDCl₃): $\delta = 1.12$ (t, J = 7 Hz, 6H), 1.41– 1.58 (m, 4H), 3.18-3.25 (m, 2H), 3.30–3.42 (m, 2H), 3.45–3.58 (m, 2H), 3.72 (s, 2H), 4.39 (t, J = 5 Hz, 1H), 5.60 (brs, 1H), 7.36(d, J = 8.5Hz, 1H), 7.45–7.55 (m, 2H), 7.70 (s, 1H), 7.78-7.88 (m, 3H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.8 (CH₂), 39.3 (CH₂), 44.1 (CH₂), 61.2 (CH₂), 102.5 (CH), 126.0 (CH), 126.4 (CH), 127.3 (CH), 127.6 (CH), 127.7 (CH), 128.3 (CH), 128.8 (CH), 131.6 (C), 132.5 (C), 133.6 (C), 170.8 (C); v_{max}/cm^{-1} 2972, 1642, 1616, 1545, 1124, 1062, 817, 737.

2-Methyl-2-(4-methylphenyl)-N-(4,4-diethoxybutyl)-acetamide (3p)

Ioslated as an oil (96% yield), ¹H NMR (500 MHz, CDCl₃): $\delta = 1.15$ (t, J = 7 Hz, 6H), 1.40–1.58 (m, 7H including 1.48, d, J = 7 Hz, 3H), 2.31 (s, 3H), 3.18 (q, J = 7 Hz, 2H), 3.38–3.57 (m, 2H), 3.48 (q, J = 7 Hz, 1H), 3.54–3.62 (m, 2H), 4.40 (t, J = 5 Hz, 1H), 5.52 (brs, 1H), 7.12 (d, J = 9 Hz, 2H), 7.16 (d, J = 9 Hz, 2H), ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 15.4$ (CH₃), 18.6 (CH₃), 21.1 (CH₃), 24.6 (CH₂), 30.8 (CH₂), 39.3 (CH₂), 46.8 (CH), 61.3 (CH₂), 102.6 (CH), 127.6 (CH), 129.6 (CH), 136.9 (C), 138.5 (C), 174.5 (C)

2-(4-Chlorophenyl)-2,2-dimethyl-N-(4,4-diethoxybutyl)-acetamide (3q)

Isolated as an oil (100% yield): ¹H NMR (300 MHz, CDCl₃): $\delta = 1.14$ (t, J = 7 Hz, 3H), 1.15 (t, J = 7 Hz, 3H), 1.38–1.56 (m, 10H including 1.51, s, 6H), 3.10–3.21 (m, 2H), 3.32–3.46 (m, 2H), 3.47–3.61 (m, 2H), 4.35–4.41 (m, 1H), 5.33 (brs, 1H), 7.28 (s, 4H).; ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 22.8 (CH₂), 24.5 (CH₂), 27.0 (CH₃), 30.7 (CH₂), 39.3 (CH₂), 46.6 (C), 61.2 (CH₂), 102.4 (CH), 127.8 (CH), 128.7 (CH), 132.8 (C), 143.9 (C), 176.7 (C).

1-Phenyl-cyclopentanecarboxylic acid (4,4-diethoxy-butyl)-amide (3r)

Isolated as an oil (100% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.14$ (t, J = 7 Hz, 3H), 1.15 (t, J = 7 Hz, 3H), 1.37–1.50 (m, 4H), 1.56–1.88 (m, 4H), 1.91–2.07 (m, 2H), 2.37–2.50 (m, 2H), 3.13 (q, J = 6 Hz, 2H), 3.32–3.46 (m, 2H), 3.47–3.61 (m, 2H), 4.37 (t, J = 5 Hz, 1H), 5.45 (brs, 1H), 7.17–7.36 (m, 5H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.0 (CH₂), 24.5 (CH₂), 30.6 (CH₂), 36.8 (CH₂), 39.3 (CH₂), 59.3 (C), 61.1 (CH₂), 102.5 (CH), 126.8 (CH), 128.7 (CH), 144.4 (C), 176.4 (C).

N-(4,4-Diethoxybutyl)-2-(4-(1,3-dioxo-1,3-dihydroisoindol-2-yl)-2-phenylacetamide (3s)

Isolated as a white solid (86%) mpt 78-80°C (Et₂O/petrol). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.14$ (t, J = 7 Hz, 6H), 1.51-1.66 (m, 4H), 3.19-3.65 (m, 6H), 4.44 (t, J = 5 Hz, 1H), 5.87 (brs, 2H), 7.26-7.45 (m, 3H), 7.59 (dd, J = 7, 2Hz, 2H), 7.69 (dd, J = 6, 3 Hz, 2H), 7.83 (dd, J = 6, 3Hz, 2H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.7 (CH₂), 39.8 (CH₂), 58.1 (CH), 61.2 (CH₂), 61.3 (CH₂), 102.5 (CH), 123.6 (CH), 129.1 (CH), 129.3 (CH), 129.6 (CH), 131.9 (C), 134.1 (CH), 135.0 (C), 167.0 (C), 167.8 (C)

2,2-Diphenyl-N-(4,4-diethoxybutyl)acetamide (3t)

Isolated as a white solid (95%) mpt 70-2°C (Et₂O/petrol): ¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ (t, J = 7Hz, 6H), 1.48-1.60 (m, 4H), 3.27 (q, J = 7 Hz, 2H), 3.36–3.48 (m, 2H), 3.39–3.65 (m, 2H), 4.43 (t, J = 5 Hz, 1H), 4.90 (s, 1H), 5.89 (brs, 1H), 7.16–7.38 (m, 10H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.6 (CH₂), 30.8 (CH₂), 39.5 (CH₂), 59.2 (CH), 61.3 (CH₂), 102.5 (CH), 127.2 (CH), 128.7 (CH), 128.9 (CH), 139.6 (C), 171.8 (C), Ψ_{max}/cm^{-1} 3263, 2975, 2874, 1639, 1589, 1125, 1060, 1030, 1003, 743, 717, 696.

2,2,2-Triphenyl-N-(4,4-diethoxybutyl)acetamide (3u)

Isolated as white solid (100%)mpt 102-5°C: ¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7 Hz, 6H), 1.50–1.56 (m, 4H), 3.30-3.64 (m, 6H), 4.42 (t, J = 5 Hz, 1H), 5.88 (brt, J = 7 Hz, 1H), 7.21-7.34 (m, 15H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.9 (CH₂), 39.5 (CH₂), 61.2 (CH₂), 67.8 (C), 102.5 (CH), 127.0 (C), 127.9 (CH), 130.5 (CH), 143.4 (C), 173.4 (C).

2-Benzyl -2-phenyl-N-(4,4-diethoxybutyl)-acetamide (3v)

Isolated as an oil which solidied on standing (97% yield), mpt 66-8°C (Et₂O/petrol). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ (t, J = 6 Hz, 6H), 1.42–1.57 (m, 4H), 2.88-3.01 (m, 1H), 3.03-3.23 (m, 2H), 3.30-3.60 (m, 6H), 4.35 (t, J = 5 Hz, 1H), 5.67 (brs, 1H), 7.06–7.32 (m, 10H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.7 (CH₂), 39.2 (CH₂), 39.7 (CH₂), 55.7 (CH), 61.2 (CH₂), 102.5 (CH), 126.2 (CH), 127.2 (CH), 128.0 (CH), 128.2 (CH), 128.7 (CH), 129.0 (CH), 139.8 (C), 139.9 (C), 172.6 (C); v_{max}/cm^{-1} 1633, 1555, 1106, 1057, 755, 703.

2-(4-Methoxyphenyl)-1-(2-ethoxypyrrolidin-1-yl)ethanone (5d)

Isolated as an oil (86% yield). ¹H NMR (300 MHz, CDCl₃) as a mixture of rotomers : $\delta = 1.12$ (t, J = 7Hz, 1.5H), 1.22 (t, J = 7Hz, 1.5H), 1.60–2.20 (m, 4H), 3.25–3.72 (m, 6H), 3.77 (s, 3H), 5.05 (d, J = 4 Hz, 0.5H), 5.51 (d, J = 4Hz, 0.5H), 6.82 (d, J = 8.5Hz, 1H), 6.83 (d, J = 8.5Hz, 1H), 7.15 (d, J = 8.5Hz, 1H), 7.17 (d, J = 8.5 Hz, 1H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 15.4 (CH₃), 21.0 (CH₂), 23.1 (CH₂), 31.5 (CH₂), 31.9 (CH₂), 40.3 (CH₂), 41.2 (CH₂), 45.8 (CH₂), 46.3 (CH₂), 55.2 (CH₃), 62.1 (CH₂), 64.4 (CH₂), 85.9 (CH), 87.5 (CH), 114.0 (CH), 126.6 (C), 127.2 (C), 130.1 (CH), 130.2 (CH), 158.4 (C), 158.5 (C), 171.1 (C), 171.5 (C).

 $\label{eq:NMR} NMR of \ 2-(4-Chlorophenyl)-1-(2-ethoxypyrrolidin-1-yl) ethanone \ (5c)$

NMR of 2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquino-lin-5-one (7)

10-Methoxy-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquino-lin-5-one (7a)

Isolated as a solid (33% yield), mpt 133-6°C (lit. 134-6°C¹²) ¹H NMR (300 MHz, CDCl₃): $\delta = 1.57 - 1.70$ (m, 1H), 1.80 - 2.05 (m, 2H), 2.94 (dt, J = 6, 12 Hz, 1H), 3.40 - 3.80 (m, 4H), 3.81 (s, 3H), 4.52-4.59 (m, 1H), 6.72 - 6.78 (m, 2H), 7.18 (t, J = 7Hz, 1H).

