Supporting Information

Synthesis of neamine-derived pseudodisaccharides by stereo- and regio-selective functional group transformations

Li-Juan Pang, Dan Wang, Jian Zhou, Li-He Zhang and Xin-Shan Ye*

State Key Laboratory of Natural and Biomimetic Drugs, Peking University, and School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd #38, Beijing 100191, China. E-mail: <u>xinshan@bjmu.edu.cn</u>; Fax: +86 10 62014949; Tel: +86 10 82801570

Contents

Experimental Section

NMR Spectra	49-169
¹ H NMR spectrum of compound 1	49
¹ H, ¹³ C NMR spectra of compound 3	
¹ H, ¹³ C NMR spectra of compound 4	
¹ H, ¹³ C NMR spectra of compound 5	
¹ H, ¹³ C NMR spectra of compound 6	
¹ H, ¹³ C NMR spectra of compound 7	
¹ H, ¹³ C NMR spectra of compound 8	60-61
¹ H, ¹³ C NMR spectra of compound 9	
¹ H, ¹³ C NMR spectra of compound 10	
¹ H, ¹³ C NMR spectra of compound 11	66-67
¹ H, ¹³ C NMR spectra of compound 12	68-69
¹ H, ¹³ C NMR and HMBC spectra of compound 13	
¹ H, ¹³ C NMR spectra of compound 14	73-74
¹ H NMR spectrum of compound 16	75
¹ H, ¹³ C NMR spectra of compound 17	76-77
¹ H, ¹³ C NMR spectra of compound 18	78-79
¹ H, ¹³ C NMR spectra of compound 19	80-81
¹ H, ¹³ C NMR spectra of compound 20	
¹ H, ¹³ C NMR spectra of compound 21	
¹ H, ¹³ C NMR, H-H COSY spectra of compound 22	
¹ H, ¹³ C NMR spectra of compound 23	
¹ H, ¹³ C NMR spectra of compound 24	91-92
¹ H, ¹³ C NMR spectra of compound 25	93-94
¹ H, ¹³ C NMR spectra of compound 27	95-96
¹ H, ¹³ C NMR, H-H COSY spectra of compound 28	
¹ H, ¹³ C NMR spectra of compound 30	100-101
¹ H, ¹³ C NMR spectra of compound 31	102-103
¹ H, ¹³ C NMR spectra of compound 32.	104-105
¹ H, ¹³ C NMR spectra of compound 33	106-107
¹ H, ¹³ C NMR, H-H COSY spectra of compound 34	108-110
¹ H, ¹³ C NMR spectra of compound 35	
¹ H, ¹³ C NMR spectra of compound 36	113-114
¹ H, ¹³ C NMR, H-H COSY spectra of compound 37	115-117
¹ H, ¹³ C NMR, H-H COSY spectrum of compound 38	118-120
¹ H, ¹³ C NMR spectra of compound 39	121-122
¹ H, ¹³ C NMR spectra of compound 40	123-124
¹ H NMR spectrum of compound 40*	125

¹ H, ¹³ C NMR spectra of compound 41	126-127
¹ H, ¹³ C NMR spectra of compound 42	128-129
¹ H, ¹³ C NMR spectra of compound 43	130-131
¹ H, ¹³ C NMR spectra of compound 44	132-133
¹ H, ¹³ C NMR spectra of compound 46	134-135
¹ H, ¹³ C NMR spectra of compound 51	136-137
¹ H, ¹³ C NMR, HMBC spectra of compound 52	138-140
¹ H, ¹³ C NMR spectra of compound 53	141-142
¹ H, ¹³ C NMR spectra of compound 54	143-144
¹ H, ¹³ C NMR spectra of compound 55	145-146
¹ H, ¹³ C NMR spectra of compound 56	147-148
¹ H, ¹³ C NMR spectra of compound 57	149-150
¹ H, ¹³ C NMR spectra of compound 58	151-152
¹ H, ¹³ C NMR, H-H COSY, HSQC, HMBC, and NOESY spectra of compound 59	153-158
¹ H, ¹³ C NMR spectra of compound 60	159-160
¹ H, ¹³ C NMR spectra of compound 61	161-162
¹ H, ¹³ C NMR spectra of compound 62	163-164
¹ H NMR spectrum of compound 63	165
¹ H, ¹³ C NMR spectra of compound 64	166-167
¹ H, ¹³ C NMR spectra of compound 65	168-169

