Supporting Information

Synthesis of neamine-derived pseudodisaccharides by stereo- and regio-selective functional group transformations

Li-Juan Pang, Dan Wang, Jian Zhou, Li-He Zhang and Xin-Shan Ye*

State Key Laboratory of Natural and Biomimetic Drugs, Peking University, and School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd \#38, Beijing 100191, China. E-mail: xinshan@bjmu.edu.cn; Fax: +86 10 62014949; Tel: +86 10 82801570

Contents

Experimental Section 4-48
NMR Spectra 49-169
${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 49
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 3 50-51
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 4 52-53
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 5 54-55
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 6 56-57
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 7 58-59
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 8 60-61
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 9 62-63
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 10 64-65
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 11 66-67
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 12 68-69
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectra of compound 13 70-72
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 14 73-74
${ }^{1}$ H NMR spectrum of compound 16 75
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 17 76-77
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 18 78-79
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 19 80-81
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 20 82-83
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 21 84-85
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, $\mathrm{H}-\mathrm{H}$ COSY spectra of compound 22 86-88
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 23 89-90
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 24 91-92
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 25 93-94
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 27 95-96
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, $\mathrm{H}-\mathrm{H}$ COSY spectra of compound 28 97-99
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 30 100-101
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 31 102-103
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 32 104-105
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 33 106-107
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, $\mathrm{H}-\mathrm{H}$ COSY spectra of compound 34 108-110
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 35 111-112
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 36 113-114
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, H-H COSY spectra of compound 37 115-117
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, $\mathrm{H}-\mathrm{H}$ COSY spectrum of compound 38 118-120
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 39 121-122
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 40 123-124
${ }^{1} \mathrm{H}$ NMR spectrum of compound 40* 125
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 41 126-127
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 42 128-129
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 43. 130-131
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 44 132-133
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 46 134-135
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 51 136-137
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMBC spectra of compound 52 138-140
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 53 141-142
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 54 143-144
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 55 145-146
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 56 147-148
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 57 149-150
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 58 151-152
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, $\mathrm{H}-\mathrm{H}$ COSY, HSQC, HMBC , and NOESY spectra of compound 59 153-158
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 60 159-160
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 61 161-162
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 62 163-164
${ }^{1}$ H NMR spectrum of compound 63 165
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 64 166-167
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of compound 65 168-169

Experimental Section

General procedures

Unless otherwise noted, all reactions were carried out in oven-dried glassware under an atmosphere of argon or nitrogen. Tetrahydrofuran and toluene were dried and distilled from sodium metal. Acetonitrile and dichloromethane were distilled from calcium hydride. Methanol was dried by heating under reflux with magnesium and then distilled. N, N-Dimethylformamide was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and distilled under vacuum. Reactions were monitored by analytical thin-layer chromatography (TLC) on Merck silica gel $60 \mathrm{~F}_{254}$ plates $(0.25 \mathrm{~mm})$, visualized by ultraviolet light and/ or by staining with ceric ammonium molybdate or ninhydrin. Optical rotations were measured at ambient temperature ($25^{\circ} \mathrm{C}$) using RUDOLPH AUTOPOL III. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on Varian INOVA-500 or JEOL JNM-AL300 spectrometer at ambient temperature. Data were reported as follows: chemical shift on the δ scale (using either TMS or residual proton solvent as internal standard), multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet}, \mathrm{m}=$ multiplet $)$, integration, and coupling constant(s) in hertz. ${ }^{13} \mathrm{C}$ NMR spectra were obtained with proton decoupling on a Varian INOVA-500 (125 MHz) or JEOL JNM-AL-300 (75 MHz) spectrometer and were reported in ppm with residual solvent for internal standard (77.0 for CDCl_{3}). High resolution mass spectra were obtained on a PE SCLEX QSTAR spectrometer. Elemental analysis data were recorded on a PE-2400C elemental analyzer.

Methyl

2,3-di-O-benzyl-4-O-(4-methoxybenzyl)-6-deoxy- α-d-xylo-hex-5-enopyranoside

(17). To a solution of $\mathbf{1 5}^{1}(5.12 \mathrm{~g}, 10.6 \mathrm{mmol})$ in DMF (40 mL), p-methoxybenzyl chloride ($4.3 \mathrm{~mL}, 4.95 \mathrm{~g}, 31.6 \mathrm{mmol}$) and sodium hydride $(1.69 \mathrm{~g}, 60 \%$ in mineral oil, 42.3 mmol) were added at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 h at room temperature, TLC monitoring (petroleum ether/EtOAc 3: 1) indicated completion of the reaction. Excess of NaH was quenched by sat. NaHCO_{3} aqueous solution $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was extracted with EtOAc (100 mL). The aqueous layer was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The organic layer and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 15:1) to afford 17 (4.64 $\mathrm{g}, 92 \%)$ as a white solid: $\mathrm{R}_{f}=0.37$ (petroleum ether $/$ EtOAc 4:1); $[\alpha]_{\mathrm{D}}=-0.7(c=0.4$, EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.26(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}$, Ar), 4.90-4.81 (m, 4H, PhCH $)$, 4.70-4.65 (m, 4H, H-6a, H-6b, PMB), 4.61 (d, 1H, J $=3.5 \mathrm{~Hz}, \mathrm{H}-1), 3.94(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3), 3.88(\mathrm{dt}, 1 \mathrm{H}, J=3.0,9.0 \mathrm{~Hz}, \mathrm{H}-4), 3.80$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=3.5,9.0 \mathrm{~Hz}, \mathrm{H}-2), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.27(\mathrm{PMB}), 153.70(\mathrm{C}-6), 138.68,138.04,130.08,129.55$, 128.44, 128.35, 128.09, 128.00, 127.61, 131.78, 99.01 (C-1), 96.81, 81.16, 79.18, 75.74, 74.20, 73.60, $55.42\left(\mathrm{OCH}_{3}\right), 55.25\left(\mathrm{OCH}_{3}\right) ;$ MS (ESI) m/e calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{6}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right) 499$, found 499; elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{6}$: C 73.09, H 6.77, found: C 72.94, H 6.83.

To a stirred solution of $\mathbf{1 6}^{2}(5.20 \mathrm{~g}, 13.1 \mathrm{mmol})$ in acetone-water $(2: 1,50 \mathrm{~mL})$ was added $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}(0.56 \mathrm{~g}, 1.31 \mathrm{mmol})$ at room temperature. After stirring for 3 h , sat. NaHCO_{3} aqueous solution was added to neutralize the mixture to $\mathrm{pH} 6 \sim 7$. The mixture was partially evaporated to remove acetone, and the suspension was extracted with EtOAc ($50 \mathrm{~mL} \times 2$), the organic layer was collected and sequentially washed with water and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give 18 ($3.71 \mathrm{~g}, 74 \%$) as colorless solids: $\mathrm{R}_{f}=0.36$ (petroleum ether/EtOAc $1: 1) ;[\alpha]_{\mathrm{D}}=-20.0(c=2.2, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.26(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}), 5.94$ (ddt, $1 \mathrm{H}, J=6.0,10.5,17.5 \mathrm{~Hz},=\mathrm{CH}-), 5.25(\mathrm{dq}, 1 \mathrm{H}, J=1.5,17.5 \mathrm{~Hz}$, $\left.=\mathrm{CH}_{2}\right), 5.18\left(\mathrm{dq}, 1 \mathrm{H}, J=1.5,12.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.93\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, 4.85-4.71 (m, 3H, PhCH 2), $4.40\left(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=1.5,5.0,12,5 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}\right), 4.25-4.24$ (m, 1H, H-2), 4.07 (ddt, $1 \mathrm{H}, J=1.5,5.0,12.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}_{-} \mathrm{CH}_{2}$), 4.00-3.95 (m, 2H, H-3\&H-4), 3.78 (dt, 1H, $J=2.7,6.3 \mathrm{~Hz}, \mathrm{H}-5), 2.62$ (dd, $1 \mathrm{H}, J=3.6,14.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq})$, 2.47-2.41 (m, 2H, -OH, H-6ax); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.94(\mathrm{C}=\mathrm{O})$, 138.27, 137.58, 134.24 (=CH-), 128.37, 128.21, 128.02, 127.86, 127.74, 127.58, $117.49,85.03,81.64,81.30,75.83,72.93,72.51,66.30,42.53$ (C-6); HRMS (ESI) m / e calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 405.1672$, found: 405.1672.

2L-(2,4/5,3)-2-O-(4-methoxybenzyl)-3,4-di-O-benzyl-2,3,4,5-tetrahydroxycyclohex

anone (20). To a stirred solution of $\mathbf{1 7}(4.64 \mathrm{~g}, 9.7 \mathrm{mmol})$ in acetone-water (2:1, 90 $\mathrm{mL})$ was added $\mathrm{Hg}\left(\mathrm{OCOCF}_{3}\right)_{2}(0.42 \mathrm{~g}, 0.98 \mathrm{mmol})$ at room temperature. After stirring for 3 h , sat. NaHCO_{3} was added to neutralize the mixture to $\mathrm{pH} 6 \sim 7$. The mixture was partially evaporated, the suspension was extracted with EtOAc (50 $\mathrm{mL} \times 2$), the organic layer was collected and sequentially washed with water and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 3:1) to give 20 (696 $\mathrm{mg}, 15 \%)$ as a white solid: $\mathrm{R}_{f}=0.42$ (petroleum ether/EtOAc 1:1); $[\alpha]_{\mathrm{D}}=-9.3(c=0.4$, EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 40{ }^{\circ} \mathrm{C}$) $\delta=7.36-7.24(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}), 6.86-6.83$ (m, 2H, Ar), $4.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, $4.83\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.73\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.47\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.13(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2)$, $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73-3.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5), 2.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.5,13.5 \mathrm{~Hz}$, H-6eq), $2.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}), 2.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.20(\mathrm{C}=\mathrm{O}), 159.43(\mathrm{PMB}), 138.01,129.90,129.47,128.72,128.44,128.07$, $127.98,127.84,113.83,85.68,84.65,81.90,75.60,75.44,73.30,67.99,55.26$ $\left(\mathrm{OCH}_{3}\right), 44.08(\mathrm{C}-6) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / e$ calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 485.1935$, found: 485.1931. Further elution gave isomer 19 ($3.33 \mathrm{~g}, 75 \%$) as a white solid: $\mathrm{R}_{f}=0.35$ (petroleum ether/EtOAc 1:1); $[\alpha]_{\mathrm{D}}=-22.4(c=0.7$, EtOAc $) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.33-7.26(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}), 6.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}), 4.93-4.69(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.23-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.02-4.01(\mathrm{~m}, 2 \mathrm{H}$,
$\mathrm{H}-1, \mathrm{H}-3), 3.80-3.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{OCH}_{3}\right), 2.66(\mathrm{dd}, 1 \mathrm{H}, J=4.0,15.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq})$, $2.48(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.0,15.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.97(\mathrm{C}=\mathrm{O})$, $159.28,138.36,137.58,129.81,129.71,128.56,128.34,128.06,127.88,127.69$, $113.73,84.87,81.67,81.45,75.92,73.20,73.09,66.47,55.23\left(\mathrm{OCH}_{3}\right), 42.50(\mathrm{C}-6)$; HRMS (ESI) m/e calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$485.1935, found: 485.1937.

1d-(1,2,4/3,5)-4-O-Allyl-2,3-di-O-benzyl-1-O-methyl-5-hydroxylcyclohexanepent ol
 and

1D-(1,2,4,5/3)-4-O-allyl-2,3-di-O-benzyl-1-O-methyl-5-hydroxylcyclohexanepentol

 (22). To a solution of $\mathbf{1 6}^{2}(1.73 \mathrm{~g}, 4.37 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$, was added TIBAL (1 M in toluene, 43.7 mL) dropwise under argon at room temperature. When the addition of TIABL was finished, the mixture was heated by oil bath at $50^{\circ} \mathrm{C}$. After stirring for $3.5 \mathrm{~h}, \mathrm{NaOH}$ (2 M aqueous solution, 100 mL) was added to quench the reaction, the mixture was diluted with EtOAc $(50 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL})$ and brine (50 mL). The organic layer was collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give 21 ($402 \mathrm{mg}, 24 \%$) as a white solid: $\mathrm{R}_{f}=0.48$ (petroleum ether/EtOAc 1:2); $[\alpha]_{\mathrm{D}}=+31.3(c=2.3$, EtOAc $) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.38-7.28 (m, 10H, Ar), $5.95(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=5.7,10.2,17.4 \mathrm{~Hz},=\mathrm{CH}-), 5.27(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}$ $\left.=1.5,17.4 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.17\left(\mathrm{dq}, 1 \mathrm{H}, J=1.5,10.2 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}$, $\left.\mathrm{PhCH}_{2}\right), 4.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.71\left(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.47$ (ddt, $1 \mathrm{H}, \mathrm{J}=1.5,5.7,12.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}_{-\mathrm{CH}_{2}-}$), 4.19 (ddt, $1 \mathrm{H}, \mathrm{J}=1.5,5.7,12.3 \mathrm{~Hz}$,$\mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}-$), 3.87-3.76 (m, 2H, H-3, H-5), 3.63-3.62 (m, 1H, H-1), 3.44-3.40 (m, 4H, $\left.\mathrm{H}-2, \mathrm{OCH}_{3}\right), 3.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{H}-4), 2.41(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.30(\mathrm{dt}, 1 \mathrm{H}, J=4.5$, $14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.20$ (ddd, $1 \mathrm{H}, J=2.1,12.0,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=138.72,138.30,135.05,128.33,128.05,127.83,127.65,127.55,117.02$, $85.98,82.84,81.68,75.67,75.06,74.11,72.66,67.82,57.34\left(\mathrm{OCH}_{3}\right), 30.76(\mathrm{C}-6)$; HRMS (ESI) m/e calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{54}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$421.1985, found: 421.1945. Further elution gave isomer $22(1.27 \mathrm{~g}, 73 \%)$ as a colorless oil: $\mathrm{R}_{f}=0.37$ (petroleum ether/EtOAc 1:2); $[\alpha]_{\mathrm{D}}=+7.5(c=2.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.41-7.26 (m, 10H, Ar), 5.97 (ddt, $1 \mathrm{H}, J=6.0,10.5,17.5 \mathrm{~Hz},=\mathrm{CH}-), 5.30(\mathrm{dq}, 1 \mathrm{H}, J$ $\left.=1.5,17.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.17\left(\mathrm{dq}, 1 \mathrm{H}, J=1.5,10.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.92-4.67(4 \times \mathrm{d}, 4 \mathrm{H}, J=$ 12.0 Hz, PhCH_{2}), 4.23-4.20 (m, 2H, C=C-CH2), 4.11-4.04 (m, 2H, H-3, H-5), $3.71-3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 3.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{OH}), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.39(\mathrm{dd}$, $1 \mathrm{H}, J=3.0,9.3 \mathrm{~Hz}, \mathrm{H}-2), 3.27(\mathrm{dd}, 1 \mathrm{H}, J=3.3,9.3 \mathrm{~Hz}, \mathrm{H}-4), 2.28(\mathrm{dt}, 1 \mathrm{H}, J=3.3$, $15.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.33(\mathrm{dt}, 1 \mathrm{H}, J=2.7,15.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=138.90,138.45,135.18,128.35,128.28,128.21,127.75,127.65,127.53,117.09$, $82.47,82.20,78.95,78.82,75.97,73.19,71.64,68.32,59.01\left(\mathrm{OCH}_{3}\right), 29.54(\mathrm{C}-6)$; HRMS (ESI) m / e calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$421.1985, found: 421.1945.