8-Methoxy-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquino-lin-5-one (7a')

Isolated as an oil (46% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.85 - 2.18$ (m, 3H), 2.58 (dt, J = 6, 12Hz, 1H), 3.35 - 3.65 (m, 4H), 3.79 (s, 3H), 4.51-4.5 (m, 1H), 6.68 (d, J = 2 Hz, 1H), 6.75 (dd, J = 8.5, 2Hz, 1H), 7.06 (d, J = 8.5 Hz, 1H).

9-Chloro-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquino-lin-5-one (7c)

Isolated as a pale yellow solid (43% yield) m pt 76-9°C (Et₂O/petrol): HRMS: Theoretical Mass: 221.0602, Measured Mass: 221.0595. ¹H NMR (300 MHz, CDCl₃): δ = 1.78–2.07 (m, 3H), 2.58 (quin, *J* = 5.5 Hz, 1H), 3.32-3.80 (m, 4H), 4.55–4.60 (m, 1H), 7.06 (d, *J* = 8 Hz, 1H), 7.13 (s, 1H), 7.18 (d, *J* = 8 Hz, 1H): ¹³C NMR and DEPT (75 MHz, CDCl₃) δ = 23.1 (CH₂), 31.2 (CH₂), 38.2 (CH₂), 44.8 (CH₂), 59.3 (CH), 124.3 (CH), 127.7 (CH), 128.5 (CH), 131.6 (C), 132.5 (C), 138.0 (C), 167.1 (C); v_{max}/cm^{-1} 1647, 1624, 1489, 1445, 1413, 811, 746, 657.

9-Bromo-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquino-lin-5-one (7e)

Isolated as an oil (55% yield). Theoretical Mass: 265.0097, Measured Mass: 265.0100. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.78-2.20$ (m, 3H), 2.60 (quin, J = 5.5 Hz, 1H), 3.35 – 3.60 (m, 3H), 3.70 (t, J = 9 Hz, 1H), 4.50 – 4.60 (m, 1H), 7.06 (d, J = 7Hz, 1H), 7.30 – 7.45 (m, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 23.2$ (CH₂), 31.3 (CH₂), 38.4 (CH₂), 44.8 (CH₂), 59.3 (CH), 120.5 (C), 127.3 (CH), 128.9 (CH), 130.7 (CH), 132.1 (C), 138.4 (C), 167.1 (C).

10-Bromo-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7f')

Isolated as a pale yellow solid (26% yield) mpt 96-9°C (Et₂O/petrol), HRMS Theoretical Mass: 265.0097, Measured Mass: 265.0100. ¹H NMR (300 MHz, CDCl₃): δ = 1.50–1.68 (m, 1H), 1.85–2.10 (m 2H), 3.18–3.28 (m, 1H), 3.19–3.41 (m, 1H), 3.66 (s, 2H), 3.95–4.07 (m, 1H), 4.53–4.65 (m 1H), 7.09 (d, *J* = 4 Hz, 1H), 7.09 (d, *J* = 5 Hz, 1H), 7.47 (dd, *J* = 4, 5 Hz, 1H): ¹³C NMR and DEPT (75 MHz, CDCl₃) δ = 22.4 (CH₂), 32.7 (CH₂), 36.8 (CH₂), 43.7 (CH₂), 62.0 (CH), 121.2 (C), 127.0 (CH), 128.8 (CH), 132.1 (CH), 133.2 (C), 134.1 (C), 166.1 (C); v_{max}/cm^{-1} 1642, 1435, 1402, 882, 79, 719.

8-Bromo-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7f)

Isolated as a pale yellow solid (45% yield) m pt 118-20°C (Et₂O/petrol): HRMS Theoretical Mass: 265.0097, Measured Mass: 265.0101. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.77$ -2.19 (m, 3H), 2.61 (dt, J = 6, 12Hz, 1H), 3.41-3.71 (m, 4H), 4.50–4.59 (m, 1H), 7.04 (d, J = 8Hz, 1H), 7.31 (s, 1H), 7.36 (d, J = 8 Hz, 1H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 23.2$ (CH₂), 31.4 (CH₂), 38.4 (CH₂), 44.8 (CH₂), 59.3 (CH), 121.4 (C), 125.8 (CH), 129.9 (CH), 130.1 (CH), 135.3 (C), 135.3 (C), 166.8 (C).

7-Bromo-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquinol-in-5-one (7h)

Isolated as pale yellow solid (20% yield), m pt 144-8°C; Theoretical Mass: 265.0097, Measured Mass: 265.0100. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.82-2.25$ (m, 3H), 2.64 (dt, J = 12, 6Hz, 1H), 3.48 (dd, J = 19, 5 Hz, 1H), 3.58 (t, J = 8 Hz, 1H), 3.71 (dt, J = 9, 2 Hz, 1H), 3.98 (d, J = 19 Hz, 1H), 4.60–4.70 (m, 1H), 7.08–7.20 (m, 2H), 7.47–7.60 (m, 1H): ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 23.2$ (CH₂), 31.7 (CH₂), 38.7 (CH₂), 44.7 (CH₂), 59.9 (CH), 123.3 (CH), 123.4 (C), 128.1 (CH), 131.7 (CH), 132.8 (C), 137.9 (C), 166.6 (C), v_{max}/cm^{-1} 1646, 1438, 793, 750, 718, 661..

9-Methyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7k)

Isolated as a pale yellow solid (75%), mpt 120-4°C (Et₂O/petrol), HRMS Theory 201.1148, Found 201.1155. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.87-2.08$ (m, 2H), 2.10–2.18 (m, 1H), 2.34 (s, 3H), 2.61–2.68 (m, 1H), 3.46–3.52 (m, 3H), 3.68 (t, J = 10 Hz, 1H), 4.56–4.62 (m, 1H), 7.02 (s, 1H), 7.07 (s, 2H), ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 21.2$ (CH₃), 23.3 (CH₂), 31.5 (CH₂), 38.4 (CH₂), 44.8 (CH₂), 59.7 (CH), 124.8 (CH), 127.2 (CH), 128.4 (CH), 130.0 (C), 136.2 (C), 136.5 (C), 167.9 (C).

Mixture of 8-Methyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7l) and 10-Methyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7l')

Isolated as an oil as an inseparable mixture of 3:1 ratio of the 8 and 10 isomers respectively (78% combined yield), HRMS Theory 201.1148, Found 201.1152. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.70-2.20$ (m, 3H), 2.34 (s, 2.25H), 2.40 (s, 0.25H), 2.65 (tt, J = 4, 8 Hz, 0.75H), 2.82 (tt, J = 4, 8Hz, 0.25H), 3.40 – 3.70 (m, 4H), 4.58 – 4.64 (m, 0.75H), 4.66-4.72 (m, 0.25H), 7.01 (brs, 1H), 7.06-7.11 (m, 1.75H), 7.17 (t, J = 8Hz, 0.25H), ¹H NMR (600 MHz, C₆D₆): $\delta = 6.57$ (s, 0.75H), 6.64 (d, J = 7.5 Hz, 0.25H), 6.71 (d, J = 7.5 Hz, 0.75H), 6.79 (d, J = 7.5 Hz, 0.25H), 6.85 (d, J = 7.5 Hz, 0.75H), 8.90 (t, J = 7.5 Hz, 0.25H), ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 21.0$ (CH₃), 21.7 (CH₃), 22.7 (CH₂), 23.2 (CH₂), 31.4 (CH₂), 32.9 (CH₂), 37.3 (CH₂), 38.7 (CH₂), 43.5 (CH₂), 44.6 (CH₂), 59.4 (CH), 60.7 (CH), 123.9 (CH), 125.5 (CH), 127.3 (CH), 127.4 (CH), 127.7 (CH), 129.6 (CH), 132.0 (C), 132.8 (C), 132.9 (C), 133.3 (C), 134.4 (C), 137.3 (C), 166.8 (C), 167.5 (C), Italics – minor (10-) isomer.

In CDCl₃

In C₆D₆

7-Methyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7m)

Isolated as a white solid (96% yield), mpt 111-3°C (Et₂O/petrol), HRMS Theory 201.1148, Found 201.1139. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.87-2.08$ (m, 2H), 2.10–2.18 (m, 1H), 2.30 (s, 3H), 2.61–2.68 (m, 1H), 3.41 (dd, J = 19, 2.5 Hz, 1H), 3.50–3.60 (m, 1H), 3.66–3.76 (m, 2H), 4.60–4.67 (m, 1H), 7.02 (d, J = 7.5 Hz, 1H), 7.11 (d, J = 7.5 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 19.6$ (CH₃), 23.2 (CH₂), 31.9 (CH₂), 35.7 (CH₂), 43.9 (CH₂), 59.8 (CH), 122.0 (CH), 126.6 (CH), 129.2 (CH), 132.1 (C), 135.3 (C), 135.9 (C), 167.5 (C); ψ_{max}/cm^{-1} 1649, 1469, 1455, 1443, 1406, 795, 734.