Experimental Section

General procedures

Unless otherwise noted, all reactions were carried out in oven-dried glassware under an atmosphere of argon or nitrogen. Tetrahydrofuran and toluene were dried and distilled from sodium metal. Acetonitrile and dichloromethane were distilled from calcium hydride. Methanol was dried by heating under reflux with magnesium and then distilled. N, N-Dimethylformamide was dried over P2O5 and distilled under vacuum. Reactions were monitored by analytical thin-layer chromatography (TLC) on Merck silica gel $60F_{254}$ plates (0.25 mm), visualized by ultraviolet light and/ or by staining with ceric ammonium molybdate or ninhydrin. Optical rotations were measured at ambient temperature (25 °C) using RUDOLPH AUTOPOL III. ¹H NMR spectra were obtained on Varian INOVA-500 or JEOL JNM-AL300 spectrometer at ambient temperature. Data were reported as follows: chemical shift on the δ scale (using either TMS or residual proton solvent as internal standard), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, and coupling constant(s) in hertz. ¹³C NMR spectra were obtained with proton decoupling on a Varian INOVA-500 (125 MHz) or JEOL JNM-AL-300 (75 MHz) spectrometer and were reported in ppm with residual solvent for internal standard (77.0 for CDCl₃). High resolution mass spectra were obtained on a PE SCLEX QSTAR spectrometer. Elemental analysis data were recorded on a PE-2400C elemental analyzer.

Methyl

2,3-di-O-benzyl-4-O-(4-methoxybenzyl)-6-deoxy-a-D-xylo-hex-5-enopyranoside (17). To a solution of 15^1 (5.12g, 10.6 mmol) in DMF (40 mL), p-methoxybenzyl chloride (4.3 mL, 4.95 g, 31.6 mmol) and sodium hydride (1.69 g, 60% in mineral oil, 42.3 mmol) were added at 0 °C. After stirring for 3 h at room temperature, TLC monitoring (petroleum ether/EtOAc 3: 1) indicated completion of the reaction. Excess of NaH was quenched by sat. NaHCO₃ aqueous solution (100 mL) at 0 °C, and the mixture was extracted with EtOAc (100 mL). The aqueous layer was extracted with EtOAc (2×50 mL). The organic layer and the combined extracts were dried over Na₂SO₄, filtered, and the solvent was removed in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 15:1) to afford 17 (4.64 g, 92%) as a white solid: $R_f = 0.37$ (petroleum ether /EtOAc 4:1); $[\alpha]_D = -0.7$ (c = 0.4, EtOAc); ¹H NMR (500 MHz, CDCl₃) δ = 7.36-7.26 (m, 12H, Ar), 6.86-6.84 (m, 2H, Ar), 4.90-4.81 (m, 4H, PhCH₂), 4.70-4.65 (m, 4H, H-6a, H-6b, PMB), 4.61 (d, 1H, J = 3.5 Hz, H-1), 3.94 (t, 1H, J = 9.5 Hz, H-3), 3.88 (dt, 1H, J = 3.0, 9.0 Hz, H-4), 3.80 (s, 3H, OCH₃), 3.59 (dd, 1H, J = 3.5, 9.0 Hz, H-2), 3.41 (s, 3H, OCH₃); ¹³C NMR (75) MHz, CDCl₃) $\delta = 159.27$ (PMB), 153.70 (C-6), 138.68, 138.04, 130.08, 129.55, 128.44, 128.35, 128.09, 128.00, 127.61, 131.78, 99.01 (C-1), 96.81, 81.16, 79.18, 75.74, 74.20, 73.60, 55.42 (OCH₃), 55.25 (OCH₃); MS (ESI) *m/e* calcd for C₂₉H₃₂O₆ $(M+Na^{+})$ 499, found 499; elemental analysis calcd (%) for C₂₉H₃₂O₆: C 73.09, H 6.77, found: C 72.94, H 6.83.

2L-(2,4,5/3)-2-O-Allyl-3,4-di-O-benzyl-2,3,4,5-tetrahydroxycyclohexanone (18).