1D-(1,2,4/3,5)-4-O-Allyl-1,5-di-O-benzoyl-2,3-di-O-benzyl-cyclohexanepentol

(23). To one portion of powdered $\mathrm{Me}_{4} \mathrm{NBH}_{4}(1.16 \mathrm{~g}, 0.013 \mathrm{~mol})$ in dry round-bottomed flask under argon, freshly distilled $\mathrm{AcOH}(2.6 \mathrm{ml}, 0.045 \mathrm{~mol})$ was added dropwise at room temperature and stirred for 30 min . THF (8 mL) was then
added, the mixture was stirred at the same temperature for additional 3 h to ensure complete conversion of $\mathrm{Me}_{4} \mathrm{NBH}_{4}$ to $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}$. To the above mixture, a solution of $\mathbf{1 8}(1.108 \mathrm{~g}, 2.78 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added dropwise. After stirring for 13 h at room temperature, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to quench the reaction. The mixture was extracted with EtOAc (50 mL), washed with sat. $\mathrm{KHCO}_{3}(50 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to produce a colorless oil (899 mg). To a mixture of the colorless oil and DMAP ($14 \mathrm{mg}, 0.12 \mathrm{mmol}$) in pyridine (20 mL), $\mathrm{BzCl}(1.63 \mathrm{~mL}, 14.03 \mathrm{mmol})$ was added slowly at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to stir for 6 h from $0{ }^{\circ} \mathrm{C}$ to room temperaure. The mixture was concentrated, diluted with EtOAc (50 mL), washed successively with sat. NaHCO_{3} $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic layer was collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by column chromatography on silica gel (petroleum ether/EtOAc 16:1) to give $\mathbf{2 3}$ ($1.36 \mathrm{~g}, 80 \%$ over two steps) as colorless solids: $\mathrm{R}_{f}=$ $0.36\left(\mathrm{EtOAc} /\right.$ petroleum ehter 1:4); $[\alpha]_{\mathrm{D}}=+42(c=2.0, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.12-8.02(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.60-7.42(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 7.33-7.16$ (m, 9H, Ar), 5.89-5.76 (m, 2H, H-1, H-5), 5.58-5.49 (m, 1H, =CH-), $5.16(\mathrm{dd}, 1 \mathrm{H}, J=1.5,17.1 \mathrm{~Hz}$, $\left.=\mathrm{CH}_{2}\right), 5.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.92-4.81\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.7 \mathrm{~Hz}, \mathrm{PhCH}_{2}$), $4.37\left(\mathrm{dd}, 1 \mathrm{H}, J=5.7,12.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}\right), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=6.3$, $12.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}$), $4.00(\mathrm{t}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{H}-4), 3.67-3.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 2.49$ (dt, 1H, $J=4.5,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.71$ (ddd, $1 \mathrm{H}, J=2.1,12.0,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=165.65(\mathrm{PhCO}), 165.56(\mathrm{PhCO}), 138.53,137.82,134.85$, 133.18, 133.08, 130.02, 129.92, 129.57, 128.46, 128.40, 128.30, 128.14, 128.00, for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{O}_{7}$: C 74.98, H 6.12; found: C 74.70, H 6.40.

1L-(1,2,4/3,5)-1,5-Di-O-acetyl-2-O-allyl-3,4-di-O-benzyl-cyclohexanepentol (24).

To a solution of $\mathbf{2 3}(150 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL}), 30 \% \mathrm{NaOMe}(0.1 \mathrm{~mL})$ was added at room temperature. After stirring for 1 h , the mixture was neutralized to $\mathrm{pH}=6-7$ with ion-exchange resin (Dowex 50 , strong acid form) at room temperature. The mixture was filtered and concentrated to give colorless oil. To the crude oil, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and pyridine ($204 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) were added, followed by addition of $\mathrm{Tf}_{2} \mathrm{O}(174 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min , sat. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added to neutralize the mixture. The mixyure was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with water $(20 \mathrm{~mL})$. The organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and co-evaporated with toluene (3 mL) for three times to afford yellow oil. The crude product was dissolved in DMF (2 mL), $\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NOAc}(226 \mathrm{mg}$, 0.75 mmol) was added to the mixture at $0{ }^{\circ} \mathrm{C}$ under argon, and stirred for 5 h at r.t. The mixture was concentrated, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 9:1) to give 24 ($42 \mathrm{mg}, 35 \%$ over three steps) as a white solid: $\mathrm{R}_{f}=0.32$ (petroleum ether/EtOAc 3:1); $[\alpha]_{\mathrm{D}}=-2.4(c=2.5, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 5.95(\mathrm{ddt}, 1 \mathrm{H}, J=5.7,10.8$, $17.4 \mathrm{~Hz},=\mathrm{CH}-), 5.43-5.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 5.29\left(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=1.2,1.2,17.4 \mathrm{~Hz},=\mathrm{CH}_{2}\right)$, 5.23-5.14 (m, 2H, $\left.=\mathrm{CH}_{2}, \mathrm{H}-5\right), 4.92-4.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.18(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.7,12.6$
$\left.\mathrm{Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}\right), 4.06\left(\mathrm{dd}, 1 \mathrm{H}, J=6.0,12.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}\right), 3.85(\mathrm{t}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}$, $\mathrm{H}-4), 3.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-3), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=3.0,9.6 \mathrm{~Hz}, \mathrm{H}-2), 2.20(\mathrm{dt}, 1 \mathrm{H}, J$ $=4.5,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.47(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}$ $=2.7,12.3,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=170.19\left(\mathrm{COCH}_{3}\right)$, $170.09\left(\mathrm{COCH}_{3}\right), 138.57,138.50,134.55,128.37,128.15,127.74,127.69,127.64$, $117.45,83.31,81.57,80.36,76.09,75.62,71.36,70.69,66.66,30.80$ (C-6), 21.14 $\left(\mathrm{COCH}_{3}\right), 21.06\left(\mathrm{COCH}_{3}\right) ;$ HRMS (ESI) m / e calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 491.2040$, found: 491.2039.

1D-(1,2,4,5/3)-4-O-Allyl-2,3-di-O-benzyl-1,5-dihydroxylcyclohexanepentol (25).

To a solution of $\mathbf{1 8}(571 \mathrm{mg}, 1.49 \mathrm{mmol})$ in methanol $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added portion-wise NaBH_{4} (225 mg , 5.96 mmol). After stirring for 10 min , sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution was added to quench the reaction. The mixture was concentrated and extracted with EtOAc (30 mL) and water $(30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/acetone 4:1) to give $\mathbf{2 5}$ ($467 \mathrm{mg}, 82 \%$) as a colorless oil: $\mathrm{R}_{f}=0.28$ (petroleum ether/acetone 2:1); $[\alpha]_{\mathrm{D}}=+15.4(c=2.6$, EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}$ exchange) $\delta=7.41-7.26$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{Ar}$), 5.94 (ddt, $1 \mathrm{H}, \mathrm{J}=5.4,10.5,17.1 \mathrm{~Hz},=\mathrm{CH}-), 5.29\left(\mathrm{dd}, 1 \mathrm{H}, J=1.8,17.1 \mathrm{~Hz},=\mathrm{CH}_{2}\right)$, $5.18\left(\mathrm{dd}, 1 \mathrm{H}, J=1.8,10.2 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.16-4.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.22-4.14(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}-1, \mathrm{H}-5,=\mathrm{C}-\mathrm{CH}_{2}-\right), 4.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{H}-3), 3.40-3.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ or $\mathrm{H}-4, \mathrm{OH})$, 3.30 (dd, $1 \mathrm{H}, \mathrm{J}=3.3,9.3 \mathrm{~Hz}, \mathrm{H}-2$ or $\mathrm{H}-4$), 2.33 (dt, $1 \mathrm{H}, \mathrm{J}=3.6,15.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.46$
(dt, $1 \mathrm{H}, J=2.7,15.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.80,138.10$, $134,82,128.39,128.30,128.12,127.84,127.75,127.56,117.31,82.26,78.66,76.06$, 72.62, 71.70, 68.53, 31.23 (C-6); HRMS (ESI) m/e calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 407.1829, found: 407.1831.

2L-(2,4/3)-2-O-Allyl-3,4-di-O-benzyl-2,3,4-trihydroxy-5-cyclohexen-1-one (27).
To a solution of $\mathbf{1 8}(260 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}), \mathrm{MsCl}(156 \mathrm{mg}, 1.4 \mathrm{mmol})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$, followed by addition of triethylamine $(0.5 \mathrm{~mL}, 3.6$ $\mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed successively with $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, sat. NaHCO_{3}, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/ EtOAc 12:1) to give 27 (148 mg, 60\%) as a colorless oil: $\mathrm{R}_{f}=0.28$ (petroleum ether/EtOAc 3:1); $[\alpha]_{\mathrm{D}}=+21.0\left(c=0.6\right.$, EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.40-7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 6.80(\mathrm{dd}, 1 \mathrm{H}, J=2.0,10.5 \mathrm{~Hz}, \mathrm{H}-6)$, $6.02(\mathrm{dd}, 1 \mathrm{H}, J=2.0,10.0 \mathrm{~Hz}, \mathrm{H}-5), 6.04-5.95(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}-), 5.35(\mathrm{dd}, 1 \mathrm{H}, J=1.5$, $\left.17.0 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.21\left(\mathrm{dd}, 1 \mathrm{H}, J=1.5,10.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}$, $\left.\mathrm{PhCH}_{2}\right), 4.83\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.81\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.74(\mathrm{~d}$, $\left.1 \mathrm{H}, 12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.51\left(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=1.5,5.5,12.5 \mathrm{~Hz},=\mathrm{C}_{\left.-\mathrm{CH}_{2}-\right), 4.35(\mathrm{dt}, 1 \mathrm{H}, J=}=\right.$
 $\mathrm{H}-2, \mathrm{H}-3) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=197.34(\mathrm{C}=\mathrm{O}), 148.06,138.17,137.62$, $134.39,128.54,128.40,128.19,128.03,127.89,127.82,117.80,84.72,83.60,78.89$,
75.76, 73.66, 29.69; HRMS (ESI) m / e calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 365.1770$, found: 365.1770 .

1L-(1,5/4,6)-6-O-Allyl-4,5-di-O-benzyl-cyclohex-2-en-1-ol (28). To a mixture of $27(86 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(132 \mathrm{mg}, 0.35 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(13 \mathrm{mg}, 0.34 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 min , the reaction was quenched with water and extracted with EtOAc (50 mL), washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated and purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give $\mathbf{2 8}(78 \mathrm{mg}, 90 \%)$ as a light yellow oil: $\mathrm{R}_{f}=0.22$ (petroleum ether/acetone 2:1); $[\alpha]_{\mathrm{D}}=+90.3(c=3.9$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=7.38-7.27(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 5.95(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=$ $6.0,10.5,17.5 \mathrm{~Hz},=\mathrm{CH}-), 5.72-5.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3), 5.28$ (ddt, $1 \mathrm{H}, J=1.5,17.5$ $\left.\mathrm{Hz},=\mathrm{CH}_{2}\right), 5.19\left(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=1.5,10.0 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.89-4.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.46$ (ddt, 1H, $\left.J=1.5,5.0,12.5 \mathrm{~Hz},=\mathrm{C}-\mathrm{CH}_{2}\right), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-1), 4.23(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=5.0,12.5 \mathrm{~Hz},=\mathrm{C}-\mathrm{CH}_{2}\right), 4.22-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.71(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.5,10.5 \mathrm{~Hz}, \mathrm{H}-5)$, 3.41 (dd, $1 \mathrm{H}, \mathrm{J}=7.5,10.0 \mathrm{~Hz}, \mathrm{H}-6) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.54,138.24$, 134.97 (=CH-), 129.36 (C-2), 128.42, 128.36, 127.94, 127.80, 127.72, 127.45, 127.05 $(\mathrm{C}-3), 117.32\left(=\mathrm{CH}_{2}\right), 84.08(\mathrm{C}-6), 83.27(\mathrm{C}-5), 80.48(\mathrm{C}-4), 75.24\left(\mathrm{PhCH}_{2}\right), 74.12$ $\left(=\mathrm{C}-\mathrm{CH}_{2}\right), 72.28\left(\mathrm{PhCH}_{2}\right), 71.93(\mathrm{C}-1)$; MS (ESI) m/e calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4}: 389$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 389 ; elemental analysis calcd (\%) for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{4}$: C 75.38, H 7.15; found: C 75.29, H 7.23.