8,9,10,10a-tetrahydro-5H-benzo[f]pyrrolo[2.1-a]isoquinolin-6-one (7n)

Isolated as a pale yellow solid (79% yield), mpt 110-2°C (petrol). HRMS Theory 237.1148. Found 237.1155. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.91$ (dq, J = 7.3, 11.6 Hz, 1H), 2.00–2.12 (m, 1H), 2,13–2.23 (m, 1H), 2.71 (dt, J = 5.5, 11.8 Hz, 1H), 3.65–3.73 (m, 2H), 3.75 (dd, J = 19.8, 4.4 Hz, 1H), 4.23 (dd, J = 19.6, 1.7 Hz, 1H), 4.77 (dt, J = 4.2, 11.2 Hz, 1H), 7.30 (d, J = 8.5 Hz, 1H), 7.50 (dt, J = 6.9, 1.5 Hz, 1H), 7.56 (dt, J = 6.9, 1.5 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 23.0$ (CH₂), 32.4 (CH₂), 34.2 (CH₂), 44.8 (CH₂), 60.4 (CH), 122.5 (CH), 123.2 (CH), 126.0 (CH), 127.0 (CH), 127.5 (C), 127.5 (CH), 128.7 (C), 130.6 (CH), 132.1 (C), 132.8 (C), 166.9 (C)

2,3,5,11c-Tetrahydro-1H-3a-aza-cyclopenta[c]phen-anthren-4-one (7o)

Isolated as an oil (71% yield), HRMS Theory 237.1148, Found 237.1149. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.64$ (quintet, J = 11.2 Hz, 1H), 2.04–2.16 (m, 2H),2.95–3.06 (m, 1H), 3.37–3.47 (m, 1H), 3.81 (s, 2H), 4.23 (dt, J = 12.1, 8.2 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 7.49 (t, J = 7.1 Hz, 1H), 7.54 (t, J = 7.1 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 7.1 Hz, 1H), 7.93 (d, J = 7.1 Hz, 1H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 22.5$ (CH₂), 34.4 (CH₂), 36.6 (CH₂), 43.2 (CH₂), 60.6 (CH), 123.6 (CH), 125.5 (CH), 126.0 (CH), 126.5 (CH), 128.5 (C), 129.0 (CH), 130.2 (C), 132.7 (C), 166.5 (C)

(6R, 10bR, 6S, 10bS)-6,9-Dimethyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7p)

Isolated as an oil (40% yield), HRMS Theory 215.1305, Found 215.1309. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.35$ (d, J = 7.5 Hz, 3H), 1.73–1.84 (m, 1H), 1.90–2.01 (m, 1H), 2.04–2.13 (m, 1H), 2.31 (s, 3H), 2.61 (quartet, J = 6 Hz, 1H), 3.46–3.56 (m, 2H), 3.61 (dd, J = 4, 1.9 Hz, 1H), 4.63 (dd, J = 10.9, 5.6 Hz, 1H), 6.94 (s, 1H), 7.03 (d, J = 7.9 Hz, 1H), 7.06 (d, J = 7.9 Hz, 1H), ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 19.9$ (CH₃), 21.1 (CH₃), 23.0 (CH), 32.0 (CH₂), 43.6 (CH₂), 45.1 (CH₂), 58.9 (CH₂), 125.0 (CH), 126.9 (CH), 128.7 (CH), 135.1 (C), 135.9 (C), 136.6 (C), 171.5 (C)

(6S, 10bR, 6R, 10bS)-6,9-Dimethyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7p')

Isolated as an oil (43% yield), HRMS Theory 215.1305, Found 215.1308. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.61$ (d, J = 7.0 Hz, 3H), 1.94–2.05 (m, 2H), 2.06–2.13 (m, 1H), 2.36 (s, 3H), 2.58–2.64 (m, 1H), 3.34–3.42 (m, 2H), 3.69 (dd, J = 11.6, 7.6 Hz, 1H), 4.54 (t, J = 6 Hz, 1H), 7.01 (s, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.17 (d, J = 7.8 Hz, 1H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 11.7$ (CH₃), 21.1 (CH₃), 23.6 (CH₂), 31.1 (CH₂), 39.9 (CH), 45.1 (CH₂), 58.5 (CH), 124.3 (CH), 128.3 (CH), 135.1 (C), 136.2 (C), 137.6 (C), 170.3 (C)

9-Chloro-6,6-dimethyl--2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquin-olin-5-one (7q)

Isolated as an oil (44% yield) initially of ~95% purity by HPLC, but deteriorated overnight at room temperature. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.05$ (s, 3H), 1.61 (s, 3H), 1.74-2.18 (m, 3H), 2.62 (dt, J = 6, 11Hz, 1H), 3.46–3.68 (m, 2H), 4.61 (dd, J = 5.5, 10 Hz, 1H), 7.14 (s, 1H), 7.20–7.30 (m, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 22.7$ (CH₂), 22.8 (CH₃), 27.6 (CH₃), 32.3 (CH₂), 43.0 (C), 45.7 (CH₂), 57.8 (CH), 124.5 (CH), 126.1 (CH), 128.0 (CH), 132.3 (C), 137.7 (C), 141.1 (C), 172.2 (C).

NMR of 2-Phenyl-1-(1'-phenylacetyl-2,3,4,5,4',5'-hexahydro-1'H-[2,3']bipyrrol-1-yl)ethanone (9):

 $\label{eq:NMR} NMR of \texttt{2-((6S,11bS)-5-Oxo-2,3,5,6,7,11b-hexahydro-1H-benzo[c]pyrrolo[1,2-a]azepin-6-yl)-isoindole-1,3-dione (10)} and a statement of \texttt{2-((6S,11bS)-6-yl)-1}) and a stateme$

 $2 \cdot ((6S, 11bS), (6R, 11bR) - 5 \cdot Oxo - 2, 3, 5, 6, 7, 11b \cdot hexahydro - 1H \cdot benzo[c] pyrrolo[1, 2 \cdot a] a zepin - 6 \cdot yl) \cdot isoindole - 1, 3 \cdot dione (10')$

Isolated as a solid (Et₂O/petrol trituration, 80% yield) mpt. 91-4°C. ¹H NMR (300 MHz, CDCl₃): 1.80-2.15 (m, 2H), 2.48-2.62 (m, 2H), 3.36-3.56 (m, 2H), 3.75-3.98 (m, 2H), 5.21 (t, J = 7Hz, 1H), 5.40 (dd, J = 9, 4 Hz, 1H), 7.08 (d, J = 8 Hz, 1H), 7.18 (dt, J = 8, 1.5 Hz, 1H), 7.20 – 7.35 (m, 2H), 7.65-7.90 (m, 4H), ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 23.1$, 31.9, 35.0, 47.9. 52.3, 58.6, 123.4, 125.3, 127.0, 127.7, 130.2, 133.9, 136.5, 137.4, 167.2 (phthalimide signals missing due to slow phthalimide rotation)

NMR of 2-((6s,10bR/6R10bS)-5-Oxo-1,2,3,6,10b-hexahydro-pyrrolo[2,1-a]isoquinolin-6-yl)isoindole-1,3-dione (11a)

NMR of 2-((6R,10bR/6S10bS)-5-Oxo-1,2,3,6,10b-hexahydro-pyrrolo[2,1-a]isoquinolin-6-yl)isoindole-1,3-dione (11b)

 $NMR \ of \ (6S, \ 10bS)/(6R, \ 10bR) - 6 - Phenyl-2, 3, 6, 10b-tetrahydro-1H-pyrrolo[2, 1-a] is oquinolin-5 - one \ (14a):$

NMR of (6S, 10bR)/(6R, 10bS)-6-Phenyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquinolin-5-one (14b)

NMR of 6,6-Diphenyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]iso-quinolin-5-one (15)

 ${\rm NMR} \ of \ (6R, \ 10bR)/(6S, \ 10bS) - 6-Benzyl - 2, 3, 6, 10b-tetrahydro - 1H-pyrrolo[2, 1-a] is oquinolin - 5-one \ (16a) - 1000 - 100$

NMR of (6S, 10bR)/(6R, 10bS)-6-Benzyl-2,3,6,10b-tetrahydro-1H-pyrrolo[2,1-a]isoquinolin-5-one (16b)

 $\label{eq:NMR} NMR of (6S,11bR/6R,11bS)-6-Phenyl-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one~(17a)$

50 40

30

60

NMR of (6S,11bS/6R,11bR)-6-Phenyl-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (17b)

N-(4,4-Diethoxybutyl)-3-(2-methoxy-phenyl) propionamide (18b)

Isolated as an oil (100% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.18$ (t, J = 7.1 Hz, 6H), 1.44–1.62 (m, 4H), 2.43 (t, J = 7.5 Hz, 2H), 2.92 (t, J = 7.5 Hz, 2H), 3.20 (q, J = 6.3 Hz, 2H), 3.40–3.52 (m, 2H), 3.55–3.67 (m, 2H), 3.80 (s, 3H), 4.43 (t, J = 5 Hz, 1H). 5.69 (brs, 1H), 6.79–7.90 (m, 2H), 7.10–7.22 (m, 1H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.6 (CH₂), 26.7 (CH₂), 31.0 (CH₂), 36.8 (CH₂), 39.2 (CH₂), 55.2 (CH₃), 61.4 (CH₂), 102.7 (CH), 110.2 (CH), 120.6 (CH), 127.5 (CH), 129.1 (C), 130.1 (CH), 157.3 (C), 172.6 (C).