To a stirred solution of 16^2 (5.20 g, 13.1 mmol) in acetone-water (2:1, 50 mL) was added Hg(OCOCF₃)₂ (0.56 g, 1.31 mmol) at room temperature. After stirring for 3 h, sat. NaHCO₃ aqueous solution was added to neutralize the mixture to pH 6~7. The mixture was partially evaporated to remove acetone, and the suspension was extracted with EtOAc (50 mL×2), the organic layer was collected and sequentially washed with water and brine (50 mL), dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give 18 (3.71 g, 74%) as colorless solids: $R_f = 0.36$ (petroleum ether/EtOAc 1:1); $[\alpha]_{\rm D} = -20.0 \ (c = 2.2, \text{ EtOAc}); {}^{1}\text{H NMR} \ (300 \text{ MHz}, \text{CDCl}_{3}) \ \delta = 7.40-7.26 \ (m, 10.10)$ 10H, Ar), 5.94 (ddt, 1H, J = 6.0, 10.5, 17.5 Hz, =CH-), 5.25 (dg, 1H, J = 1.5, 17.5 Hz, =CH₂), 5.18 (dq, 1H, J = 1.5, 12.5 Hz, =CH₂), 4.93 (d, 1H, J = 10.5 Hz, PhCH₂), 4.85-4.71 (m, 3H, PhCH₂), 4.40 (ddt, 1H, J=1.5, 5.0, 12,5 Hz, C=C-CH₂), 4.25-4.24 (m, 1H, H-2), 4.07 (ddt, 1H, J = 1.5, 5.0, 12.5 Hz, C=C-CH₂), 4.00-3.95 (m, 2H, H-3&H-4), 3.78 (dt, 1H, J = 2.7, 6.3 Hz, H-5), 2.62 (dd, 1H, J = 3.6, 14.7 Hz, H-6eq), 2.47-2.41 (m, 2H, -OH, H-6ax); ¹³C NMR (75 MHz, CDCl₃) δ = 203.94 (C=O), 138.27, 137.58, 134.24 (=CH-), 128.37, 128.21, 128.02, 127.86, 127.74, 127.58, 117.49, 85.03, 81.64, 81.30, 75.83, 72.93, 72.51, 66.30, 42.53 (C-6); HRMS (ESI) m/e calcd for C₂₄H₂₈O₄ (M+Na⁺) 405.1672, found: 405.1672.

2L-(2,4,5/3)-2-O-(4-Methoxybenzyl)-3,4-di-O-benzyl-2,3,4,5-tetrahydroxycyclohexanone(19)and

2L-(2,4/5,3)-2-O-(4-methoxybenzyl)-3,4-di-O-benzyl-2,3,4,5-tetrahydroxycyclohex anone (20). To a stirred solution of 17 (4.64 g, 9.7 mmol) in acetone-water (2:1, 90 mL) was added Hg(OCOCF₃)₂ (0.42 g, 0.98 mmol) at room temperature. After stirring for 3 h, sat. NaHCO₃ was added to neutralize the mixture to pH 6~7. The mixture was partially evaporated, the suspension was extracted with EtOAc (50 mL×2), the organic layer was collected and sequentially washed with water and brine (50 mL), dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 3:1) to give 20 (696 mg, 15%) as a white solid: $R_f = 0.42$ (petroleum ether/EtOAc 1:1); $[\alpha]_D = -9.3$ (c = 0.4, EtOAc); ¹H NMR (500 MHz, CDCl₃, 40 °C) δ = 7.36-7.24 (m, 12H, Ar), 6.86-6.83 (m, 2H, Ar), 4.99 (d, 1H, J = 11.5 Hz, PhCH₂), 4.92 (d, 1H, J = 11.0 Hz, PhCH₂), 4.83 (d, 1H, J = 11.0 Hz, PhCH₂), 4.73 (d, 1H, J = 11.0 Hz, PhCH₂), 4.69 (d, 1H, J = 11.5 Hz, PhCH₂), 4.47 (d, 1H, J = 11.0 Hz, PhCH₂), 4.13 (d, 1H, J = 8.0 Hz, H-2), 3.79 (s, 3H, OCH₃), 3.73-3.62 (m, 3H, H-3, H-4, H-5), 2.74 (dd, 1H, *J* = 4.5, 13.5 Hz, H-6eq), 2.48 (t, 1H, J = 13.5 Hz, H-6ax), 2.43 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃) $\delta = 203.20$ (C=O), 159.43(PMB), 138.01, 129.90, 129.47, 128.72, 128.44, 128.07, 127.98, 127.84, 113.83, 85.68, 84.65, 81.90, 75.60, 75.44, 73.30, 67.99, 55.26 (OCH₃), 44.08 (C-6); HRMS(ESI) m/e calcd for C₂₈H₃₀O₆ (M+Na⁺) 485.1935, found: 485.1931. Further elution gave isomer 19 (3.33 g, 75%) as a white solid: $R_f = 0.35$ (petroleum ether/EtOAc 1:1); $[\alpha]_D = -22.4$ (c = 0.7, EtOAc); ¹H NMR (500 MHz, $CDCl_3$) $\delta = 7.33-7.26$ (m, 12H, Ar), 6.83 (d, 2H, J = 8.5 Hz, Ar), 4.93-4.69 (m, 5H, PhCH₂), 4.50 (d, 1H, J = 11.5 Hz, PhCH₂), 4.23-4.22 (m, 1H, H-2), 4.02-4.01 (m, 2H,