1D-(1,3,5/2,4)-1,6-Di-O-benzoyl-2,3-di-O-benzyl-4-O-(4-methoxybenzyl)-cyclohe

1L-(1,2,4/3,5)-3,4-di-O-benzyl-2-O-(4-methoxybenzyl)-1,5-dihydroxylcyclohexane
pentol (31). To a solution of $20(150 \mathrm{mg}, 0.32 \mathrm{mmol})$ in dry dioxane (6 mL), was added $\mathrm{NaBH}_{4}(65 \mathrm{mg}, 1.72 \mathrm{mmol})$ under argon. After stirring for 4 h , water was added to quench the reaction at $0{ }^{\circ} \mathrm{C}$, continued to stir until no bubble spreading out. Then the mixture was concentrated in vacuo, the residue was dissolved with EtOAc (20 mL), washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 1\right)$ to give 31 ($34 \mathrm{mg}, 22 \%$): $\mathrm{R}_{f}=0.52\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) ;[\alpha]_{\mathrm{D}}=-2.2(c=0.5, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.36-7.24(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}$, $\left.\mathrm{PhCH}_{2}\right), 4.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.76$ (2br, 2H, OH), 4.69-4.60 (m, 3H, PhCH 2), 4.08 (q, 1H, $J=3.0 \mathrm{~Hz}, \mathrm{H}-1$), 4.95 (ddd, $1 \mathrm{H}, J=5.0,9.5,12.0 \mathrm{~Hz}, \mathrm{H}-5), 3.83-3.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{OCH}_{3}\right), 3.48(\mathrm{dd}, 1 \mathrm{H}, J=3.0$, $9.0 \mathrm{~Hz}, \mathrm{H}-2), 3.26(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-4), 2.24$ (dt, $1 \mathrm{H}, \mathrm{J}=4.5,14.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq})$, 1.37 (ddd, $1 \mathrm{H}, \mathrm{J}=2.5,12.0,14.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.42$ (PMB), 138.61, 129.91, 129.52, 128.60, 128.41, 127.92, 127.83, 127.65, 113.92, 86.12, 82.93, 81.50, 75.68, 75.40, 72.45, 67.67, 65.78, $55.27\left(\mathrm{OCH}_{3}\right), 33.42(\mathrm{C}-6)$; HRMS (ESI) m/e calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$487.2091, found: 487.2094. Another component $29(116 \mathrm{mg})$ was collected as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 20:1), but its purity was not satisfied in ${ }^{1} \mathrm{H}$ NMR spectrum. To the above crude oil $(116 \mathrm{mg}, 0.25 \mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$, was added $\mathrm{BzCl}(209 \mathrm{mg}, 1.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$.

After stirring for 5 h , pyridine was evaporated under vacuum. The residue was diluted with EtOAc, washed with sat. NaHCO_{3} and water. The organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, purified by column chromatography on silica gel (petroleum ether /EtOAc $12: 1$) to give $\mathbf{3 0}(150 \mathrm{mg}, 89 \%)$ as a white solid: $\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum ether /EtOAc 3:1); $[\alpha]_{\mathrm{D}}=+3.2\left(c=1.3\right.$, EtOAc); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.14-6.66(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}), 5.30(\mathrm{ddd}, 2 \mathrm{H}, J=4.5,9.0,11.5 \mathrm{~Hz}, \mathrm{H}-1, \mathrm{H}-5)$, $4.89\left(\mathrm{~d}, 2 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.86-4.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.82(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, $\mathrm{H}-2), 3.79(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4), 3.73(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-3), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $2.58(\mathrm{dt}, 1 \mathrm{H}, J=5.0,12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.77(\mathrm{q}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=165.39(\mathrm{PhCO}), 159.11(\mathrm{PMB}), 138.35,137.94,133.08,130.14$, 129.87, 129.62, 128.37, 128.26, 127.94, 127.70, 127.63, 113.64, 83.07, 82.71, 76.10, $75.52,75,13,70.85,70.79,55.13\left(\mathrm{OCH}_{3}\right), 32.16(\mathrm{C}-6)$. HRMS (ESI) m/e calcd. for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 695.2615$, found: 695.2615 .

1d-(1,2,4/3,5)-5-Azido-2,3-di-O-benzyl-1-O-methyl-1,2,3,4-cyclohexanetetrol

(32). To a solution of $22(34 \mathrm{mg}, 0.085 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, pyridine ($28 \mu \mathrm{~L}$, $0.34 \mathrm{mmol})$ was added and followed by the addition of $\mathrm{Tf}_{2} \mathrm{O}(29 \mu \mathrm{~L}, 0.17 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 10 min , sat. NaHCO_{3} was added to quench the reaction, diluted with EtOAc, washed with water and brine. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated; the residue was co-evaporated with toluene for three times before dissolved in DMF (1 mL). To the mixture, $\mathrm{NaN}_{3}(1.5 \mathrm{mg}, 0.34 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$. After 5 h , the mixture was evaporated in vacuo, diluted with EtOAc, concentrated
to give a yellow oil. Mixed the oil with $\mathrm{MeOH}(1 \mathrm{~mL}), \mathrm{PdCl}_{2}(3 \mathrm{mg}, 0.022 \mathrm{mmol})$ was added at r.t. After stirring for 12 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give $\mathbf{3 2}$ ($9 \mathrm{mg}, \mathbf{3 5 \%}$ for 3 steps) as a colorless oil: $\mathrm{R}_{f}=$ 0.34; $[\alpha]_{\mathrm{D}}=-9.3(c=0.4, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.29(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ar}), 5.02\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1$ $\left.\mathrm{Hz}, \mathrm{PhCH}_{2}\right), 3.76(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3), 3.66-3.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5), 3.45-3.41(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}-1, \mathrm{OCH}_{3}\right), 3.39(\mathrm{dd}, 1 \mathrm{H}, J=3.0,9.0 \mathrm{~Hz}, \mathrm{H}-2), 2.58(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{OH})$, $2.21(\mathrm{dt}, 1 \mathrm{H}, J=4.0,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.19$ (ddd, $1 \mathrm{H}, J=2.5,12.0,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.51,137.98,128.62,128.46,127.99,127.93$, $127.86,82.05,81.40,76.49,75.71,74.86,72.46,58.93,57.76\left(\mathrm{OCH}_{3}\right), 29.69(\mathrm{C}-6)$; IR $v=2103.6 \mathrm{~cm}^{-1}\left(-\mathrm{N}_{3}\right) ;$ HRMS (ESI) m/e calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$ 401.2183, found: 401.2189 .

1,3-Di-azido-5,6-di-O-benzyl-2-deoxystreptamine (33). The initial synthesis of $\mathbf{3 3}$ was almost the same as that of $\mathbf{3 2}$, yield: 35% for 3 steps. The other method is: after debenzoylation of $\mathbf{3 5}(447 \mathrm{mg}, 0.64 \mathrm{mmol}$, in 2 mL MeOH) with $30 \% \mathrm{NaOMe}$ (in $\mathrm{MeOH}, 0.1 \mathrm{~mL}$), the reaction mixture was neutralized with ion-exchange resin (Dowex 50, strong acid form), filtered, and concentrated to give crude diol. The crude diol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, pyridine ($0.6 \mathrm{~mL}, 7 \mathrm{mmol}$) was added dropwise, followed by the addition of $\mathrm{Tf}_{2} \mathrm{O}(0.5 \mathrm{~mL}, 2.8 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min , sat. NaHCO_{3} was added to quench the reaction. The mixture was extracted with

EtOAc (20 mL), washed with water (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and co-evaporated with toluene for three times. The crude product was dissolved in DMF $(2 \mathrm{~mL}), \mathrm{NaN}_{3}(194 \mathrm{mg}, 2.8 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 5 h , the mixture was concentrated, diluted with EtOAc, washed with water, and concentrated again. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(18: 1,5 \mathrm{~mL})$, DDQ ($250 \mathrm{mg}, 0.94$ mmol) was added. And the mixture was stirred for 12 h at r.t., then quenched with sat. NaHCO_{3}, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with water and brine. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 9:1) to give 33 ($162 \mathrm{mg}, 61 \%$ over four steps) as a colorless oil: $\mathrm{R}_{f}=0.38$ (petroleum ether/acetone 3:1); $[\alpha]_{\mathrm{D}}=$ $+39.4(c=0.5, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.94$ $\left(\mathrm{d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.89-4.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}$, PhCH_{2}), 3.49-3.33 (m, 5H, H-1, H-3, H-4, H-5, H-6), 2.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 2.17 (dt, 1H, $J=4.5,13.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}), 1.34(\mathrm{q}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=138.34,137.84,129.15,128.92,128.68,128.56,128.47,128.26,84.43$, 84.09, 76.56, 76.20, 61.00, 60.25, 32.73 (C-2); HRMS (ESI) m/e calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$412.2092, found: 412.2091.

1d-(1,2,4,5/3)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-1,2,3,4,5-cyclohexanepentol

(34). To a solution of $\mathbf{2 5}(289 \mathrm{mg}, 0.75 \mathrm{mmol})$ in pyridine (5 mL), $\mathrm{BzCl}(420 \mathrm{mg}, 3$ mmol) was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 12 h at room temperature, the reaction mixture was concentrated in vacuo, diluted with EtOAc , washed with sat. NaHCO_{3},
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give yellow oil. The oil was dissolved in methanol $(10 \mathrm{~mL}), \mathrm{PdCl}_{2}(25 \mathrm{mg}, 0.14 \mathrm{mmol})$ was added at r.t. After stirring for 2 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtrated, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give 34 ($365 \mathrm{mg}, 88 \%$ over two steps) as a colorless oil: $\mathrm{R}_{f}=0.42$ (petroleum ether/EtOAc 1:1); $[\alpha]_{\mathrm{D}}=+14.7(c=9.5$, EtOAc $) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}, 35^{\circ} \mathrm{C}\right)$ $\delta=7.93-7.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCO}), 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCO}), 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCO})$, 7.40-7.37 (m, 4H, Ar), 7.33-7.21 (m, 10H, Ar), 5.67-5.66 (m, 1H, H-1), 5.32 (dd, 1H, $J=3.0,3.5 \mathrm{~Hz}, \mathrm{H}-5), 5.26(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{OH}), 4.88\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, $4.83\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.70\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}$), 4.12 (t, $1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-3$), 3.83 (ddd, $1 \mathrm{H}, J=3.5,6.0,9.5 \mathrm{~Hz}$, H-4), 3.77 (dd, $1 \mathrm{H}, J=3.5,9.5 \mathrm{~Hz}, \mathrm{H}-2), 2.23(\mathrm{dt}, 1 \mathrm{H}, J=3.5,16.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.81$ (dt, $1 \mathrm{H}, J=3.5,16.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{DMSO}\right) \delta=165.53(\mathrm{PhCO})$, 165.25 (PhCO), 139.17, 138.46, 133.03, 129.99, 129.72, 129.34, 129.12, 128.33, 128.03, 127.92, 127.68, 127.42, 127.29, 127.13, 79.86, 78.34, 74.04, 72.66, 71.45, 71.31, 68.68, 28.61 (C-6); HRMS (ESI) m / e calcd. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{H}^{+}\right)$553.2221, found: 553.2225.

1d-(1,2,4,5/3)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-4-(4-methoxy)benzyl-1,2,3,4,5-

cyclohexanepentol (35). To a solution of $34(659 \mathrm{mg}, 1.04 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\mathrm{mL})$, a solution of freshly prepared $\mathrm{PMBOCNHCCl}_{3}(3.1 \mathrm{~g})$ in hexane $(6 \mathrm{~mL})$ was added. Freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(35 \mathrm{uL})$ was added slowly at $0{ }^{\circ} \mathrm{C}$. After stirring for

10 min , no starting material was detected, $\mathrm{Et}_{3} \mathrm{~N}$ was added to quench the reaction. The reaction mixture was extracted with EtOAc (20 mL), washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 16:1) to give 35 ($451 \mathrm{mg}, 56 \%$) as a white solid: $\mathrm{R}_{f}=0.37$ (petroleum ether/ EtOAc 4:1); $[\alpha]_{\mathrm{D}}=-7.1(c=1.3$, EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.87-7.95(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCO}), 7.5-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCO})$, 7.35-7.22 (m, 16H, Ar), 6.79-6.76 (m, 2H, Ar), 5.69-5.68 (m, 2H, H-1, H-5), 4.87 (s, $\left.2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.78\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.64$ $\left(\mathrm{d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.27(\mathrm{t}, 1 \mathrm{H}, J=9.0$ $\mathrm{Hz}, \mathrm{H}-3), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75-3.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4), 2.56(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.6,15.6$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{eq}), 1.87(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=166.14$ (PhCO), 159.09 (PMB), 138.67, 138.07, 132.75, 130.18, 130.13, 129.78, 129.50, $128.19,128.12,127.83,127.53,113.62,79.76,79.65,77.92,75.51,72.42,72.06$, 68.39, $55.15\left(\mathrm{OCH}_{3}\right), 29.27(\mathrm{C}-6)$; HRMS (ESI) m/e calcd. for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 695.2615, found: 695.2608.

1D-(1,2,4/3,5)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-4-O-(4-methoxybenzyl)-

1,2,3,4,5-cyclohexanepentol (36). Following the procedure in synthesis of 23, $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}$ was freshely prepared from $\mathrm{Me}_{4} \mathrm{NBH}_{4}(285 \mathrm{mg}, 3.2 \mathrm{mmol})$ and AcOH ($0.64 \mathrm{ml}, 11.1 \mathrm{mmol}$) in THF (5 mL). To the mixture, a solution of $19(298 \mathrm{mg}$, $0.64 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added dropwise. After stirring for 12 h , TLC monitoring indicated no starting material left, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the
reaction. The reaction mixture was neutralized with sat. KHCO_{3}, extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give a colorless oil. To this colorless oil in dry pyridine $(2 \mathrm{~mL}), \mathrm{BzCl}(0.3 \mathrm{~mL})$ and cat. DMAP were added slowly at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir at r.t. for 5 h , concentrated in vacuo. The residue was dissolved in EtOAc (20 mL), washed with sat. NaHCO_{3}, water and brine. The organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 16:1) to give 36 (382 $\mathrm{mg}, 88 \%$ over two steps) as a white solid: $\mathrm{R}_{\mathrm{f}}=0.29$ (petroleum ether/EtOAc 3:1); $[\alpha]_{\mathrm{D}}=+35.0(c=0.5, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.14-8.09(\mathrm{~m}, 2 \mathrm{H}$, PhCO), 7.99-7.97 (m, 2H, PhCO), 7.61-7.28 (m, 16H, Ar), 7.25-7.16 (m, 2H, Ar), 7.09-7.06 (m, 2H, Ar), 5.84 (m, 1H, , H-1), 5.57 (ddd, 1H, J = 5.0, 10.0, 10.0 Hz , $\mathrm{H}-5), 4.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.89-4.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.60\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.04(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3)$, 3.79-3.67 (m, 5H, H-2, H-4, OCH_{3}), $2.50(\mathrm{dt}, 1 \mathrm{H}, J=4.5,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.73$ (ddd, $1 \mathrm{H}, \mathrm{J}=2.5,12.5,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=165.67(\mathrm{PhCO})$, 165.56 (PhCO), 159.15 (PMB), 138.62, 137.81, 133.18, 133.06, 130.21, 129.91, $129.77,129.61,128.46,128.39,128.32,128.03,127.67,127.59,113.68,82.80,81.74$, 80.80, 76.05, 75.44, 72.15, 71.59, 66.92, $55.14\left(\mathrm{OCH}_{3}\right), 31.15$ (C-6); HRMS (ESI) m/e calcd. for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$690.3061, found: 690.3059.