N-(4,4-Diethoxybutyl)-3-(3-methoxy-phenyl)propionamide (18c)

Isolated as an oil (100% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ (t, J = 7 Hz, 6H), 1.42–1.60 (m, 4H), 2.42 (t, J = 8 Hz, 2H), 2.91 (t, J = 7 Hz, 2H), 3.21 (q, J = 7 Hz, 2H), 3.38–3.50 (m, 2H), 3.55–3.66 (m, 2H), 3.76 (s, 3H), 4.43 (t, J = 5 Hz, 1H), 5.68 (brs, 1H), 6.69–6.80 (m, 3H), 7.17 (t, J = 8 Hz, 1H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 31.0 (CH₂), 31.8 (CH₂), 38.5 (CH₂), 39.2 (CH₂), 55.1 (CH₃), 61.4 (CH₂), 102.6 (CH), 111.6 (CH), 114.0 (CH), 120.7 (CH), 129.5 (CH), 142.6 (C), 159.7 (C), 172.0 (C).

N-(4,4-Diethoxybutyl)-3-(4-methoxy-phenyl)propionamide (18d)

Isolated as an oil (98%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ (t, J = 7 Hz, 6H), 1.42–1.60 (m, 4H), 2.39 (t, J = 8 Hz, 2H), 2.87 (t, J = 7 Hz, 2H), 3.20 (q, J = 7 Hz, 2H), 3.38–3.50 (m, 2H), 3.55–3.66 (m, 2H), 3.75 (s, 3H), 4.42 (t, J = 5 Hz, 1H), 5.67 (brs, 1H), 6.79 (d, J = 9 Hz, 2H), 7.08 (d, J = 9 Hz, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.6 (CH₂), 30.9 (CH₂), 31.0 (CH₂), 38.85 (CH₂), 39.2 (CH₂), 55.2 (CH₃), 61.4 (CH₂), 102.7 (CH), 113.9 (CH), 129.3 (CH), 133.0 (C), 158.0 (C), 172.1 (C); v_{max}/cm^{-1} 3295, 2972, 1739, 1640, 1557, 1512, 1246, 1134, 1102, 1074, 1033, 1007, 823, 806.

$N-(4,4-Diethoxy butyl)-3-(3,4-di-methoxy-phenyl) propionamide\ (18e)$

Isolated as an oil (100% yield); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.14$ (t, J = 7 Hz, 6H), 1.42–1.60 (m, 4H), 2.38 (t, J = 8 Hz, 2H), 2.85 (t, J = 7 Hz, 2H), 3.20 (q, J = 7 Hz, 2H), 3.36–3.48 (m, 2H), 3.52–3.64 (m, 2H), 3.79 (s, 3H), 3.80 (s, 3H), 4.40 (t, J = 5 Hz, 1H), 5.79 (brs, 1H), 6.65-6.77 (m, 3H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.9 (CH₂), 31.00 (CH₂), 31.4 (CH₂), 38.8 (CH₂), 39.2 (CH₂), 55.8 (CH₃), 55.9 (CH₃), 61.4 (CH₂), 102.6 (CH), 111.3 (CH), 111.7 (CH),120.1 (CH), 133.6 (C), 147.4 (C), 148.9 (C), 172.2 (C).

N-(4,4-Diethoxybutyl)-3-(3,4,5-tri-methoxy-phenyl)propionamide (18f).

Isolated as an oil (95% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.16$ (t, J = 7 Hz, 6H), 1.45–1.61 (m, 4H), 2.40 (t, J = 8.1 Hz, 2H), 2.86 (t, J = 8 Hz, 2H), 3.20 (q, J = 6 Hz, 2H), 3.39–3.52 (m, 2H), 3.55–3.68 (m, 2H), 3.77 (s, 3H), 3.79 (s, 6H), 4.42 (t, J = 5 Hz, 1H), 5.72 (brs, 1H), 6.41 (s, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 31.0 (CH₂), 32.2 (CH₂), 38.7 (CH₂), 39.3 (CH₂), 56.0 (CH₃), 60.8 (CH₃), 61.5 (CH₂), 102.7 (CH), 105.2 (CH), 136.8 (C), 145.8 (C), 153.2 (C), 171.9 (C); ψ_{max}/cm^{-1} 2973, 2933, 1644, 1589, 1546, 1508, 1421, 1237, 1123, 1058, 1006, 824, 776.

N-(4,4-Diethoxybutyl)-3-(4-methyl-phenyl)propionamide (18g)

Isolated as an oil (98% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.18$ (t, J = 7 Hz, 6H), 1.45–1.61 (m, 4H), 2.29 (s, 3H), 2.41 (t, J = 8 Hz, 2H), 2.90 (t, J = 8 Hz, 2H), 3.21 (q, J = 6 Hz, 2H), 3.39–3.52 (m, 2H), 3.55–3.68 (m, 2H), 4.33 (t, J = 5 Hz, 1H), 5.69 (brs, 1H), 7.07 (s, 4H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 21.0 (CH₃), 24.6 (CH₂), 31.0 (CH₂), 31.4 (CH₂), 38.7 (CH₂), 39.2 (CH₂), 61.4 (CH₂), 102.7 (CH), 128.2 (CH), 129.2 (CH), 135.6 (C), 137.9 (C), 172.1 (C).

N-(4,4-Diethoxybutyl)-3-(4-fluoro-phenyl)propionamide (18h).

Isolated as an oil (95% yield) ¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ (t, J = 7Hz, 6H), 1.45–1.62 (m, 4H), 2.39 (t, J = 8Hz, 2H), 2.90 (t, J = 8Hz, 2H), 3.21 (q, J = 6Hz, 2H), 3.38–3.51 (m, 2H), 3.54–3.67 (m, 2H), 4.42 (t, J = 5Hz, 1H), 5.72 (brs, 1H), 6.92 (t, J = 8.5 Hz, 2H), 7.12 (dd, J = 8.5, 5.5 Hz, 1H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.9 (CH₂), 31.0 (CH₂), 38.6 (CH₂), 39.2 (CH₂), 61.5 (CH₂), 102.6 (CH), 115.2 (CH, $J_{C-F} = 20$ Hz), 129.7 (CH, $J_{C-F} = 8$ Hz), 136.6 (C, $J_{C-F} = 3$ Hz), 161.4 (C, $J_{C-F} = 240$ Hz), 171.8 (C)

N-(4,4-Diethoxybutyl)-3-(3-chloro-phenyl)propionamide (18k)

Isolated as an oil (100% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.18$ (t, J = 7Hz, 6H), 1.45–1.62 (m, 4H), 2.41 (t, J = 8Hz, 2H), 2.92 (t, J = 8Hz, 2H), 3.21 (q, J = 6Hz, 2H), 3.38–3.51 (m, 2H), 3.54–3.67 (m, 2H), 4.43 (t, J = 5Hz, 1H), 5.69 (brs, 1H), 7.06 (d, J = 6.7 Hz, 1H), 7.10–7.22 (m, 3H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 30.9 (CH₂), 31.2 (CH₂), 38.1 (CH₂), 39.3 (CH₂), 61.5 (CH₂), 102.7 (CH), 126.4 (CH), 126.6 (CH), 128.5 (CH), 129.7 (CH), 134.2 (C), 143.0 (C), 171.5 (C); w_{max}/cm^{-1} 2974, 2930, 2876, 1642, 1550, 1125, 1058, 997, 781, 680.

N-(4,4-Diethoxybutyl)-3-(4-chloro-phenyl)propionamide (18l)

Isolated as an oil (86%). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.19$ (t, J = 7Hz, 6H), 1.45-1.63 (m, 3H), 2.40 (t, J = 7.5 Hz, 2H), 2.91 (t, J = 7.5 Hz, 2H), 3.21 (q, J = 6 Hz, 2H), 3.40 – 3.52 (m, 2H), 3.56 – 3.70 (m, 2H), 4.43 (t, J = 5 Hz, 1H), 5.62 (brs, 1H), 7.14 (d, J = 7 Hz, 2H), 7.23 (d, J = 7Hz, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 31.0 (CH₂), 31.0 (CH₂), 38.3 (CH₂), 39.2 (CH₂), 61.5 (CH₂), 102.6 (CH), 128.6 (CH), 129.7 (CH), 132.0 (C), 139.4 (C), 171.6 (C).

N-(4,4-Diethoxybutyl)-3-(3-bromo-phenyl)propionamide (18i)

Isolated as an oil (98% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.15$ (t, J = 7 Hz, 6H), 1.42–1.63 (m, 4H), 2.38 (t, J = 8Hz, 2H), 2.88 (t, J = 7.5Hz, 2H), 3.18 (q, J = 6 Hz, 2H), 3.36-3.50 (m 2H), 3.53-3.66 (m, 2H), 4.40 (t, J = 5 Hz, 1H), 5.90 (brs, 1H), 7.03-7.12 (m, 2H), 7.20–7.32 (m, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.3$ (CH₃), 24.5 (CH₂), 31.0 (CH₂), 31.3 (CH₂), 38.1 (CH₂), 39.2 (CH₂), 61.4 (CH₂), 102.6 (CH), 122.4 (C), 127.1 (CH), 129.3 (CH), 130.1 (CH), 131.4 (CH), 143.4 (C), 171.6 (C).