- 7 -

H-1, H-3), 3.80-3.76 (m, 4H, H-4, OCH₃), 2.66 (dd, 1H, J = 4.0, 15.0 Hz, H-6eq), 2.48 (dd, 1H, J = 4.0, 15.0 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 203.97$ (C=O), 159.28, 138.36, 137.58, 129.81, 129.71, 128.56, 128.34, 128.06, 127.88, 127.69, 113.73, 84.87, 81.67, 81.45, 75.92, 73.20, 73.09, 66.47, 55.23 (OCH₃), 42.50 (C-6); HRMS (ESI) *m/e* calcd for C₂₈H₃₀O₆ (M+Na⁺) 485.1935, found: 485.1937.

1D-(1,2,4/3,5)-4-O-Allyl-2,3-di-O-benzyl-1-O-methyl-5-hydroxylcyclohexanepent ol (21) and

1D-(1,2,4,5/3)-4-O-allyl-2,3-di-O-benzyl-1-O-methyl-5-hydroxylcyclohexanepentol (22). To a solution of 16^2 (1.73 g, 4.37 mmol) in toluene (10 mL), was added TIBAL (1M in toluene, 43.7 mL) dropwise under argon at room temperature. When the addition of TIABL was finished, the mixture was heated by oil bath at 50 °C. After stirring for 3.5 h, NaOH (2M aqueous solution, 100 mL) was added to quench the reaction, the mixture was diluted with EtOAc (50 mL) and washed with water (50 mL) and brine (50 mL). The organic layer was collected and dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give 21 (402 mg, 24%) as a white solid: $R_f = 0.48$ (petroleum ether/EtOAc 1:2); $[\alpha]_{D} = +31.3$ (c = 2.3, EtOAc); ¹H NMR (300 MHz, CDCl₃) $\delta =$ 7.38-7.28 (m, 10H, Ar), 5.95 (ddt, 1H, J = 5.7, 10.2, 17.4 Hz, =CH-), 5.27 (dq, 1H, J = 1.5, 17.4 Hz, =CH₂), 5.17 (dq, 1H, J = 1.5, 10.2 Hz, =CH₂), 4.94 (d, 1H, J = 10.5 Hz, PhCH₂), 4.75 (d, 1H, J = 10.5 Hz, PhCH₂), 4.71 (2d, 2H, J = 12.0 Hz, PhCH₂), 4.47 (ddt, 1H, J = 1.5, 5.7, 12.3 Hz, C=C-CH₂-), 4.19 (ddt, 1H, J = 1.5, 5.7, 12.3 Hz,