1L-(1,2,4/3,5)-1,5-Di-azido-3,4-di-O-benzyl-2,3,4-cyclohexanetriol (37). To a solution of $\mathbf{3 6}$ ($382 \mathrm{mg}, 0.57 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL}), 30 \% \mathrm{NaOMe}$ (in MeOH, 0.1
mL) was added and the mixture was stirred for 1 h . The reaction mixture was neutralized with ion-exchanged resin (Dowex 50, strong acid form), filtered, and concentrated to give crude diol (207 mg). To a suspension of crude diol product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, pyridine ($0.36 \mathrm{~mL}, 4.4 \mathrm{mmol}$) was added, followed by the addition of $\mathrm{Tf}_{2} \mathrm{O}(306 \mu \mathrm{~L}, 1.7 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min , sat. NaHCO_{3} was added to quench the reaction. The reaction mixture was diluted with EtOAc $(2 \times 50 \mathrm{~mL})$, washed with water and brine. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was coevaporated with toluene for three times before dissolved in DMF (5 mL). To the above mixture, $\mathrm{NaN}_{3}(116 \mathrm{mg}, 1.78 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. After stirring for 12 h , the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give $\mathbf{3 7}$ ($91 \mathrm{mg}, 41 \%$ over three steps): $\mathrm{R}_{f}=0.40$ (petroleum ether/EtOAc 2:1). To the crude diol described above, -OTf was substituted by $\mathrm{N}_{3}{ }^{-}$ whereas PMB group was deprotected at the same time by the above procedure. $[\alpha]_{\mathrm{D}}=$ $+18.3(c=1.8, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.97$ $\left(\mathrm{d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.88\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=11.0$ $\left.\mathrm{Hz}, \mathrm{PhCH}_{2}\right), 4.69\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.00(\mathrm{q}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1)$, 3.74-3.69 (m, 2H, H-3, H-5), 3.65 (dd, 1H, J = 3.5, 9.5 Hz, H-2), $3.33(t, 1 H, J=9.0$ $\mathrm{Hz}, \mathrm{H}-4), 2.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{OH}), 2.09(\mathrm{dt}, 1 \mathrm{H}, J=4.5,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.44$ (ddd, $1 \mathrm{H}, J=3.0,12.5,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.94$, 137.54, 128.74, 128.49, 128.16, 127.98, 127.88, 84.65, 81.70, 75.77, 75.57, 74.12,
59.97, 59.29, 31.54 (C-6).; HRMS (ESI) m/e calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$ 412.2092, found: 412.2095.

1d-(1,2,4/3,5)-1,5-Di-azido-2,3-di-O-benzyl-2,3,4-cyclohexanetriol (38). To a solution of $\mathbf{3 1}(78 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, was added dry pyridine (0.14 $\mathrm{mL}, 1.7 \mathrm{mmol})$, followed by the addition of $\mathrm{Tf}_{2} \mathrm{O}(0.11 \mathrm{~mL}, 0.67 \mathrm{mmol})$ dropwise at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 10 min , sat. NaHCO_{3} was added to quench the reaction. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with water $(10 \mathrm{~mL})$ and brine (10 mL). The organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and co-evaporated with toluene ($5 \mathrm{~mL} \times 3$). The residue was dissolved in dry DMF (2 mL), and $\mathrm{NaN}_{3}(44 \mathrm{mg}, 0.67 \mathrm{mmol})$ was added. After stirring for 5 h , the reaction mixture was concentrated, diluted with EtOAc, washed with water, and again concentrated to give a colorless oil. To a solution of this oil in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}, 18: 1)$, DDQ (71 $\mathrm{mg}, 0.30 \mathrm{mmol}$) was added. After stirring for 4 h at room temperature, sat. NaHCO_{3} was added to quench the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 10:1) to give 38 ($26 \mathrm{mg}, 40 \%$ over three steps) as a colorless oil: $\mathrm{R}_{f}=0.40$ (petroleum ether/EtOAc 2:1); $[\alpha]_{\mathrm{D}}=-0.9$ $(c=0.2, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.97(\mathrm{~d}$, $\left.1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.75-4.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.98(\mathrm{q}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1)$, $3.71(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-3), 3.60(\mathrm{ddd}, 1 \mathrm{H}, J=4.5,9.5,11.5 \mathrm{~Hz}, \mathrm{H}-5), 3.54(\mathrm{dd}, 1 \mathrm{H}$, $J=3.5,9.0 \mathrm{~Hz}, \mathrm{H}-2), 3.39(\mathrm{dt}, 1 \mathrm{H}, J=2.0,9.0 \mathrm{~Hz}, \mathrm{H}-4), 2.59(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{OH})$,
2.03 (dt, $1 \mathrm{H}, J=4.5,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.34$ (ddd, $1 \mathrm{H}, J=2.5,12.0,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.19,137.38,128.63,128.58,128.09,127.99$, 127.91, 82.05, 81.06, 76.26, 75.77, 72.93, 58.89, 57.74, 31.11 (C-6); HRMS (ESI) m / e calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$412.2092, found: 412.2093.

1D-(1,2,4/3,5)-5-O-Benzoyl-2,3-di-O-benzyl-1-O-methyl-1,2,3,4,5-cyclohexanepe

 ntol (39). To a solution of 21 ($306 \mathrm{mg}, 0.77 \mathrm{mmol}$) in pyridine (5 mL), was added DMAP (ca. 0.05 equiv.), followed by the addition of $\mathrm{BzCl}(0.36 \mathrm{~mL}, 3.1 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring for 5 h , the mixture was concentrated, extracted with EtOAc, washed with sat. NaHCO_{3} and water. The organic layer was collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. To a solution of the above crude product in $\mathrm{MeOH}(10 \mathrm{~mL})$, was added $\mathrm{PdCl}_{2}(36 \mathrm{mg}, 0.21 \mathrm{mmol})$. After stirring at room temperature for 2 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give 39 ($351 \mathrm{mg}, 98 \%$) as a white solid: $\mathrm{R}_{f}=0.48$ (petroleum ether/EtOAc 2:1); $[\alpha]_{\mathrm{D}}=+10.9(c=1.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.04-8.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCO}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.44-7.29(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar})$, 5.25 (ddd, $1 \mathrm{H}, J=4.5,9.0,11.0 \mathrm{~Hz}, \mathrm{H}-5), 5.00\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, 4.79-4.70 (m, 3H, PhCH_{2}), $3.90(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3), 3.79-3.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-4)$, $3.54(\mathrm{dd}, 1 \mathrm{H}, J=3.0,9.0 \mathrm{~Hz}, \mathrm{H}-2), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.54(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{OH})$, $2.53(\mathrm{dt}, 1 \mathrm{H}, J=4.5,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.39(\mathrm{ddd}, 1 \mathrm{H}, J=2.4,11.1,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;$ ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=166.15$ (PhCO), 138.59, 138.06, 132.99, 130.08,129.62, 128.52, 128.41, 128.30, 127.99, 127.88, 127.79, 81.58, 81.27, 75.53, 74.67, 72.51, 71.73, $57.20\left(\mathrm{OCH}_{3}\right), 28.73$ (C-6); elemental analysis calcd. (\%) for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{6}$: C 72.71, H 6.54, found: C, 72.44, H, 6.49; HRMS (ESI) m/e calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{6}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$485.1935, found: 485.1942 .

1D-(1,2,4,5/3)-2-O-Allyl-1-O-benzoyl-2,3-di-O-benzyl-5-O-methyl-1,2,3,4,5-cyclo

 hexanepentol (40). To a solution of $22(1.083 \mathrm{~g}, 2.7 \mathrm{mmol})$ and DMAP (16.5 mg , $0.14 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL}), \mathrm{BzCl}(0.93 \mathrm{~mL}, 8.1 \mathrm{mmol})$ was added dropwise at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 5 h , the mixture was concentrated in vacuo. The residue was dissolved in EtOAc (50 mL), washed with sat. NaHCO_{3} and water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give 40 (1.339 g, 98\%) as a white solid: $\mathrm{R}_{f}=0.52$ (petroleum ether/EtOAc 2:1); $[\alpha]_{\mathrm{D}}=-6.6(c=0.6, \mathrm{EtOAc})$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.15-8.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCO}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, 7.45-7.25 (m, 12H, Ar), 5.88 (ddt, $1 \mathrm{H}, J=6.0,10.5,17.5 \mathrm{~Hz},=\mathrm{CH}-), 5.57-5.56(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1), 5.24\left(\mathrm{~d}, 1 \mathrm{H}, J=17.1 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.11\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.90-4.72$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.25-4.08\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3,=\mathrm{C}-\mathrm{CH}_{2}-\right), 3.67-3.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.50-3.46$ (m, 2H, H-2, H-4), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.50(\mathrm{dt}, 1 \mathrm{H}, J=3.6,15.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.41(\mathrm{~d}$, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=166.20(\mathrm{PhCO}), 138.90$, $138.51,134.91,133.63,132.88,130.34,130.13,129.96,128.28,127.98,127.64$, $127.55,117.15,81.14,80.11,78.72,76.04,75.90,72.89,71.59,68.60,56.83\left(\mathrm{OCH}_{3}\right)$,26.42 (C-6); MS (ESI) m/e calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 525$, found: 525 ; elemental analysis calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{6}$: C 74.08, H 6.82, found: C 74.11, H 6.99.

1D-(1,2,4,5/3)-5-O-Benzoyl-2,3-di-O-benzyl-1-O-methyl-1,2,3,4,5-cyclohexanepe

 ntol (41). To a solution of $40(31 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$, was added PdCl_{2} ($3 \mathrm{mg}, 0.018 \mathrm{mmol}$) at room temperature. After stirring for 3 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give $41(25 \mathrm{mg}$, $87 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/EtOAc 2:1); $[\alpha]_{\mathrm{D}}=-1.9(c=2.1$, EtOAc). Acceptor 41 was not stable in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ at room temperature. Besides, it is hard to identify the structure from its ${ }^{1} \mathrm{H}$ NMR. For further identification, allyl group was reintroduced by the following procedure: To a mixture of $41(33 \mathrm{mg}$, $0.07 \mathrm{mmol})$ and freshly prepared AllylOCNHCCl ${ }_{3}(70 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $(1: 2,2$ $\mathrm{mL})$ with $4 \AA$ molecular sieves, $\mathrm{TfOH}(7 \mu \mathrm{~L})$ was added slowly at $0{ }^{\circ} \mathrm{C}$. Stirring the mixture for 12 h from $0{ }^{\circ} \mathrm{C}$ to room temperature, $\mathrm{Et}_{3} \mathrm{~N}$ was added to quench the reaction. The reaction mixture was filtered and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give $\mathbf{4 0}^{*}$ (25 $\mathrm{mg}, 70 \%$) as a white solid: $\mathrm{R}_{f}=0.52$ (petroleum ether/EtOAc 2:1). From the NMR spectra it was find the allylation product 40^{*} and $\mathbf{4 0}$ are the same compound. It was demonstrated that the benzoyl group did not migrate during the deprotection of allyl group. Compound 41 was directly used for the glycosyl coupling reaction.
1d-(1,2,4/3,5)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-1,2,3,4,5-cyclohexanepentol (42).

To a solution of $\mathbf{2 3}(261 \mathrm{mg}, 0.44 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$, was added $\mathrm{PdCl}_{2}(25$ $\mathrm{mg}, 0.14 \mathrm{mmol}$) at room temperature. After stirring for 2 h , no starting material was detected. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtrated, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 8:1) to give $\mathbf{4 2}(237 \mathrm{mg}, 98 \%)$ as a colorless oil: $\mathrm{R}_{f}=0.26$ (petroleum ether/EtOAc 2:1); $[\alpha]_{\mathrm{D}}=-22.4(c=2.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 8.11-8.08 (m, 2H, PhCO), 8.03-8.01 (m, 2H, PhCO), 7.63-7.25 (m, 16H, Ar), 5.86 (dt, $1 \mathrm{H}, \mathrm{J}=2.4,4.8 \mathrm{~Hz}, \mathrm{H}-1), 5.48(\mathrm{ddd}, 1 \mathrm{H}, J=4.8,8.7,11.1 \mathrm{~Hz}, \mathrm{H}-5), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.84\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.74\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, $4.60\left(\mathrm{~d}, 1 \mathrm{H}, ~ J=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 3.96-3.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4), 3.74(\mathrm{dd}, 1 \mathrm{H}, J=3.0$, 8.7 Hz, H-2), $2.74(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{OH}), 2.50(\mathrm{dt}, 1 \mathrm{H}, J=4.8,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq})$, 1.81 (ddd, $1 \mathrm{H}, \mathrm{J}=2.4,10.8,14.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=165.97$ (PhCO), 165.61 (PhCO), 138.24, 137.57, 133.24, 133.11, 129.88, 129.68, 128.51, $128.38,128.02,127.88,127.79,80.64,80.18,75.39,74.38,72.13,71.45,67.08,30.62$ (C-6); HRMS (ESI) m/e calcd. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$575.2040, found: 575.2034.

1L-(1,2,4/3,5)-1,5-Di-O-benzoyl-3,4-di-O-benzyl-1,2,3,4,5-cyclohexanepentol (43).