N-(4,4-Diethoxybutyl)-3-(4-bromo-phenyl)propionamide (18j)

Isolated as an oil which solidified on standing (87% yield), mpt 55-8°C. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ (t, J = 7Hz, 6H), 1.45–1.62 (m, 4H), 2.39 (t, J = 8Hz, 2H), 2.88 (t, J = 8Hz, 2H), 3.20 (q, J = 6Hz, 2H), 3.38–3.51 (m, 2H), 3.54–3.67 (m, 2H), 4.43 (t, J = 5Hz, 1H), 5.67 (brs, 1H), 7.08 (d, J = 7 Hz, 2H), 7.36 (d, J = 7 Hz, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 15.4$ (CH₃), 24.5 (CH₂), 31.0 (CH₂), 31.1 (CH₂), 38.2 (CH₂), 39.2 (CH₂), 61.5 (CH₂), 102.6 (CH), 120.0 (C), 130.2 (CH), 131.5 (CH), 140.0 (C), 171.6 (C); v_{max}/cm^{-1} 3306, 2971, 1638, 1543, 1489, 1147, 1132, 1080, 1070, 1038, 1012, 995, 811, 716, 691.

NMR of 1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19a)

8-Methoxy-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19b)

Isolated as an oil (13% yield), HRMS Theory 231.1254, Found 231.1254. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.76-2.02$ (m, 2H), 2.22–2.55 (m, 3H), 2.78–2.95 (m, 2H), 3.15–3.29 (m, 1H), 3.36–3.50 (m, 1H), 3.70–3.81 (m, 4H including 3.79, s, 3H), 5.06 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 8Hz, 1H), 6.87 (d, J = 8 Hz, 1H), 7.16 (t, J = 8 Hz, 1H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 20.5$ (CH₂), 23.0 (CH₂), 31.1 (CH₂), 34.9 (CH₂), 47.7 (CH₂), 55.7 (CH₃), 57.1 (CH), 110.0 (CH), 116.7 (CH), 126.8 (CH), 128.8 (C), 139.8 (C), 156.8 (C), 171.3 (C); r_{max}/cm^{-1} 2972, 1611, 1585, 1474, 1400, 1267, 1089, 769, 742, 704.

9-Methoxy-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19c)

Isolated as the more polar isomer from the SiO2 column, eluting with Et₂O – 4% MeOH, as a white solid (68% yield), m. pt. 116-8°C (Et₂O/petrol). HRMS Theory 231.1254, Found 231.1257. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.73$ -2.01 (m, 2H), 2.18–2.51 (m, 3H), 2.62–2.75 (m, 1H), 2.80-2.91 (m, 1H), 3.05–3.20 (m, 1H), 3.32-3.45 (m, 1H), 3.72 (s, 3H), 4.91 (t, *J* = 7 Hz, 1H), 7.64-7.72 (m, 2H including 6.69, s), 7.13 (d, *J* = 9Hz, 1H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 22.8$ (CH₂), 29.3 (CH), 30.9 (CH₂), 35.9 (CH₂), 48.00 (CH₂), 55.2 (CH₃), 56.6 (CH), 111.2 (CH), 114.5 (CH), 125.8 (CH), 130.5 (C), 142.3 (C), 159.2 (C), 170.5 (C).

11-Methoxy-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19c')

Isolated as the less polar isomer from the SiO₂ column, eluting with Et₂O – 2% MeOH, as an oil (68% yield), HRMS Theory 231.1254, Found 231.1259. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.78-2.11$ (m, 2H), 2.30–2.45 (m, 1H), 2.49–2.66 (m, 2H), 2.70–2.91 (m, 2H), 3.04-3.19 (m, 1H), 3.41-3.55 (m, 1H), 3.61–3.74 (m, 1H), 3.80 (s, 3H), 5.15 (t, J = 7 Hz, 1H), 6.79 (d, J = 8 Hz, 2H), 7.16 (t, J = 8 Hz, 1H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 22.4$ (CH₂), 30.6 (CH₂), 32.3 (CH₂), 36.5 (CH₂), 47.1 (CH₂), 55.3 (CH₃), 56.7 (CH), 110.0 (CH), 121.8 (CH), 126.8 (C), 128.3 (CH), 142.6 (C), 156.7 (C), 171.1 (C); \mathbb{F}_{max}/cm^{-1} 1617, 1609, 1580, 1477, 1433, 1399, 1265, 1072, 827, 790, 774, 734.

10-Methoxy-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19d)

Isolated as a white solid, mp. 78-80°C; HRMS Theory 231.1254, Found 231.1257. ¹H NMR (500 MHz, CDCl₃): δ = 1.85-1.98 (m, 1H), 2.00 – 2.05 (m, 1H)), 2.35 (tt, *J* = 6.1, 12.3 Hz, 1H), 2.44–2.55 (m, 2H), 2.77 (dt, *J* = 14.9, 4.7 Hz, 1H), 2.92 (ddd, *J* = 4.2, 5.5, 17.1 Hz, 1H), 3.16 (ddd, *J* = 3.9, 12.5, 15.7 Hz, 1H), 3.51 (dt, *J* = 7.5, 14.9 Hz, 1H), 3.78-3.84 (m, 4H including 3.80, s, 3H), 5.04 (t, *J* = 7.1 Hz, 1H), 6.78 (dd, *J* = 2.6, 8.2 Hz, 1H), 6.84 (d, *J* = 2.6 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 1H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) δ = 22.9 (CH₂), 28.3 (CH₂), 30.7 (CH₂), 36.3 (CH₂), 48.1 (CH₂), 55.5 (CH₃), 56.9 (CH), 111.7 (CH), 112.1 (CH), 129.9 (CH), 132.9 (C), 139.6 (C), 158.3 (C), 170.9 (C); v_{max}/cm^{-1} 2971, 1610, 1450, 1438, 1404, 1351, 1305, 1237, 1184, 1027, 835, 814, 748, 693.

9,10-Dimethoxy-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo-[1,2-a]azepin-5-one (19e)

Isolated as a white solid (86% yield), m. pt. 98-102°C (Et₂O/petrol) HRMS Theory 261.1359, Found 261.1357. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.78-2.05$ (m, 2H), 2.26-2.56 (m, 3H), 2.66-2.79 (m, 1H), 2.84-2.97 (m, 1H), 3.07–3.23 (m, 1H), 3.39–3.52 (m 1H), 3.75 – 3.88 (m, 7H including 3.86, s, 6H), 5.00 (t, J = 7Hz, 1H), 6.71 (s, 1H), 6.79 (s, 1H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 22.9$ (CH₂), 28.7 (CH₂), 31.1 (CH₂), 35.9 (CH₂), 47.9 (CH₂), 56.0 (CH₃), 56.3 (CH₃), 56.9 (CH), 109.1 (CH), 112.4 (CH), 130.3 (C), 133.3 (C), 147.1 (C), 148.6 (C), 171.0 (C); v_{max}/cm^{-1} 2940, 1603, 1519, 1461, 1440, 1406, 1279, 1210, 1159, 1113, 1091, 1002, 861, 765.

9,10,11-Trimethoxy-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19f)

Isolated as a solid (90% yield), mpt 90-92°C (Et₂O/petrol), HRMS Theoretical Mass: 291.1465 Measured Mass: 291.1473. ¹H NMR (500 MHz, CDCl₃): δ = 1.80–1.89 (m, 1H), 1.97–2.10 (m, 1H), 2.33–2.42 (m, 1H), 2.49–2.57 (m, 1H), 2.62–2.70 (m, 1H), 2.70-2.83 (m, 2H), 3.12 (m, 1H), 3.45 (brs, 1H), 3.55–3.64 (m, 2H), 3.81 (s, 3H), 3.83 (s, 3H), 3.86 (s, 3H), 5.07 (t, *J* = 6.7 Hz, 1H), 6.50 (s, 1H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) δ = 22.8 (CH₂), 30.7 (CH₂), 32.0 (CH₂), 36.4 (CH₂), 47.4 (CH₂), 56.0 (CH₃), 56.8 (CH), 60.7 (CH₃), 61.1 (CH₃), 108.3 (CH), 123.8 (C), 137.1 (C), 141.1 (C), 151.9 (C), 152.6 (C), 170.9 (C); \mathbb{F}_{max}/cm^{-1} 2972, 2946, 2869, 1612, 1598, 1433, 1400, 1351, 1313, 1302, 1241, 1120, 1080, 1025, 996, 917, 853, 824, 778, 713.

10-Methyl-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19g)

Isolated as an oil which solidifed on standing (75% yield), m. pt. 55-58°C. HRMS Theory 215.1305, Found 215.1306. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.83-1.93$ (m, 1H), 1.95–2.03 (m, 1H), 2.22–2.39 (m, 4H including 2.33, s, 3H), 2.45–2.55 (m, 2H), 2.76 (dt, J = 15, 5.0Hz, 1H), 2.91 (dt, J = 17.1, 5.0 Hz, 1H), 3.17 (ddd, J = 4.0, 8.1, 11.8 Hz, 1H), 3.48 (dt, J = 11.8, 7.6 Hz, 1H), 3.79 (ddd, J = 4.5, 7.4, 11.9 Hz, 1H), 5.02 (t, J = 7.2 Hz, 1H), 7.03–7.10 (m, 3H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 21.4$ (CH₃), 22.9 (CH₂), 28.7 (CH₂), 30.7 (CH₂), 36.2 (CH₂), 48.1 (CH₂), 57.0 (CH), 125.3 (CH), 128.7 (CH), 128.9 (CH), 136.1 (C), 137.8 (C), 138.1 (C), 170.8 (C); Ψ_{max} cm⁻¹ 1572, 1454, 1400, 831, 816, 751.