To a solution of $24(112 \mathrm{mg}, 0.24 \mathrm{mmol})$ in methanol (2 mL), $30 \% \mathrm{MeONa}$ (in $\mathrm{MeOH}, 0.1 \mathrm{~mL}$) was added dropwise. The reaction mixture was neutralized with ion-exchange resin (Dowex 50, strong acid form), filtered, and concentrated to give yellow oil. The oil was dissolved in pyridine (5 mL), $\mathrm{BzCl}(0.17 \mathrm{~mL}, 1.44 \mathrm{mmol})$ was
added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 6 h . The reaction mixture was concentrated in vacuo, diluted with $\mathrm{EtOAc}(20 \mathrm{~mL})$, and washed with sat. KHCO_{3}. The organic layer was collected and concentrated to give a yellow oil. To the solution of this oil in methanol $(2 \mathrm{~mL}), \mathrm{PdCl}_{2}(13 \mathrm{mg}, 0.07 \mathrm{mmol})$ was added at room temperature. After stirring for 2 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, and concentrated. The resulting residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give $\mathbf{4 3}$ (118 mg, 89% over three steps) as a white solid: $\mathrm{R}_{f}=0.31$ (petroleum ether/EtOAc 2:1); $[\alpha]_{\mathrm{D}}=-24.1(c=1.7$, EtOAc $) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=8.06-8.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCO}), 8.01-7.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCO})$, 7.60-7.54 (m, 2H, Ar), 7.47-7.40 (m, 4H, Ar), 7.36-7.28 (m, 5H, Ar), 7.20-7.19 (m, $5 \mathrm{H}, \mathrm{Ar}), 5.64-5.62(\mathrm{dt}, 1 \mathrm{H}, J=2.5,4.5 \mathrm{~Hz}, \mathrm{H}-1), 5.58(\mathrm{ddd}, 1 \mathrm{H}, J=5.0,8.5,9.0 \mathrm{~Hz}$, $\mathrm{H}-5), 4.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.85-4.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.96$ (t, 1H, $J=$ $8.5 \mathrm{~Hz}, \mathrm{H}-4), 3.91(\mathrm{dd}, 1 \mathrm{H}, J=3.0,9.0 \mathrm{~Hz}, \mathrm{H}-2), 3.83(\mathrm{t}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3)$, 2.40-3.00 (br, 1H, OH), 2.52 (dt, $1 \mathrm{H}, J=4.5,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.83$ (ddd, $1 \mathrm{H}, J=2.5$, 11.0, 14.0 Hz, H-6ax); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=166.02(\mathrm{PhCO}), 165.57$ (PhCO), 138.05, 137.60, 133.23, 133.13, 129.83, 129.73, 129.60, 128.54, 128.42, $128.39,128.12,128.08,127.96,127.84,82.60,81.18,75.53,75.43,72.72,71.68$, 70.01, 30.70 (C-6); MS (ESI) m/e calcd. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{7}: 575\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 575; elemental analysis calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{7}$: C 73.62, H 5.84, found: C 73.62, H 5.99.

1L-(1,3,5/2,4)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-1,2,3,4,5-cyclohexanepentol

(44). To a solution of $\mathbf{3 0}(48 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}, 18: 1)$, was added
$\mathrm{DDQ}(26 \mathrm{mg}, 0.11 \mathrm{mmol})$ at room temperature. After stirring for 2 h , sat. NaHCO_{3} was added to quench the reaction. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with brine (20 mL). The organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 10:1) to give $44(24 \mathrm{mg}, 62 \%)$ as a white solid: $\mathrm{R}_{f}=0.30$ (petroleum ether/EtOAc 3:1); $[\alpha]_{\mathrm{D}}=-33.6(c=0.1, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.03-7.98(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCO}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.44-7.40(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar})$, 7.34-7.29 (m, 5H, Ar), 7.18 (s, 5H, Ar), 5.30 (ddd, $1 \mathrm{H}, \mathrm{J}=4.5,9.0,11.5 \mathrm{~Hz}, \mathrm{H}-1$), 5.17 (ddd, $1 \mathrm{H}, J=5.0,9.5,12.0 \mathrm{~Hz}, \mathrm{H}-5), 4.97\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, 4.85-4.78 (m, 3H, PhCH_{2}), $3.87(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3), 3.81(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4)$, $3.58(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-2), 2.60(\mathrm{dt}, 1 \mathrm{H}, J=4.5,12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 2.53(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH})$, $1.80(\mathrm{q}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=165.92(\mathrm{PhCO})$, 165.42 (PhCO), 138.18, 137.82, 133.15, 133.16, 129.82, 129.71, 129.63, 128.61, 128.41, 128.35, 128.31, 128.04, 127.97, 127.72, 82.85, 82.68, 75.83, 75.42, 75.05, 71.04, 70.84, 31.94 (C-6); HRMS (ESI) m / e calcd. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 575.2040$, found: 575.2030.

(2R,3S,4R,5R)-2-O-Allyl-3-O-benzyl-5-O-methyl-7-oxa-bicyclo[2.2.1]heptane

(46). To a solution of $21(14 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, was added dry pyridine ($32.6 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) followed by the addition of $\mathrm{Tf}_{2} \mathrm{O}(27.8 \mu \mathrm{~L}, 0.16 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After 1 h, TLC monitoring showed the completion of the reaction, and sat. NaHCO_{3} was added to quench the reaction. The reaction mixture was diluted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give $46(10 \mathrm{mg}, 99 \%)$ as a white solid: $\mathrm{R}_{f}=0.40$ (petroleum ether/EtOAc 2:1); $[\alpha]_{\mathrm{D}}=-49.2(c=0.7, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.39-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.90(\mathrm{ddt}, 1 \mathrm{H}, J=6.0,10.5,17.5 \mathrm{~Hz},=\mathrm{CH}-), 5.25$ $\left(\mathrm{dq}, 1 \mathrm{H}, J=1.5,17.5 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 5.18\left(\mathrm{dq}, 1 \mathrm{H}, J=1.5,6.0 \mathrm{~Hz},=\mathrm{CH}_{2}\right), 4.56-4.50(\mathrm{~m}$, 4H, H-1, H-2, PhCH_{2}), 4.07 (dd, 1H, $\left.J=2.4,6.9 \mathrm{~Hz}, \mathrm{H}-5\right), 3.99-3.92$ (m, 2H, $\left.=\mathrm{C}_{-} \mathrm{CH}_{2}\right), 3.84(\mathrm{dt}, 1 \mathrm{H}, J=1.5,6.5 \mathrm{~Hz}, \mathrm{H}-3), 3.35(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{H}-4), 3.26(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.87(\mathrm{dd}, 1 \mathrm{H}, J=7.0,13.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}), 1.72(\mathrm{ddq}, 1 \mathrm{H}, J=1.5,6.5,13.0$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{eq}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=137.46,134.27,128.52,128.03,127.85$, $117.45,85.65,84.06,79.97,79.35,72.85,69.96,56.49\left(\mathrm{OCH}_{3}\right), 35.34$ (C-6); HRMS (ESI) m / e calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 313.1410$, found: 313.1408 .

p-Methylphenyl

2,6-di-azido-3,4-O-isopropylidene-1-thio-2,6-di-deoxy- $\boldsymbol{\beta}$-D-galactopyranoside

(51). To a solution of $\mathbf{4 8}^{3}(762 \mathrm{mg}, 2.27 \mathrm{mmol})$ in 2,2-dimethoxypropane (10 mL), was added CSA ($29 \mathrm{mg}, 0.12 \mathrm{mmol}$) at room temperature. After stirring overnight, $\mathrm{Et}_{3} \mathrm{~N}$ was added to neutralize the reaction. The reaction mixture was concentrated and coevaperated with toluene for three times. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 15:1) to give 51 ($372 \mathrm{mg}, 50 \%$) as a white solid: $\mathrm{R}_{f}=0.41$ (petroleum ether/EtOAc 4:1); $[\alpha]_{\mathrm{D}}=+145.5(c=4.2$, EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.49(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{Ar}), 7.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$
$=7.9 \mathrm{~Hz}, \mathrm{Ar}), 4.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}-1), 4.11-4.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4), 3.81$ (ddd, $1 \mathrm{H}, \mathrm{J}=2.1,5.4,5.7 \mathrm{~Hz}, \mathrm{H}-5), 3.66(\mathrm{dd}, 1 \mathrm{H}, J=7.8,12.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 3.44-3.32(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-6 \mathrm{~b}), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.78,133.97,129.74,127.28,110.79$ (isopropylidene), 85.91 (C-1), 78.25, 75.28, 72.69, 63.55, 51.13, 27.97 (isopropyliden), 26.23 (isopropyliden), $21.14\left(\mathrm{CH}_{3}\right)$; MS (ESI-TOF) m/e calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S} 399\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 399; elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}$: C 51.06, H 5.36, N, 22.23, found: C 51.27, H 5.55, N 22.09 .

p-Methylphenyl

 2,6-di-azido-3,4-di-O-acetyl-1-thio-2,6-di-deoxy- α-D-mannopyranoside (52). To a solution of $\mathbf{4 9} 9^{4}(530 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{MeOH}(5$ $\mathrm{mL}), 30 \% \mathrm{NaOMe}$ in $\mathrm{MeOH}(0.1 \mathrm{~mL})$ was added. The solution was neutralized with ion-exchange resin (Dowex 50, strong acid form), filtered, and concentrated to give colorless oil. To this oil in pyridine (5 mL), $\mathrm{TsCl}(462 \mathrm{mg}, 2.4 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$, and the mixture was stirred overnight. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed with sat. NaHCO_{3} and brine. The organic layer was collected and concentrated. The resulting residue was dissolved in DMF (5 mL), $\mathrm{NaN}_{3}(112 \mathrm{mg}, 1.7 \mathrm{mmol})$ was added, and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 10 h . The mixture was concentrated in vacuo, diluted with EtOAc, and washed with water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was mixed with pyridine $(5 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(0.28 \mathrm{~mL}, 2.7 \mathrm{mmol})$ was then added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred overnight at room temperature. The reaction mixture was
concentrated in vacuo. The resulting residue was dissolved in EtOAc, washed with sat. NaHCO_{3} and brine. The organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give $52(258 \mathrm{mg}, 51 \%$ over four steps) as a white solid: $\mathrm{R}_{f}=0.36$ (petroleum ether/EtOAc 4:1); mp 64-65 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+8.7(c=4.1$, EtOAc $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}, \mathrm{Ar}), 5.43(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1), 5.35(\mathrm{dd}, 1 \mathrm{H}, J=4.0,9.5 \mathrm{~Hz}, \mathrm{H}-3), 5.29$ $(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4), 4.44(\mathrm{ddd}, 1 \mathrm{H}, J=2.5,7.0,9.5 \mathrm{~Hz}, \mathrm{H}-5), 4.30(\mathrm{dd}, 1 \mathrm{H}, J=$ $1.5,4.0 \mathrm{~Hz}, \mathrm{H}-2), 3.40(\mathrm{dd}, 1 \mathrm{H}, J=7.0,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 3.26(\mathrm{dd}, 1 \mathrm{H}, J=2.5,13.5 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{~b}), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=169.87\left(\mathrm{COCH}_{3}\right), 169.60\left(\mathrm{COCH}_{3}\right), 138.68,132.52,130.11,128.38,86.09$ $(\mathrm{C}-1), 70.88,67.18,62.64,51.07,21.11\left(\mathrm{CH}_{3}\right), 20.64\left(\mathrm{COCH}_{3}\right), 20.49\left(\mathrm{COCH}_{3}\right) ; \mathrm{MS}$ (ESI-TOF) m/e calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S} 443\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 443 ; elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}$: C 48.56, H 4.79, N 19.99, found: C 48.83, H 5.07, N 19.82 .

General procedure for the preparation of pseudodisaccharides 53-58 and 60-65.

Donor $50^{5}(0.3 \mathrm{mmol})$ and acceptor $(0.2 \mathrm{mmol})$ were coevaporated twice with toluene and further dried under vaccum. To a solution of donor and acceptor in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL}), 4 \AA$ molecular sieves $(600 \mathrm{mg})$ and N -iodosucccinimide $(0.3 \mathrm{mmol})$ were added, and the mixture was stirred for 30 min before cooled to $-40{ }^{\circ} \mathrm{C}$ under argon. Trifluoromethanesulfonic acid ($0.03 \mathrm{mmol}, 1 \mathrm{~N}$ in $\mathrm{Et}_{2} \mathrm{O}$) was added, the temperature
was then allowed to rise to $-20^{\circ} \mathrm{C}$, and maintained at this temperature for 30 min to 3 h until donor disappeared by TLC monitoring. $\mathrm{Et}_{3} \mathrm{~N}$ was added to quench the reaction. The reaction mixture was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated. The residue was purified by column chromatography on silica gel. To the disaccharides with benzoyl protective group, $30 \% \mathrm{NaOMe}$ in MeOH was added to give 53-58. Compound $\mathbf{6 5}$ was obtained by the coupling of donor $\mathbf{5 1}$ and acceptor $\mathbf{3 3}$ followed by the deprotection of acetal group with $80 \% \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$ for 2 h .

1L-(1,2,4,5/3)-2-O-(2',6'-Di-azido-3',4'-di-O-benzyl-2', $\mathbf{6}^{\prime}$ 'di-deoxy- α-d-glucopyr

 anosyl)-3,4-di-O-benzyl-1,2,3,4,5-cyclohexanepentol (53). Yield: $80 \% ;[\alpha]_{\mathrm{D}}=+19.9$ $(c=3.2, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41-7.25(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 5.28(\mathrm{~d}$, $1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1$ '), $5.02\left(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.92-4.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right)$, $4.74\left(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.69\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=$ 11.5 Hz, PhCH_{2}), 4.18-4.10 (m, 4H, H-1 or H-5, H-2 or H-4, H-3 H-5'), 4.05 (dd, 1H, $\left.J=9.0,10.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.58\left(\mathrm{dd}, 1 \mathrm{H}, J=3.5,10.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.52-3.44$ (m, 5H, H-1 or H-5, H-2 or H-4, H-4', H-6a', OH), 3.33 (dd, $1 \mathrm{H}, \mathrm{J}=6.0,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), 3.12 (d, $1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{OH}), 2.32(\mathrm{dt}, 1 \mathrm{H}, J=3.5,15.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.53(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.74,137.75,137.58,128.53,128.36$, 128.12, 127.98, 127.90, 127.83, 127.74, 127.53, 99.14 (C-1'), 82.10, 82.16, 80.37, $78.94,78.18,75.84,75.59,75.13,72.78,70.93,70.34,68.50,63.86,51.10,31.52$ (C-6); MS (ESI-TOF) m/e calcd. for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{8} 754\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$, found 754;elemental analysis calcd (\%) for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{8}$: C 65.20, H 6.02, N 11.41, found: C, 65.09, H, 6.00, N, 11.19.

1d-(1,3,5/2,4)-2-O-(2',6'-Di-azido-3',4'-di-O-benzyl-2', ${ }^{\prime}$ '-di-deoxy- α-d-glucopyr

 anosyl)-3,4-di-O-benzyl-1,2,3,4,5-cyclohexanepentol (54). Yield: $77 \% ;[\alpha]_{D}=+0.6$ $(c=0.3$, EtOAc $) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.27(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 5.37(\mathrm{~d}$, $1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1$ '), $5.02\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}$, $\left.\mathrm{PhCH}_{2}\right), 4.88-4.86\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.67\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.59(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.21\left(\mathrm{ddd}, 1 \mathrm{H}, J=2.5,5.5,10.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=9.0$, 10.0 Hz, H-4'), 3.64-3.46 (m, 7H, H-1, H-2, H-3 or H-4, H-5, H-2', H-3', H-6a'), 3.37-3.33 (m, 2H, H-3 or H-4, H-6b'), 2.96 (br, 1H, OH), 2.24 (dt, $1 \mathrm{H}, J=4.5,12.5$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{eq}), 1.62(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.48(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=138.36,138.20,137.44,137.38,128.69,128.59,128.49,128.42,128.16$, 128.10, 128.02, 127.92, 127.87, 127.54, 127.29, 98.28 (C-1'), 86.17, 85.48, 82.68, 80.27, 78.74, $75.57(\times 2), 75.47,75.28,70.82,68.51,68.26,63.76,51.22,36.43(\mathrm{C}-6) ;$ HRMS (ESI) m/e calcd. for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 759.3113$, found: 759.3124.
1D-(1,2,4/3,5)-4-O-(2',6'-Di-azido-3',4'-di-O-benzyl-2', $\mathbf{6}^{\prime}$ 'di-deoxy- α-d-glucopyr

 anosyl)-2,3-di-O-benzyl-1,2,3,4,5-cyclohexanepentol (55). Yield: 70\%; $[\alpha]_{\mathrm{D}}=+76.5$ $(c=0.3, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40-7.24(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 5.39(\mathrm{~d}$, $1 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{H}-1$ ' $), 4.97-4.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.71-4.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.56(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}$), 4.26-4.22 (m, 1H, H-5'), 4.13-4.07 (m, 1H, H-1), 4.12-3.96($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$ or H-4, H-3'), 3.85 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 3.56-3.43 (m, 5H, H-2, H-3 or H-4, H-5, H-2', H-6a'), 3.33 (dd, $1 \mathrm{H}, J=5.1,13.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), $2.25(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=4.2$, $13.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.53$ (ddd, $1 \mathrm{H}, J=2.4,13.0,13.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=138.70,137.65,137.50,137.43,128.56,128.49,128.34,128.11,128.01$, 127.87, 127.52, 127.45, 98.14 (C-1'), 85.13, 83.01, 80.49, 80.24, 78.75, 75.55, 75.24, 72.73, 70.74, 67.41, 65.60, 63.76, 51.13, 34.47 (C-6); MS (ESI-TOF) m/e calcd. for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{8} 754\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$, found: 754; elemental analysis calcd (\%) for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{8}$: C 65.20, H 6.02, N 11.41 , found: C 65.07, H 5.99, N 11.19.

1L-(1,2,4/3,5)-2-O-(2',6'-Di-azido-3',4'-di-O-benzyl-2', $\mathbf{6}^{\prime}$-di-deoxy- α-d-glucopyr

 anosyl)-3,4-di-O-benzyl-1,2,3,4,5-cyclohexanepentol (56). Yield: 86%; $[\alpha]_{\mathrm{D}}=+8.7$ $(c=0.3$, EtOAc $) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.39-7.25(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}), 5.35(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.02-4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.91-4.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.70(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.58\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.11-4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$, 4.03-3.89 (m, 4H, H-3 or H-4, H-3', H-4', H-5'), 3.72 (dd, $1 \mathrm{H}, \mathrm{J}=2.7,9.6 \mathrm{~Hz}, \mathrm{H}-2$), 3.50-3.42 (m, 3H, H-3 or H-4, H-5, H-6a'), 3.34-3.27 (m, 2H, H-2', H-6b'), 2.39-2.33 $(2 \times \mathrm{br}, 2 \mathrm{H}, \mathrm{OH}), \quad 2.22(\mathrm{dt}, 1 \mathrm{H}, J=4.2,13.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.45(\mathrm{ddd}, 1 \mathrm{H}, J=2.0,12.0$, $13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.43,138.38,137.33,137.19$, $128.59,128.49,128.40,128.18,128.05,127.88,127.74,127.50,98.59$ (C-1'), 86.54, $81.20,81.10,80.22,78.76,75.58,75.44,75.38,75.29,71.23,68.10,67.76,63.59$, 51.09, 34.24 (C-6); HRMS (ESI) m/e calcd. for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 759.3113$, found: 759.3116 .1D-(1,2,4/3,5)-4-O-(2', $\mathbf{6}^{\prime}$-Di-azido-3', $\mathbf{4}^{\prime}$-di-O-benzyl-2', $\mathbf{6}^{\prime}$-di-deoxy- α-d-glucopyr anosyl)-2,3-di-O-benzyl-1-O-methyl-1,2,3,4,5-cyclohexanepentol (57). Yield: 70\%; $[\alpha]_{\mathrm{D}}=+72.7(c=4.4, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.38-7.26(\mathrm{~m}, 20 \mathrm{H}$, Ar), $5.37\left(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{H}-1\right.$ '), 4.99-4.84 (m, $\left.5 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.74-4.65(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.18(\mathrm{ddd}, 1 \mathrm{H}, J=2.4,5.1,10.2 \mathrm{~Hz}, \mathrm{H}-5$ '), $4.00(\mathrm{dd}, 1 \mathrm{H}, J=9.0,10.2 \mathrm{~Hz}, \mathrm{H}-4$ '), $3.91(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-3$ '), 3.84-3.80 (m, 1H, $\mathrm{H}-1), 3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.56-3.41$ (m, 8H, H-2, H-3, H-4, H-2', H-6a', OCH_{3}), 3.33 (dd, $1 \mathrm{H}, J=5.1,13.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b} '), 2.90(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{OH}), 2.28(\mathrm{dt}, 1 \mathrm{H}, J=4.5$, 14.4 Hz, H-6eq), $1.23(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=14.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $138.85,138.13,137.47,137.42,128.56,128.49,128.36,128.27,128.12,127.99$, 127.90, 127.86, 127.71, 127.63, 127.34, 98.21 (C-1'), 85.97, 82.70, 80.44, 80.14, $78.76,75.53,75.21,74.75,72.69,70.75,67.62,63.76,57.54\left(\mathrm{OCH}_{3}\right), 51.17,31.97$ (C-6); HRMS (ESI) m/e calcd. for $\mathrm{C}_{41} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 773.3269$, found: 773.3262.

1L-(1,2,4,5/3)-2-O-(2',6'-Di-azido-3',4'-di-O-benzyl-2', ${ }^{\prime}$ '-di-deoxy- α-d-glucopyr anosyl)-3,4-di-O-benzyl-5-O-methyl-1,2,3,4,5-cyclohexanepentol (58). Yield: 70\%; $[\alpha]_{\mathrm{D}}=+34.8(c=2.4, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42-7.24(\mathrm{~m}, 20 \mathrm{H}$, Ar), $5.23\left(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{H}-1\right.$ '), $5.02\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.91-4.83(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.77\left(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.67\left(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right)$, $4.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.4 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.22-4.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1\right.$ or $\left.\mathrm{H}-3, \mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} \mathbf{4}^{\prime}, \mathrm{H}-5^{\prime}\right)$, 3.70-3.65 (m, 2H, H-1 or H-3, OH), 3.54-3.41 (m, 8H, H-4, H-5, H-6, H-2', H-6a',
$\left.\mathrm{OCH}_{3}\right), 3.34(\mathrm{dd}, 1 \mathrm{H}, J=5.1,13.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), $2.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.23$ $(\mathrm{d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.80,138.14,137.66$, 128.41, 128.28, 128.09, 127.92, 127.87, 127.82, 127.75, 127.64, 127.44, 99.33 (C-1'), 82.99, 82.70, 80.35, 78.99, 78.61, 78.35, 75.77, 75.52, 75.00, 73.13, 70.76, 70.17, 63.97, $59.06\left(\mathrm{OCH}_{3}\right), 51.10$, 29.71 (C-6); HRMS (ESI) m/e calcd. for $\mathrm{C}_{41} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{8}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right) 773.3269$, found: 773.3254.

1L-(1,3,4/2,6)-1-O-(2',6'-Di-azido-3',4'-di-O-benzyl-2',6'-di-deoxy- α-d-glucopyr

 anosyl)-2,3-di-O-benzyl-4,6-di-azido-1,2,3-cyclohexanetriol (60). Yield: 56\%; $[\alpha]_{D}$ $=+60.0(c=0.3, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.24(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar})$, $5.59\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{H}-1\right.$ ') , $5.05\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.91-4.86(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.61\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.07(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=$ 2.5, 4.0, $9.5 \mathrm{~Hz}, \mathrm{H}-5$ '), 4.01 (dd, 1H, $\left.J=9.0,10.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.99(\mathrm{dd}, 1 \mathrm{H}, J=3.5,7.7$ Hz, H-2'), 3.95 (t, 1H, J = $9.5 \mathrm{~Hz}, \mathrm{H}-4$ '), 3.65-3.58 (m, 2H, H-1 or H-2, H-4), 3.53-3.46 (m, 3H, H-1 or H-2, H-6, H-6a'), 3.36 (dd, 1H, J = 4.5, $13.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), $3.31(\mathrm{dd}, 1 \mathrm{H}, J=4.0,10.0 \mathrm{~Hz}, \mathrm{H}-3), 2.15(\mathrm{dt}, 1 \mathrm{H}, J=4.5,14.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{eq}), 1.47$ (ddd, $1 \mathrm{H}, \mathrm{J}=3.0,12.0,14.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=138.24,137.68$ ($\times 2$), 137.22, 128.59, 128.48, 128.41, 128.14, 128.05, 128.01, 127.90, 127.74, 127.58, 127.45, 97.74 (C-1'), 82.93, 81.71, 80.04, 78.71, 78.26, 75.47, 75.35, 75.00, 73.19, 70.89, 63.28, 58.28, 57.27, 51.00, 31.17 (C-5); HRMS (ESI) m/e calcd. for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{12} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$809.3242, found: 809.3241.
1L-(1,3,6/2,4)-1-O-(2',6'-Di-azido-3',4'-di-O-benzyl-2', ${ }^{\prime}$ '-di-deoxy- α-d-glucopyr

 anosyl)-4,6-di-azido-2,3-di-O-benzyl-1,2,3-cyclohexanetriol (61). Yield: 50\%; $[\alpha]_{\mathrm{D}}$ $=+82.1(c=0.6, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.25(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar})$, 5.37 (d, 1H, $\left.J=4.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.01\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=10.5$ $\left.\mathrm{Hz}, \mathrm{PhCH}_{2}\right), 4.88-4.82\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.56\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.06(\mathrm{dd}$, $1 \mathrm{H}, J=3.0,6.0 \mathrm{~Hz}, \mathrm{H}-6), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=9.0,10.5 \mathrm{~Hz}, \mathrm{H}-3$ '), $3.97(\mathrm{t}, 1 \mathrm{H}, J=9.0$ Hz, H-4'), 3.91 (ddd, 1H, J = 2.5, 7.0, $9.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), 3.85 (dd, 1H, $J=3.5,9.5 \mathrm{~Hz}$, H-2'), 3.71 (ddd, 1H, $J=4.5,9.5,12.5 \mathrm{~Hz}, \mathrm{H}-4), 3.45-3.32$ (m, 4H, H-1, H-2, H-3, H-6a'), 3.27 (dd, 1H, $J=7.0,12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), 2.11 (dt, $1 \mathrm{H}, J=4.0,14.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{eq})$, 1.45 (ddd, $1 \mathrm{H}, \mathrm{J}=2.0,11.5,13.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.24$, 137.56, 137.44, 137.39, 128.56, 128.44, 128.16, 128.05, 127.88, 127.60, 127.32, 99.02 (C-1'), 85.04, 81.64, 79.79, 79.41, 78.72, 75.81, 75.61, 75.53, 75.06, 71.87, 63.27, 59.96, 59.43, 51.10, 31.72 (C-5); HRMS (ESI) m/e calcd. for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{12} \mathrm{O}_{6}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right) 809.3242$, found: 809.3232.
1L-(1,3,4/2,5)-1-O-(2',6'-Di-azido-3', $\mathbf{4}^{\prime}$ 'di-O-benzyl-2', $\mathbf{6}^{\prime}$-di-deoxy- α-d-glucopyr

 anosyl)-6-azido-2,3-di-O-benzyl-4-O-methyl-1,2,3,4-cyclohexanetetrol (62). Yield: $86 \% ;[\alpha]_{\mathrm{D}}=+47.7(c=0.3, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.26(\mathrm{~m}$, 20H, Ar), 5.62 (d, 1H, $J=4.0 \mathrm{~Hz}, \mathrm{H}-1$ '), 5.07 (d, 1H, $\left.J=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.91-4.86$ (m, 4H, PhCH_{2}), 4.70-4.60 (m, 3H, PhCH_{2}), $4.28(\mathrm{ddd}, 1 \mathrm{H}, J=2.5,4.0,10.0 \mathrm{~Hz}$, $\left.\mathrm{H}-5^{\prime}\right), 4.03\left(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.00\left(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime}\right), 3.67-3.36(\mathrm{~m}, 10 \mathrm{H}$, H-1, H-2, H-3, H-4, H-6, H-2', H-6a', OCH_{3}), 3.30 (dd, 1H, J = 4.0, $10.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '),$2.32(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=4.0,14.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{eq}), 1.32(\mathrm{ddd}, 1 \mathrm{H}, J=2.0,13.5,14.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=138.52,137.82,137.70,128.44,128.35,128.03$, 127.93, 127.87, 127.73, 127.45, 97.74 (C-1’), 82.86, 81.75, 79.98, 78.70, 78.61, 75.43, $75.15,74.98,74.35,72.73,70.74,63.23,58.28,57.90\left(\mathrm{OCH}_{3}\right), 50.97,29.74$ (C-5); HRMS (ESI) m/e calcd. for $\mathrm{C}_{41} \mathrm{H}_{45} \mathrm{~N}_{9} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right) 793.3780$, found: 793.3786.