10-Fluoro-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19h)

Isolated as an oil (77% yield), HRMS Theory 219.1054, Found 219.1057. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.81-2.02$ (m, 2H), 2.25–2.50 (m, 3H), 2.70–2.95 (m, 2H), 3.15 (ddd J = 4.1, 8.0, 12.0Hz, 1H), 3.40–3.51 (m, 1H), 3.70–3.80 (m, 1H), 4.99 (t, J = 7.1 Hz, 1H), 6.90 (dd, J = 8.3, 2.7 Hz, 1H), 6.95 (dd, J = 10.1, 2.1 Hz, 1H), 7.12 (dd, J = 8.3, 6.0 Hz, 1H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 22.8$ (CH₂), 28.4 (CH₂), 30.8 (CH₂), 35.9 (CH₂), 48.1 (CH₂), 56.6 (CH), 112.0 (d, CH, J_{C-F} = 22.8Hz), 114.6 (d, CH, J_{C-F} = 20.8Hz), 130.4 (d, CH, J_{C-F} = 8.1 Hz), 136.4 (d, C, J = 3.1 Hz), 140.4 (d, C, J_{C-F} = 6.5 Hz), 161.5 (d, C, J_{C-F} = 245 Hz), 170.49 (C)

9-Bromo-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19i)

Isolated as an oil (75% yield) which solidified on standing, mpt 107-10°C. HRMS Theory: 279.0253, Found 279.0254. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.68-2.03$ (m, 2H), 2.23-2.56 (m, 4H), 2.65-2.79 (m, 1H), 2.80-2.96 (m, 1H), 3.06-3.22 (m, 1H), 3.36-3.49 (m, 1H), 3.66-3.79 (m, 1H), 4.94 (t, *J* = 7Hz, 1H), 7.09 (d, *J* = 9 Hz, 1H), 7.25-7.35 (m, 2H); ¹³C NMR and DEPT (75 MHz, CDCl₃) $\delta = 22.7$ (CH₂), 28.8 (CH₂), 29.8 (CH₂), 30.7 (CH₂), 35.6 (CH₂), 48.0 (CH₂), 56.5 (CH), 121.9 (C), 126.3 (CH), 129.5 (CH), 131.8 (CH), 137.3 (C), 170.3 (C); v_{max}/cm^{-1} 2947, 2871, 1611, 1601, 1437, 1400, 1310, 1139, 852, 828, 811, 761, 702, 655.

10-Bromo-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19j)

Isolated as a white crystalline solid (78% yield), m. pt 86-9°C (Et₂O/petrol), HRMS Theory: 279.0253, Found 279.0259. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.88-2.08$ (m, 2H), 2.35–2.60 (m, 3H), 2.78–2.87 (m, 1H), 2.90–3.00 (m, 1H), 3.15 (dt, J = 12.3, 4.0 Hz, 1H), 3.46–3.55 (m, 1H), 3.76–3.85 (m, 1H), 5.08 (t, J = 7.1 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.32–7.41 (m, 2H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 22.8$ (CH₂), 28.7 (CH₂), 30.8 (CH₂), 35.7 (CH₂), 48.1 (CH₂), 56.6 (CH), 120.3 (C), 127.9 (CH), 130.8 (CH), 131.1 (CH), 139.7 (C), 140.5 (C), 170.4 (C); v_{max}/cm^{-1} 2936, 2862, 1604, 1448, 1437, 1403, 831, 814, 738.

9-Chloro-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19k)

19k, the more polar isomer from the column (SiO₂, Et₂O + 3% MeOH), isolated as a solid (78% yield), mpt 83-6°C (Et₂O/petrol) HRMS Theory: 235.0758, Found 235.0765. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.81-2.02$ (m, 2H), 2.30–2.55 (m, 4H), 2.77 (dt, J = 15, 5.0Hz, 1H), 2.94 (dt, J = 17.1, 5.0 Hz, 1H), 3.19 (m, 1H), 3.40–3.51 (m, 1H), 3.76–3.82 (m, 1H), 5.00 (t, J = 7.1 Hz, 1H), 7.19 (s, 3H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 23.0$ (CH₂), 29.1 (CH₂), 31.0 (CH₂), 35.7 (CH₂), 48.2 (CH₂), 56.6 (CH), 126.2 (CH), 126.7 (CH), 129.1 (CH), 133.9 (C), 136.9 (C), 142.7 (C), 170.5 (C); v_{max}/cm^{-1} 2949, 2874, 1598, 1571, 1438, 1398, 1303, 860, 833, 664.

11-Chloro-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19k')

19k', the less polar siomer from the column (SiO₂, Et₂O + 2% MeOH), isolated as an oil (9% yield), HRMS Theory: 235.0758, Found 235.0757. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.85-2.07$ (m, 3H), 2.50–2.75 (m, 3H), 2.86–2.98 (m, 1H), 3.04–3.12 (m, 1H), 3.45–3.55 (m, 1H), 3.78–3.90 (m, 1H), 5.08 (t, *J* = 7.1 Hz, 1H), 7.09 (d, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 21.3$ (CH₂), 31.7 (CH₂), 35.5 (CH₂), 37.2 (CH₂), 46.9 (CH₂), 60.8 (CH), 128.1 (CH), 128.7 (CH), 129.4 (CH), 133.1 (C), 134.7 (C), 142.8 (C), 172.7 (C); v_{max}/cm^{-1} 2954, 2879, 1619, 1447, 1427, 1401, 785, 730.

10-Chloro-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (19l)

Isolated as a white solid (90% yield) mpt 53-6°C. HRMS Theory: 235.0758, Found 235.0758. ¹H NMR (500 MHz, CDCl₃): $\delta = 1.80-2.07$ (m, 2H), 2.28–2.60 (m, 3H), 2.72–2.98 (m, 2H,), 3.10–3.25 (m, 1H), 3.40–3.55 (m, 1H), 3.72–3.86 (m, 1H), 5.02 (t, J = 6.9 Hz, 1H), 7.13 (d, J = 7.9 Hz, 1H), 7.15–7.32 (m, 2H), ¹³C NMR and DEPT (125.8 MHz, CDCl₃) $\delta = 22.8$ (CH₂), 38.6 (CH₂), 30.7 (CH₂), 35.7 (CH₂), 48.1 (CH₂), 56.7 (CH), 125.0 (CH), 128.1 (CH), 130.4 (CH), 132.3 (C), 139.1 (C), 140.1 (C), 170.5 (C); v_{max}/cm^{-1} 3304, 2945, 1641, 1585, 1541, 1490, 1449, 1405, 839.

NMR of (S)-N-(4,4-Diethoxybutyl)-2-[4-(1,3-dioxo-1,3-dihydroisoindol-2-yl)-3-phenylpropionamide (20)

(R,S)-N-(4,4-Diethoxybutyl)-2-[4-(1,3-dioxo-1,3-dihydroisoindol-2-yl)-3-phenylpropionamide (20')

Isolated as a solid (Et₂O trituration, 100% yield) m.pt. 110-2°C. ¹H NMR (500 MHz, CDCl₃): δ = 1.11 (t, *J* = 7 Hz, 3H), 1.13 (t, *J* = 7 Hz, 3H), 1.51-1.67 (m, 4H), 3.18-3.62 (m, 8H), 4.44 (t, *J* = 5 Hz, 1H), 5.07 (dd, *J* = 6, 10Hz, 1H), 6.40 (brs, 1H), 7.06-7.20 (m, 5H), 7.63-7.71 (m, 2H), 7.71-7.79 (m, 2H); ¹³C NMR and DEPT (125.8 MHz, CDCl₃) δ = 15.3 (CH₃), 24.4 (CH₂), 30.8 (CH₂), 34.8 (CH₂), 39.6 (CH₂), 56.0 (CH), 60.9 (CH₂), 61.4 (CH₂), 102.4 (CH), 123.5 (CH), 127.0 (CH), 128.7 (CH), 128.9 (CH), 131.5 (C), 134.3 (C), 136.9 (C), 168.0 (C), 168.4 (C). ψ_{max}/cm^{-1} 3303, 2973, 2929, 1774, 1711, 1642, 1545, 1380, 1104, 1065, 873, 720, 706.

NMR of N-(4,4-Diethoxybutyl)-3,3-diphenylpropionamide (21)

NMR of 7-Phenyl-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (22)

NMR of N-(4,4-Diethoxybutyl)-3,3,3-triphenylpropionamide (23)

NMR of 7,7-Diphenyl-1,2,3,6,7,11b-hexahydro-benzo[c]pyrrolo[1,2-a]azepin-5-one (24)

 ${\rm NMR} ~{\rm of}~ N\mbox{-}(4,4\mbox{-}Diethoxybutyl)\mbox{-}2\mbox{-}(9\mbox{H-fluoren-}9\mbox{-}yl)\mbox{-}acetamide~(25)$

NMR of 1,3,4,5,6,14b-Hexahydro-fluoreno[1,9-cd]-pyrrolo[3,4-a]azepine-2-one (26).