5,6,3',4'-Tetra-O-benzyl-1,3,2', $\mathbf{6}^{\prime}$ 'tetraazidoneamine (63). Yield: 80%; $[\alpha]_{\mathrm{D}}=$ +55.1 ($c=1.3, \mathrm{EtOAc}) ; 1 \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=7.38-7.26(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar})$, $5.58\left(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right), 5.02\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.94-4.80(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right), 4.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.1 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.00(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, H-3'), 3.65-3.2 (m, 9H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-6a', H-6b'), 2.32 (dt, $1 \mathrm{H}, J=4.2,13.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}), 1.49(\mathrm{q}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{ax})$. The ${ }^{1} \mathrm{H}$ NMR data coinside with the previous report. ${ }^{1}$

4-O-(2', $\mathbf{6}^{\prime}$-Di-azido-2', $\mathbf{6}^{\prime}$-di-deoxy-3'4'-di-O-acetyl- α-d-mannopyranosyl)-1,3-di -azido-5,6-di-O-benzyl-2-deoxystreptamine (64). Yield: $84 \% ;[\alpha]_{\mathrm{D}}=+68.9(c=0.9$, EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 5.29-5.21(\mathrm{~m}, 2 \mathrm{H}$, H-3', H-4'), 5.18 (d, 1H, $J=2.5 \mathrm{~Hz}, \mathrm{H}-1$ '), $5.02\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.90(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.83\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}$, PhCH_{2}), 4.32 (ddd, $\left.1 \mathrm{H}, \mathrm{J}=3.0,6.0,9.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.53-3.46$ (m, 4H, H-2', H-4, H-5, H-6), 3.43-3.37 (m, 2H, H-1, H-3), 3.33 (dd, 1H, J = 6.5, $13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$ '), 3.25 (dd, $1 \mathrm{H}, J=3.0,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 2.34 (dt, $1 \mathrm{H}, J=4.5,13.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}), 2.05$ ($\mathrm{s}, 3 \mathrm{H}$,
$\left.\mathrm{COCH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.50(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=169.94\left(\mathrm{COCH}_{3}\right), 169.65\left(\mathrm{COCH}_{3}\right), 137.35,137.09,128.72,128.52$, 128.26, 128.11, 128.05, 127.22, 98.76 (C-1'), 84.38, 84.10, 79.51, $75.91(\times 2), 70.70$, 70.30, 66.76, 61.01, 60.18, 58.79, 51.01, 32.15 (C-2), $20.68\left(\mathrm{COCH}_{3}\right), 20.45$ $\left(\mathrm{COCH}_{3}\right)$; HRMS (ESI) m/e calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{12} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$713.2515, found: 713.2506.

4-O-(2', $\mathbf{6}^{\prime}$-Di-azido-2', $\mathbf{6}^{\prime}$-di-deoxy- α-d-galactopyranosyl)-1,3-di-azido-5,6-di-O-

 benzyl-2-deoxystreptamine (65). Yield: 60% over two steps; $[\alpha]_{\mathrm{D}}=+20.7(c=0.3$, EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.35-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 5.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0$ $\mathrm{Hz}, \mathrm{H}-1$ '), $5.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.89-4.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 4.82(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=10.0 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 4.39\left(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-3{ }^{\prime}\right), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=3.0,5.5 \mathrm{~Hz}$, H-2'), 4.03 (d, 1H, J = 2.0 Hz, H-4'), 3.67-3.57 (m, 3H, H-4, H-5, H-6), 3.53-3.39 (m, 5H, H-1, H-3, H-5', H-6a', H-6b'), 2.52 (br, 2H, OH), 2.31 (dt, 1H, J = 4.5, 13.0 Hz , $\mathrm{H}-2 \mathrm{eq}), 1.50(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=12.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=137.75$, 137.23, 128.49, 128.13, 128.05, 127.69, 127.06, 97.80 (C-1'), 84.62, 84.40, 77.19, $75.95,75.20,69.65,69.04,68.13,60.24,59.72,59.51,51.22,32.30$ (C-2); HRMS (ESI) m / e calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{12} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$629.2304, found: 629.2307.2-O-(2', $\mathbf{6}^{\prime}$-Di-azido-3',4'-di-O-benzyl-2', $\mathbf{6}^{\prime}$ 'di-deoxy- α-d-glucopyranosyl)-3-O-b enzyl-5-O-methyl-(2R,3S,4R,5R)-7-oxa-bicyclo[2.2.1]heptane (59). To a solution of $57(39 \mathrm{mg}, 0.052 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, was added pyridine ($42 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$)
and $\mathrm{Tf}_{2} \mathrm{O}(35 \mu \mathrm{~L}, 0.21 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 40 min , sat. NaHCO_{3} was added to quench the reaction. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 3:1) to give 59 ($33 \mathrm{mg}, 99 \%$) as a white solid: $\mathrm{R}_{f}=0.23$ (petroleum ether/EtOAc 3:1); $[\alpha]_{\mathrm{D}}=+64.0(c=2.9, \mathrm{EtOAc}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39-7.24(\mathrm{~m}, 15 \mathrm{H}$, Ar), $4.92\left(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1\right.$ '), 4.90-4.84 (m, 3H, PhCH_{2}), 4.62-4.55 (m, 4H, $\left.\mathrm{PhCH}_{2}, \mathrm{H}-1\right), 4.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{H}-2), 4.05(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.5,7.0 \mathrm{~Hz}, \mathrm{H}-5)$, 4.02-3.98(m, 2H, H-3', H-5'), $3.93(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{H}-3), 3.59(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}$, $\mathrm{H}-4), 3.54\left(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime}\right), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=2.5,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 3.35(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=5.0,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), 3.31 (dd, $1 \mathrm{H}, \mathrm{J}=3.5,10.0 \mathrm{~Hz}, \mathrm{H}-2$ '), 3.26 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.90(\mathrm{dd}, 1 \mathrm{H}, J=7.0,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.74(\mathrm{ddt}, 1 \mathrm{H}, J=1.5,7.0,13.5 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=137.97,137.88,137.67,128.82,128.78$, 128.35, 128.31, 128.23, 128.11, 127.97, 98.30 (C-1'), 86.91, 84.56, 81.09, 79.99, $79.51,79.05,77.56,75.68,75.45,73.23,71.20,63.49,56.76\left(\mathrm{OCH}_{3}\right), 51.30,35.60$ (C-6); HRMS (ESI) m / e calcd. for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$665.2694, found: 665.2697.

General procedure for the preparation of compounds 3-14 from 53-62, and

64-65. The preparation of compounds 3-9: to a solution of the pseudodisaccharide (53-59) in methanol, $10 \% \mathrm{Pd} / \mathrm{C}$ (1.5 times as the weight of the starting material) was added. The mixture was stirred for 18 h under an atmosphere of H_{2}. The mixture was filtered and concentrated. The residue was purified by ion-exchange chromatography
(Amberlite CG-50, $\mathrm{NH}_{4}{ }^{+}$form) with a linear gradient of aqueous ammonia. Gradient ammonia aqueous solution $(0-10 \%, 0-15 \%, 0-20 \%)$ was used. The fractions were collected and concentrated in vacuo. The products were dissolved in water, and 0.1 N HCl was used to adjust the pH values to 3-4. The final products were obtained after lyophilization. The preparation of compounds $\mathbf{1 0 - 1 4}: \mathrm{H}_{2} \mathrm{~S}$ gas was introduced into the solution of pseudodisaccharide (60-62, 64-65) in a mixed solvent of pyridine $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ (3:2:1) to reduce the azido groups to amino groups. The solvent was removed and the residue was purified by column chromatography on silica gel (EtOAc or $\mathrm{CHCl}_{3} /$ methanol $/ \mathrm{NH}_{4} \mathrm{OH}$ as eluents) to give benzyl-protected pseudodisaccharides. Finally, the benzyl groups were removed under $\mathrm{Pd} / \mathrm{C} / \mathrm{H}_{2}$ conditions as described above to provide target compounds.

1L-(1,2,4,5/3)-2-O-(2', $\mathbf{6}^{\prime}$-Di-amino-2', $\mathbf{6}^{\prime}$-di-deoxy- α-d-glucopyranosyl)-1,2,3,4,5cyclohexanepentol (3): 32 mg , yield: $98 \% ;[\alpha]_{\mathrm{D}}=+95.0\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.52\left(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.22-4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1)$, 4.11-4.05 (m, 3H, H-4, H-5, H-5'), $3.98(\mathrm{dd}, 1 \mathrm{H}, J=9.0,11.0 \mathrm{~Hz}, \mathrm{H}-3), 3.71(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=3.0,9.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.57(\mathrm{dd}, 1 \mathrm{H}, J=2.5,9.0 \mathrm{~Hz}, \mathrm{H}-2), 3.46-3.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$, H-4', H-6a'), 3.20 (dd, 1H, $J=8.5,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), 2.16 (dt, $1 \mathrm{H}, J=4.0,15.5 \mathrm{~Hz}$, H-6eq), $1.78(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.0,15.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=97.09$ $(\mathrm{C}-1$ ') , $82.12(\times 2), 74.47,71.81,70.53(\times 2), 69.84,69.31,54.78,40.88,32.45(\mathrm{C}-6)$; HRMS (ESI) m/e calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right) 325.1605$, found: 325.1672.
cyclohexanepentol (4): 25 mg , yield: $98 \% ;[\alpha]_{\mathrm{D}}=+70.0\left(c=0.9, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.54\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right), 4.29(\mathrm{ddd}, 1 \mathrm{H}, J=3.0,8.5,11.0$ Hz, H-5'), 3.92 (dd, $1 \mathrm{H}, J=9.0,11.0 \mathrm{~Hz}, \mathrm{H}-3$ or H-4), 3.71 (ddd, $1 \mathrm{H}, J=5.0,9.5$, $12.5 \mathrm{~Hz}, \mathrm{H}-5), 3.57-3.51$ (m, 2H, H-1, H-3'), 3.48-3.39 (m, 4H, H-2, H-3 or H-4, H-2', $\left.\mathrm{H}-6 \mathrm{a}^{\prime}\right), 3.31(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4$ '), $3.20(\mathrm{dd}, 1 \mathrm{H}, J=8.5,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), $2.23(\mathrm{dt}$, $1 \mathrm{H}, J=4.5,12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.51(\mathrm{q}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=96.67(\mathrm{C}-1 '), 83.93,77.53,75.17,71.69,69.97,68.85,68.75,67.56,54.79$, 40.84, 37.92 (C-6); HRMS (ESI) m / e calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right) 325.1605$, found: 325.1615 .

1D-(1,2,4/3,5)-4-O-(2',6'-Di-amino-2', $\mathbf{6}^{\prime}$-di-deoxy- α-D-glucopyranosyl)-1,2,3,4,5cyclohexanepentol (5): 17 mg , yield: $99 \% ;[\alpha]_{\mathrm{D}}=+169.2\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.56\left(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.29(\mathrm{ddd}, 1 \mathrm{H}, J=3.0,9.0 \mathrm{~Hz}$, H-5), 4.07 (dd, 1H, $J=3.0,6.0 \mathrm{~Hz}, \mathrm{H}-1$), 3.93 (dd, $1 \mathrm{H}, J=9.0,9.5 \mathrm{~Hz}, \mathrm{H}-3$ '), 3.88 (ddd, $\left.1 \mathrm{H}, J=5.0,9.0,12.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.77(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4), 3.54-3.39(\mathrm{~m}, 5 \mathrm{H}$, H-2, H-3, H-2', H-4', H-6a'), 3.20 (dd, 1H, $J=8.5,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ '), 2.14 (dt, $1 \mathrm{H}, J=$ $4.5,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.62$ (ddd, $1 \mathrm{H}, \mathrm{J}=2.5,12.0,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=96.66(\mathrm{C}-1 '), 84.36,74.34,73.85,71.73,70.00,68.76,68.73,67.28$, 54.84, 40.87, 36.30 (C-6); HRMS (ESI) m / e calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right) 325.1605$, found: 325.1619.
cyclohexanepentol (6): 13 mg , yield: $99 \% ;[\alpha]_{\mathrm{D}}=+26.7\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta=5.52(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1$ '), $4.21(\mathrm{dd}, 1 \mathrm{H}, J=3.0,5.5 \mathrm{~Hz}$, H-1), 4.01 (ddd, $1 \mathrm{H}, J=3.0,7.5,10.5 \mathrm{~Hz}, \mathrm{H}-5$ '), $3.95\left(\mathrm{dd}, 1 \mathrm{H}, J=9.5,10.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, 3.81-3.76 (m, 2H, H-4, H-5), $3.71(\mathrm{dd}, 1 \mathrm{H}, J=3.0,10.0 \mathrm{~Hz}, \mathrm{H}-2), 3.46-3.39(\mathrm{~m}, 3 \mathrm{H}$, H-3, H-2', H-6a'), 3.29 (t, 1H, $J=9.0 \mathrm{~Hz}, \mathrm{H}-4$ '), 3.22 (dd, $1 \mathrm{H}, \mathrm{J}=8.0$, 13.5 Hz , H-6b'), 2.11 (dt, 1H, $J=4.5,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}), 1.58$ (ddd, $1 \mathrm{H}, J=2.5,12.0,13.5 \mathrm{~Hz}$, H-6ax); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=97.56(\mathrm{C}-1$ '), 81.68, 77.99, 73.08, 71.66, 69.73, 69.34, 68.65, 68.51, 54.72, 40.86, 35.74 (C-6); HRMS (ESI) m/e calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$325.1605, found: 325.1585.