NMR of N-(5,5-Diethoxypentyl)-2-phenylacetamide (29)

NMR of 1,2,3,4,7,11b-hexahydro-benzo[a]quinolizin-6-one (31)

NMR of 9,10-Dimethoxy-1,2,3,4,7,11b-hexahydro-benzo[a]-quinolizin-6-one (32)

NMR of N-(5,5-diethoxypentyl)-3-phenylpropionamide (33)

NMR of 1,3,4,7,8,12b-Hexahydro-2H-pyrido[2,1-a][2]benzazepin-6-one (34)

A molecule from the crystal structure of [9] showing the numbering scheme employed. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50% probability level. Hydrogen atoms are displayed with an arbitrarily small radius.

Table 1. Sample and crystal data for [9].

Methanol and water
Slow evaporation
Colourless block
$0.24 \ge 0.12 \ge 0.06 \text{ mm}$ $C_{24}H_{26}N_2O_2$
$C_{24}H_{26}N_2O_2$
374.47
150(2) K
1.54178 Å
Monoclinic P2 ₁
$ \begin{aligned} &a = 5.12520(10) \text{ Å} & \alpha = 90^{\circ} \\ &b = 19.6810(2) \text{ Å} & \beta = 96.1731(6)^{\circ} \\ &c = 9.80400(10) \text{ Å} & \gamma = 90^{\circ} \end{aligned} $
983.19(2) Å ³
2
1.265 Mg/m ³
0.636 mm ⁻¹
400

Table 2. Data collection and structure refinement for [9].

Diffractometer	Bruker AXS SMART 6000
Radiation source	Normal focus sealed tube, CuK
Data collection method	ω scans
Theta range for data collection	4.49 to 73.28°
Index ranges	$-5 \le h \le 5, -24 \le k \le 23, -11 \le l \le 12$
Reflections collected	9563
Independent reflections	3747 [R(int) = 0.0122]
Coverage of independent reflections	95.7 %
Absorption correction	Integration
Max. and min. transmission	0.9629 and 0.8922
Structure solution technique	Direct methods
Structure solution program	SHELXTL V6.10 UNIX (Bruker, 2001)
Refinement technique	Full-matrix least-squares on F ²
Refinement program	SHELXTL V6.10 UNIX (Bruker, 2001)
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_0}^2 - \mathrm{F_c}^2)^2$

3747 / 1 / 254
1.060
0.000
R1 = 0.0304, $wR2 = 0.0813$
R1 = 0.0309, wR2 = 0.0818
$w = 1/[\sigma^2(F_0^2) + (0.0554P)^2 + 0.1087P]$
where P = $[MAX(F_0^2, 0) + 2F_c^2]/3$
-0.05(17)
0.172 and -0.161 eÅ ⁻³

Table 3. Atomic coordinates and equivalent isotropic

atomic displacement parameters (\mathring{A}^2) for [9].

 U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U _{eq}
N1	0.4835(2)	0.42895(6)	0.37514(10)	0.0245(2)
C2	0.3230(3)	0.48278(7)	0.30337(13)	0.0292(3)
C3	0.1580(3)	0.51117(7)	0.41237(13)	0.0253(3)
C4	0.2588(2)	0.47314(6)	0.54131(13)	0.0222(2)
C5	0.4359(3)	0.42735(6)	0.51465(12)	0.0228(3)
C6	0.6541(3)	0.39167(7)	0.30965(13)	0.0245(3)
07	0.6814(2)	0.40284(5)	0.18891(10)	0.0341(2)
C8	0.8031(3)	0.33563(7)	0.39100(13)	0.0256(3)
C9	0.6325(3)	0.27430(6)	0.41320(13)	0.0240(3)
C10	0.4393(3)	0.25253(7)	0.31179(14)	0.0283(3)
C11	0.2862(3)	0.19627(8)	0.33265(17)	0.0345(3)
C12	0.3256(3)	0.16017(7)	0.45500(17)	0.0349(3)
C13	0.5186(3)	0.18118(7)	0.55555(15)	0.0329(3)
C14	0.6706(3)	0.23815(7)	0.53549(15)	0.0295(3)
C15	0.1510(2)	0.48733(6)	0.67513(13)	0.0227(2)
N16	0.2484(2)	0.43972(6)	0.78384(10)	0.0236(2)
C17	0.4603(3)	0.46922(7)	0.87958(14)	0.0307(3)
C18	0.5033(3)	0.53929(7)	0.81886(14)	0.0281(3)
C19	0.2396(3)	0.55641(7)	0.73837(14)	0.0268(3)
C20	0.1184(3)	0.38185(7)	0.80454(13)	0.0250(3)
O21	-0.0754(2)	0.36409(5)	0.72847(10)	0.0327(2)
C22	0.2249(4)	0.34034(8)	0.92952(15)	0.0385(4)
C23	0.1019(3)	0.27109(7)	0.93135(13)	0.0294(3)
C24	0.1856(3)	0.21973(8)	0.84999(15)	0.0365(3)
C25	0.0737(4)	0.15538(8)	0.85046(16)	0.0403(4)
C26	-0.1222(3)	0.14207(8)	0.93313(16)	0.0382(3)
C27	-0.2079(3)	0.19327(9)	1.01397(15)	0.0371(3)
C28	-0.0962(3)	0.25734(8)	1.01348(14)	0.0322(3)

Table 4. Selected bond lengths (Å) for [9].

N1-C6	1.3549(17)	N1-C5	1.4153(16)
N1-C2	1.4728(17)	C2-C3	1.5376(19)
C3-C4	1.5115(17)	C4-C5	1.3248(18)
C4-C15	1.5035(17)	C6-O7	1.2266(17)
C6-C8	1.5180(19)	C8-C9	1.5198(19)
C9-C14	1.390(2)	C9-C10	1.3931(19)
C10-C11	1.385(2)	C11-C12	1.390(2)
C12-C13	1.383(2)	C13-C14	1.391(2)
C15-N16	1.4660(16)	C15-C19	1.5422(18)
N16-C20	1.3460(18)	N16-C17	1.4759(16)
C17-C18	1.527(2)	C18-C19	1.5278(19)
C20-O21	1.2268(16)	C20-C22	1.5242(18)
C22-C23	1.502(2)	C23-C24	1.384(2)
C23-C28	1.389(2)	C24-C25	1.390(2)
C25-C26	1.381(3)	C26-C27	1.383(2)
C27-C28	1.385(2)		

Table 5. Selected bond angles (°) for [9].

C6-N1-C5	129.28(11)	C6-N1-C2	121.24(11)	
C5-N1-C2	109.41(11)	N1-C2-C3	104.48(10)	
C4-C3-C2	103.72(11)	C5-C4-C15	128.49(11)	

110.59(11)	C15-C4-C3	120.87(11)
111.62(11)	O7-C6-N1	120.45(13)
122.28(12)	N1-C6-C8	117.27(11)
112.81(11)	C14-C9-C10	118.77(13)
120.04(12)	C10-C9-C8	121.18(12)
120.73(13)	C10-C11-C12	120.26(14)
119.27(14)	C12-C13-C14	120.58(13)
120.38(13)	N16-C15-C4	112.78(10)
102.05(10)	C4-C15-C19	113.25(11)
121.00(11)	C20-N16-C17	125.41(11)
112.38(10)	N16-C17-C18	103.57(11)
104.10(11)	C18-C19-C15	102.66(11)
122.07(12)	O21-C20-C22	122.19(12)
115.74(12)	C23-C22-C20	112.41(12)
118.87(14)	C24-C23-C22	119.96(15)
121.17(14)	C23-C24-C25	120.67(15)
120.04(15)	C25-C26-C27	119.59(15)
120.31(15)	C27-C28-C23	120.51(13)
	110.59(11) 11.62(11) 22.28(12) 112.81(11) 20.04(12) 20.73(13) 19.27(14) 20.38(13) 02.05(10) 21.00(11) 12.38(10) 04.10(11) 22.07(12) 15.74(12) 18.87(14) 21.17(14) 20.04(15) 20.31(15)	110.59(11) $C15-C4-C3$ $11.62(11)$ $O7-C6-N1$ $22.28(12)$ $N1-C6-C8$ $112.81(11)$ $C14-C9-C10$ $20.04(12)$ $C10-C9-C8$ $20.73(13)$ $C10-C11-C12$ $19.27(14)$ $C12-C13-C14$ $20.38(13)$ $N16-C15-C4$ $02.05(10)$ $C4-C15-C19$ $21.00(11)$ $C20-N16-C17$ $12.38(10)$ $N16-C17-C18$ $04.10(11)$ $C18-C19-C15$ $22.07(12)$ $021-C20-C22$ $15.74(12)$ $C23-C22-C20$ $18.87(14)$ $C24-C23-C22$ $21.17(14)$ $C23-C24-C25$ $20.04(15)$ $C27-C28-C23$

```
Table 6. Selected torsion angles (°) for [9].
```

C6-N1-C2-C3	179.37(11)	C5-N1-C2-C3	-3.48(14)
N1-C2-C3-C4	4.19(13)	C2-C3-C4-C5	-3.75(14)
C2-C3-C4-C15	178.58(11)	C15-C4-C5-N1	179.15(12)
C3-C4-C5-N1	1.71(15)	C6-N1-C5-C4	178.08(12)
C2-N1-C5-C4	1.23(15)	C5-N1-C6-O7	-175.38(13)
C2-N1-C6-O7	1.15(19)	C5-N1-C6-C8	5.69(19)
C2-N1-C6-C8	-177.78(12)	07-C6-C8-C9	-104.91(15)
N1-C6-C8-C9	73.99(14)	C6-C8-C9-C14	-144.20(12)
C6-C8-C9-C10	36.86(17)	C14-C9-C10-C11	0.6(2)
C8-C9-C10-C11	179.52(13)	C9-C10-C11-C12	-0.8(2)
C10-C11-C12-C13	0.2(2)	C11-C12-C13-C14	0.6(2)
C10-C9-C14-C13	0.20(19)	C8-C9-C14-C13	-178.77(12)
C12-C13-C14-C9	-0.8(2)	C5-C4-C15-N16	-4.49(19)
C3-C4-C15-N16	172.72(11)	C5-C4-C15-C19	110.77(15)
C3-C4-C15-C19	-72.02(14)	C4-C15-N16-C20	-90.68(13)
C19-C15-N16-C20	147.50(11)	C4-C15-N16-C17	101.25(12)
C19-C15-N16-C17	-20.57(13)	C20-N16-C17-C18	-170.50(12)
C15-N16-C17-C18	-3.06(14)	N16-C17-C18-C19	25.85(13)
C17-C18-C19-C15	-38.44(13)	N16-C15-C19-C18	35.63(12)
C4-C15-C19-C18	-85.87(12)	C15-N16-C20-O21	5.10(19)
C17-N16-C20-O21	171.53(13)	C15-N16-C20-C22	-174.10(12)
C17-N16-C20-C22	-7.66(19)	O21-C20-C22-C23	11.3(2)
N16-C20-C22-C23	-169.55(13)	C20-C22-C23-C24	78.78(19)
C20-C22-C23-C28	-101.09(16)	C28-C23-C24-C25	-0.1(2)
C22-C23-C24-C25	-179.97(14)	C23-C24-C25-C26	-0.3(2)
C24-C25-C26-C27	0.7(2)	C25-C26-C27-C28	-0.8(2)
C26-C27-C28-C23	0.4(2)	C24-C23-C28-C27	0.1(2)
C22-C23-C28-C27	179.93(13)		

Table 7. Anisotropic atomic displacement parameters (Å²) for [9].The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2hka^* b^* U^{12}].$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N1	0.0288(6)	0.0244(5)	0.0200(5)	0.0008(4)	0.0019(4)	0.0015(4)
C2	0.0362(7)	0.0279(7)	0.0232(6)	0.0041(5)	0.0019(5)	0.0041(5)
C3	0.0281(7)	0.0215(6)	0.0254(6)	0.0013(4)	-0.0005(5)	0.0005(5)
C4	0.0238(6)	0.0205(6)	0.0218(6)	0.0002(4)	-0.0009(4)	-0.0019(4)
C5	0.0261(7)	0.0226(6)	0.0194(5)	0.0005(5)	0.0009(4)	-0.0013(5)
C6	0.0256(7)	0.0243(6)	0.0233(6)	-0.0042(5)	0.0015(4)	-0.0043(5)
O7	0.0449(6)	0.0361(5)	0.0224(5)	-0.0024(4)	0.0088(4)	0.0018(4)
C8	0.0228(7)	0.0285(6)	0.0253(6)	-0.0049(5)	0.0016(4)	0.0014(5)
C9	0.0242(7)	0.0228(6)	0.0253(6)	-0.0051(5)	0.0035(5)	0.0050(5)
C10	0.0302(7)	0.0250(6)	0.0289(6)	-0.0016(5)	-0.0007(5)	0.0036(5)
C11	0.0299(7)	0.0301(7)	0.0414(8)	-0.0044(6)	-0.0058(6)	0.0001(5)
C12	0.0332(8)	0.0243(7)	0.0484(8)	-0.0011(6)	0.0092(6)	-0.0006(5)
C13	0.0446(9)	0.0252(7)	0.0299(6)	0.0010(5)	0.0084(6)	0.0069(6)
C14	0.0331(8)	0.0278(7)	0.0267(6)	-0.0048(5)	-0.0004(5)	0.0052(5)
C15	0.0211(6)	0.0234(6)	0.0235(6)	-0.0010(5)	0.0016(4)	0.0010(4)
N16	0.0244(6)	0.0261(6)	0.0196(5)	-0.0019(4)	-0.0003(4)	0.0001(4)
C17	0.0275(7)	0.0340(7)	0.0291(7)	-0.0020(6)	-0.0044(5)	-0.0041(5)
C18	0.0251(7)	0.0280(7)	0.0313(6)	-0.0067(5)	0.0034(5)	-0.0013(5)
C19	0.0271(7)	0.0244(6)	0.0291(6)	-0.0061(5)	0.0039(5)	0.0014(5)
C20	0.0292(7)	0.0244(6)	0.0208(6)	-0.0022(5)	-0.0003(5)	0.0014(5)
O21	0.0371(6)	0.0287(5)	0.0296(5)	0.0024(4)	-0.0096(4)	-0.0058(4)
C22	0.0496(9)	0.0321(7)	0.0300(7)	0.0058(6)	-0.0141(6)	-0.0088(6)
C23	0.0360(8)	0.0282(7)	0.0215(6)	0.0035(5)	-0.0076(5)	-0.0003(5)
C24	0.0380(9)	0.0434(9)	0.0284(7)	-0.0010(6)	0.0052(6)	-0.0006(6)
C25	0.0537(10)	0.0342(8)	0.0321(7)	-0.0070(6)	0.0013(7)	0.0059(7)
C26	0.0496(10)	0.0294(7)	0.0332(7)	0.0037(6)	-0.0065(6)	-0.0065(6)
C27	0.0398(9)	0.0418(8)	0.0298(7)	0.0073(6)	0.0042(6)	-0.0022(7)
C28	0.0392(8)	0.0315(7)	0.0252(6)	-0.0005(6)	-0.0001(5)	0.0072(6)

Table 8. Hydrogen atom coordinates and isotropic atomic displacement parameters (\AA^2) for [9].

Х	у	Z	U
0.2089	0.4639	0.2245	0.035
0.4356	0.5186	0.2698	0.035
0.1851	0.5607	0.4242	0.030
-0.0311	0.5022	0.3871	0.030
0.5204	0.3972	0.5810	0.027
0.8756	0.3539	0.4813	0.031
0.9523	0.3210	0.3418	0.031
0.4123	0.2765	0.2274	0.034
0.1537	0.1823	0.2631	0.041
0.2211	0.1215	0.4694	0.042
0.5477	0.1565	0.6391	0.040
0.8011	0.2524	0.6058	0.035
-0.0451	0.4855	0.6614	0.027
0.6216	0.4413	0.8832	0.037
0.4061	0.4731	0.9732	0.037
0.6447	0.5379	0.7576	0.034
0.5498	0.5731	0.8922	0.034
0.2602	0.5906	0.6663	0.032
0.1131	0.5736	0.7997	0.032
0.4172	0.3353	0.9299	0.046
0.1917	0.3652	1.0138	0.046
0.3207	0.2285	0.7932	0.044
0.1320	0.1205	0.7939	0.048
-0.1976	0.0980	0.9344	0.046
-0.3440	0.1845	1.0701	0.044
-0.1556	0.2921	1.0698	0.039
	x 0.2089 0.4356 0.1851 -0.0311 0.5204 0.8756 0.9523 0.4123 0.1537 0.2211 0.5477 0.8011 -0.0451 0.6216 0.4061 0.6447 0.5498 0.2602 0.1131 0.4172 0.1917 0.3207 0.1320 -0.1976 -0.3440 -0.1556	xy 0.2089 0.4639 0.4356 0.5186 0.1851 0.5607 -0.0311 0.5022 0.5204 0.3972 0.8756 0.3539 0.9523 0.3210 0.4123 0.2765 0.1537 0.1823 0.2211 0.1215 0.5477 0.1565 0.8011 0.2524 -0.0451 0.4855 0.6216 0.4413 0.4061 0.4731 0.6447 0.5379 0.5498 0.5731 0.2602 0.5906 0.1131 0.5736 0.4172 0.3353 0.1917 0.3652 0.3207 0.2285 0.1320 0.1205 -0.1976 0.0980 -0.3440 0.1845	x y z 0.2089 0.4639 0.2245 0.4356 0.5186 0.2698 0.1851 0.5607 0.4242 -0.0311 0.5022 0.3871 0.5204 0.3972 0.5810 0.8756 0.3539 0.4813 0.9523 0.3210 0.3418 0.4123 0.2765 0.2274 0.1537 0.1823 0.2631 0.2211 0.1215 0.4694 0.5477 0.1565 0.6391 0.8011 0.2524 0.6058 -0.0451 0.4855 0.6614 0.6216 0.4413 0.8832 0.4061 0.4731 0.9732 0.6447 0.5379 0.7576 0.5498 0.5731 0.8922 0.2602 0.5906 0.6663 0.1131 0.5736 0.7997 0.4172 0.3353 0.9299 0.1917 0.3652 1.0138 0.3207 0.2285

Table 9. Selected hydrogen bond information for [9] (Å and $^\circ).$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
				(=)
C5-H5AO21#1	0.95	2.48	3.3301(15)	148.6
C8-H8AO21#1	0.99	2.42	3.3474(16)	156.2
C14-H14A 021#1	0.95	2.55	3 2999(17)	135 7
0111111102111	0.50	2.00	2(1)	100.1

#1 x+1,y,z