1d-(1,2,4/3,5)-4-O-(2',6'-Di-amino-2',6'-di-deoxy- α-D-glucopyranosyl)-1-O-met

 hyl-1,2,3,4,5-cyclohexanepentol (7): 18 mg , yield: $96 \% ;[\alpha]_{\mathrm{D}}=+93.3\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.60\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right), 4.32(\mathrm{ddd}, 1 \mathrm{H}, J=3.0$, $7.5,10.5 \mathrm{~Hz}, \mathrm{H}-5), 3.97$ (dd, $1 \mathrm{H}, \mathrm{J}=9.5,10.5 \mathrm{~Hz}, \mathrm{H}-3$ '), 3.82 (ddd, $1 \mathrm{H}, J=4.5,9.5$, $\left.12.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.76-3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-4), 3.62(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.5,10.0 \mathrm{~Hz}, \mathrm{H}-2)$, 3.57-3.42 (m, 7H, H-3, H-2', H-4', H-6a', OCH_{3}), $3.24(\mathrm{dd}, 1 \mathrm{H}, J=8.0,13.5 \mathrm{~Hz}$, H-6b'), 2.42 (dt, 1H, $J=4.5,14.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}), 1.51$ (ddd, $1 \mathrm{H}, J=2.5,12.0,13.5 \mathrm{~Hz}$, $\mathrm{H}-6 \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=96.67(\mathrm{C}-1$ ' $), 84.24,78.53,74.24,74.08,71.71$, 69.99, 68.76, 67.19, $57.64\left(\mathrm{OCH}_{3}\right), 54.82,40.85,32.21$ (C-6); HRMS (ESI) m/e calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$339.1767, found: 339.1759 .
1L-(1,2,4,5/3)-2-O-(2',6'-Di-amino-2', $\mathbf{6}^{\prime}$ 'di-deoxy- α-d-glucopyranosyl)-5-O-met

hyl-1,2,3,4,5-cyclohexanepentol (8): 19 mg , yield: $99 \% ;[\alpha]_{\mathrm{D}}=+57.5\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right)$;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right)$, 4.18-4.17 (m, $\left.1 \mathrm{H}, \mathrm{H}-1\right)$, 4.11 (td, 1H, $J=2.5,9.0 \mathrm{~Hz}, \mathrm{H}-2), 4.06(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-3$ '), 3.99 (t, 1H, $J=9.0$ Hz, H-4'), 3.74-4.73 (m, 1H, H-5), 3.68-3.63 (m, 2H, H-2', H-5'), 3.46-3.42 (m, 6H, H-3, H-4, H-6a', OCH_{3}), 3.20 (dd, $1 \mathrm{H}, \mathrm{J}=8.5,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 2.35 (d, $1 \mathrm{H}, \mathrm{J}=15.0$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{eq}), 1.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=97.01$ (C-1'), 81.92, 79.98, $73.83(\times 2), 71.82,70.61,69.85,69.30,58.11\left(\mathrm{OCH}_{3}\right), 54.77$, 40.87, 28.72 (C-6); HRMS (ESI) m/e calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}\left(\mathrm{M}+\mathrm{H}^{+}\right)$339.1767, found: 339.1761.

2-O-(2', $\mathbf{6}^{\prime}$-Di-amino-2', 6^{\prime}-di-deoxy- α-D-glucopyranosyl)-5-O-methyl-(2R,3S,4R, 5R)-7-oxa-bicyclo[2.2.1]heptane (9): 37 mg , yield: $96 \% ;[\alpha]_{\mathrm{D}}=+60.0\left(c=1.0, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.36(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1$ '), $4.67(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}$, H-4), 4.18-4.16 (m, 2H, H-5, H-3'), 3.94 (ddd, 1H, $J=3.0, ~ 8.5, ~ 9.5 ~ H z, ~ H-5 '), ~ 3.89 ~$ (dd, 1H, $\left.J=9.0,10.5 \mathrm{~Hz}, \mathrm{H}^{\prime} 4^{\prime}\right), 3.76(\mathrm{~d}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}, \mathrm{H}-2), 3.48-3.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1$, H-2', H-6a'), $3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.5,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), $2.10(\mathrm{dd}, 1 \mathrm{H}$, $J=7.0,14.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}), 1.76(\mathrm{ddt}, 1 \mathrm{H}, J=2.0,6.5,14.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=94.30(\mathrm{C}-1 ’), 85.14,82.54,81.40,77.82,76.36,71.76,69.88,69.30$, $56.66\left(\mathrm{OCH}_{3}\right), 54.21,40.88,35.00(\mathrm{C}-6)$; HRMS (ESI) m/e calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 321.1656$, found: 321.1647 .

1L-(1,3,4/2,6)-1-O-(2', $\mathbf{6}^{\prime}$-Di-amino-2', ${ }^{\prime}$ '-di-deoxy- α-d-glucopyranosyl)-4,6-di-a

 mino-1,2,3-cyclohexanetriol (10): 18 mg , yield: $90 \% ;[\alpha]_{\mathrm{D}}=+84.2\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right)$, 4.14-4.12 (m, 3H, H-5', H-2, H-1 or H-3), 4.06-4.01 (m, 2H, H-3', H-1 or H-3), 3.94-3.92 (m, 1H, H-4 or H-6), 3.83-3.81 (m, 1H, H-4 or H-6), 3.55-3.51 (m, 3H, H-2', H-4', H-6a'), 3.31 (dd, 1H, J $=7.5,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 2.53 (ddd, $1 \mathrm{H}, J=4.5,7.0,15.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{eq}), 2.22$ (ddd, $1 \mathrm{H}, J$ $=4.5,9.0,15.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=95.68\left(\mathrm{C}-1{ }^{\prime}\right), 75.17,71.46$, 70.78, 69.83, 69.25, 69.19, 54.24, 48.71, 47.66, 40.84, 25.68 (C-5); HRMS (ESI) m/e calcd. for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right) 323.1925$, found: 323.1954 .
1L-(1,3,6/2,4)-1-O-(2',6'-Di-amino-2', ${ }^{\prime}$ '-di-deoxy- $\left.\alpha-\mathrm{d}-\mathrm{glucopyranosyl}\right)$-4,6-di-a

 mino-1,2,3-cyclohexanetriol (11): 21 mg , yield: $90 \% ;[\alpha]_{\mathrm{D}}=+68.3\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.76(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, \mathrm{H}-1$ ') , $4.20(\mathrm{dd}, 1 \mathrm{H}, J=4.5$, $10.0 \mathrm{~Hz}, \mathrm{H}-1), 4.08$ (m, 1H, H-6), 4.02 (t, 1H, $J=9.0 \mathrm{~Hz}, \mathrm{H}-3$ '), 3.96 (ddd, $1 \mathrm{H}, \mathrm{J}=$ $\left.3.0,7.5,9.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.86(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-4$ '), $3.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3)$, 3.52-3.42 (m, 4H, H-2, H-4, H-2', H-6'a), 3.25 (dd, $\left.1 \mathrm{H}, \mathrm{J}=8.0,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}^{\prime}\right), 2.46$ (dt, 1H, $J=3.0,15.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{eq}), 2.16(\mathrm{ddd}, 1 \mathrm{H}, J=4.0,14.0,16.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=97.55\left(\mathrm{C}-1^{\prime}\right), 75.24,73.38,73.22,71.60,69.73,69.16$, 54.34, 50.08, 49.06, 40.90, 27.81 (C-5); HRMS (ESI) m/e calcd. for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 323.1925$, found: 323.1924 . $\left.\mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=5.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right), 4.02$ (ddd, $1 \mathrm{H}, \mathrm{J}$ $\left.=3.5,7.0,10.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.99\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,11.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.88(\mathrm{t}, 1 \mathrm{H}, J=9.0$ $\mathrm{Hz}, \mathrm{H}-4$ '), $3.83(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-2$ or $\mathrm{H}-1), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=3.5,5.5 \mathrm{~Hz}, \mathrm{H}-4)$, $3.63(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.0,9.5 \mathrm{~Hz}, \mathrm{H}-2$ '), 3.53-3.45 (m, 4H, H-1 or H-2, H-3, H-6, H-6a'), $3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30(\mathrm{dd}, 1 \mathrm{H}, J=7.0,13.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$) $2.51(\mathrm{dt}, 1 \mathrm{H}, J=4.5,14.0$ $\mathrm{Hz}, \mathrm{H}-5 \mathrm{eq}), 1.71$ (ddd, $1 \mathrm{H}, \mathrm{J}=2.0,14.0,14.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=96.75\left(\mathrm{C}-1{ }^{\prime}\right), 79.61,77.34,74.38,73.69,71.41,69.83,69.10,57.76\left(\mathrm{OCH}_{3}\right)$, 54.28, 48.33, 40.84, 27.94 (C-5); HRMS (ESI) m/e calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{7}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 338.1922, found: 338.1914.
4-O-(2', $\mathbf{6}^{\prime}$-Di-amino-2', $\mathbf{6}^{\prime}$-di-deoxy- α-d-mannopyranosyl)-2-deoxystreptamine

(13): 17 mg , yield: 96% over three steps; $[\alpha]_{\mathrm{D}}=+53.3\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.67\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.26(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.0,7.5 \mathrm{~Hz}, \mathrm{H}-3$ '), $4.19\left(\mathrm{dt}, 1 \mathrm{H}, J=5.0,7.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 4.01(\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4$ or H-5), $3.84(\mathrm{t}, 1 \mathrm{H}, J$ $\left.=4.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.72\left(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.68(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4$ or H-5), 3.61-3.52(m, 2H, H-1 or H-3, H-6), 3.47-3.41 (m, 2H, H-6a', H-6b'), 3.35 (dt, 1H, J = $4.0,12.0 \mathrm{~Hz}, \mathrm{H}-1$ or $\mathrm{H}-3), 2.51(\mathrm{dt}, 1 \mathrm{H}, J=4.0,12.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{eq}), 1.92(\mathrm{q}, 1 \mathrm{H}, J=12.5$ $\mathrm{Hz}, \mathrm{H}-2 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=96.41$ (C-1'), 79.13, 75.50, 73.29, 72.48, 68.40, 67.25, 53.61, 50.45, 49.27, 40.50, 28.82 (C-2); HRMS (ESI) m/e calcd. for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$323.1925, found: 323.1921.

4-O-(2',6'-Di-amino-2', 6 '-di-deoxy- α-d-galactopyranosyl)-2-deoxystreptamine

(14): 14 mg , yield: 95% over two steps; $[\alpha]_{\mathrm{D}}=+31.7\left(c=0.6, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta=5.99\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime}\right), 4.32(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=1.0,5.0 \mathrm{~Hz}, \mathrm{H}-5$ '), 4.23 (dd, $1 \mathrm{H}, J=3.0,11.0 \mathrm{~Hz}, \mathrm{H}-3$ '), $4.13(\mathrm{dd}, 1 \mathrm{H}, J=1.5,3.0 \mathrm{~Hz}, \mathrm{H}-4$ '), $4.00(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=9.0,10.0 \mathrm{~Hz}, \mathrm{H}-4), 3.71(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}-5), 3.67(\mathrm{dd}, 1 \mathrm{H}, J=4.0,11.5$ Hz, H-2'), 3.61 (t, 1H, $J=9.5 \mathrm{~Hz}, \mathrm{H}-6), 3.57$ (ddd, $1 \mathrm{H}, \mathrm{J}=4.0,10.0,12.5 \mathrm{~Hz}, \mathrm{H}-1$ or H-3), 3.39-3.34 (m, 3H, H-1 or H-3, H-6a', H-6b'), 2.52 (dt, 1H, J = 4.0, 12.5 Hz , $\mathrm{H}-2 \mathrm{eq}), 1.92(\mathrm{q}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{ax}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta=96.95(\mathrm{C}-1 \mathrm{l})$, 78.13, 75.97, 73.25, 70.02, 68.22, 65.81, 50.83, 50.45, 49.27, 41.29, 28.99 (C-2); HRMS (ESI) m / e calcd. for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right) 323.1925$, found: 323.1925.

References:

(1) A. Köhn and R. R. Schmidt, Liebigs Ann. Chem., 1987, 12, 1045-1054.
(2) C. Jia, A. Pearce, Y. Blériot, Y. Zhang, L. H. Zhang, M. Sollogouba and P. Sinaÿ, Tetrahedron: Asymmetry, 2004, 15, 699-703.
(3) T. Ritter, K. K. Mong, H. Liu, T. Nakatani and C. H. Wong, Angew. Chem. Int. Ed., 2003, 42, 4657-4660.
(4) J. Liu, M. D. Numa, H. Liu, S. J. Huang, P. Sears, A. R. Shikhman and C. H. Wong, J. Org. Chem., 2004, 69, 6273-6283.
(5) D. Jenkins, D. Dubreuil and B. L. Potter, J. Chem. Soc. Perkin Trans. I, 1996, 1365-1372.

- 61 -

Temp. $25.0 \mathrm{C} / 298.1$
User: $1-14-87$
F11e: p1j-GD8 $0822-\mathrm{c}$
INOVA- 500 "BMU500"

Pulse Sequence: s2pul

$001091 \quad 081$
081
1
025
001
08
09
$\stackrel{\perp}{\square}$

09

(OHOC

165.392
-159.111

138.351
-137.939
-133.076
-130.142
-129.870
-129.615
128.370
128.263
-127.942
127.703
127.628
-113.642

83.066 82.711
77. 420 -77.000 76.571 76.502 75.517
-75.129 $\begin{array}{r}75.129 \\ \hline\end{array}$ 70.852
-70.794
70.794
55.127

$808^{\circ} \mathrm{L}$ 上 1 c

82.052
81. 401
77.429
77.000
76.580
76.489
$7 \begin{array}{r}76.48 \\ -75.71\end{array}$
\square
-74.857
-72.459 -58.926
-57.764
29.685

$\stackrel{\leftrightarrow}{6}$
0
0
0
0.1
$\frac{0}{3}$
$\stackrel{3}{9}$

-165.968
-165.614

- 133 -

- 141 -

37150