- 8 -

C=C-CH₂-), 3.87-3.76 (m, 2H, H-3, H-5), 3.63-3.62 (m, 1H, H-1), 3.44-3.40 (m, 4H, H-2, OCH₃), 3.14 (t, 1H, J = 9.3 Hz, H-4), 2.41 (br, 1H, OH), 2.30 (dt, 1H, J = 4.5, 14.1 Hz, H-6eq), 1.20 (ddd, 1H, J = 2.1, 12.0, 14.1 Hz, H-6ax); ¹³C NMR (75 MHz, $CDCl_3$) $\delta = 138.72, 138.30, 135.05, 128.33, 128.05, 127.83, 127.65, 127.55, 117.02,$ 85.98, 82.84, 81.68, 75.67, 75.06, 74.11, 72.66, 67.82, 57.34 (OCH₃), 30.76 (C-6); HRMS (ESI) m/e calcd for $C_{24}H_{30}O_{54}$ (M+Na⁺) 421.1985, found: 421.1945. Further elution gave isomer 22 (1.27 g, 73%) as a colorless oil: $R_f = 0.37$ (petroleum ether/EtOAc 1:2); $[\alpha]_D = +7.5$ (c = 2.1, MeOH); ¹H NMR (300 MHz, CDCl₃) $\delta =$ 7.41-7.26 (m, 10H, Ar), 5.97 (ddt, 1H, J = 6.0, 10.5, 17.5 Hz, =CH-), 5.30 (dq, 1H, J = 1.5, 17.5 Hz, =CH₂), 5.17 (dq, 1H, J = 1.5, 10.5 Hz, =CH₂), 4.92-4.67 (4×d, 4H, J = 12.0 Hz, PhCH₂), 4.23-4.20 (m, 2H, C=C-CH₂), 4.11-4.04 (m, 2H, H-3, H-5), 3.71-3.70 (m, 1H, H-1), 3.60 (d, 1H, J = 9.9 Hz, OH), 3.52 (s, 3H, OCH₃), 3.39 (dd, 1H, J = 3.0, 9.3 Hz, H-2), 3.27 (dd, 1H, J = 3.3, 9.3 Hz, H-4), 2.28 (dt, 1H, J = 3.3, 15.0 Hz, H-6eq), 1.33 (dt, 1H, J = 2.7, 15.0 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) δ = 138.90, 138.45, 135.18, 128.35, 128.28, 128.21, 127.75, 127.65, 127.53, 117.09, 82.47, 82.20, 78.95, 78.82, 75.97, 73.19, 71.64, 68.32, 59.01 (OCH₃), 29.54 (C-6); HRMS (ESI) m/e calcd for C₂₄H₃₀O₅ (M+Na⁺) 421.1985, found: 421.1945.

1D-(1,2,4/3,5)-4-O-Allyl-1,5-di-O-benzoyl-2,3-di-O-benzyl-cyclohexanepentol

(23). To one portion of powdered Me_4NBH_4 (1.16 g, 0.013 mol) in dry round-bottomed flask under argon, freshly distilled AcOH (2.6 ml, 0.045 mol) was added dropwise at room temperature and stirred for 30 min. THF (8 mL) was then

added, the mixture was stirred at the same temperature for additional 3 h to ensure complete conversion of Me₄NBH₄ to Me₄NBH(OAc)₃. To the above mixture, a solution of 18 (1.108 g, 2.78 mmol) in CH₃CN (10 mL) was added dropwise. After stirring for 13 h at room temperature, sat. NH₄Cl aqueous solution was added to quench the reaction. The mixture was extracted with EtOAc (50 mL), washed with sat. KHCO₃ (50 mL), then dried over Na₂SO₄, concentrated to produce a colorless oil (899 mg). To a mixture of the colorless oil and DMAP (14 mg, 0.12 mmol) in pyridine (20 mL), BzCl (1.63 mL, 14.03 mmol) was added slowly at 0 °C. The mixture was allowed to stir for 6 h from 0 °C to room temperaure. The mixture was concentrated, diluted with EtOAc (50 mL), washed successively with sat. NaHCO₃ (50 mL) and water (50 mL). The organic layer was collected and dried over Na₂SO₄, concentrated, and purified by column chromatography on silica gel (petroleum ether/EtOAc 16:1) to give 23 (1.36 g, 80% over two steps) as colorless solids: $R_f =$ 0.36 (EtOAc/ petroleum ehter 1:4); $[\alpha]_{D} = +42$ (c = 2.0, EtOAc); ¹H NMR (300 MHz, $CDCl_3$) $\delta = 8.12-8.02$ (m, 4H, Ar), 7.60-7.42 (m, 7H, Ar), 7.33-7.16 (m, 9H, Ar), 5.89-5.76 (m, 2H, H-1, H-5), 5.58-5.49 (m, 1H, =CH-), 5.16 (dd, 1H, J = 1.5, 17.1 Hz, =CH₂), 5.06 (d, 1H, J = 10.2 Hz, =CH₂), 4.92-4.81 (m, 3H, PhCH₂), 4.60 (d, 1H, J =11.7 Hz, PhCH₂), 4.37 (dd, 1H, J = 5.7, 12.0 Hz, C=C-CH₂), 4.24 (dd, 1H, J = 6.3, 12.0 Hz, C=C-CH₂), 4.00 (t, 1H, J = 9.3 Hz, H-4), 3.67-3.60 (m, 2H, H-2, H-3), 2.49 (dt, 1H, J = 4.5, 14.1 Hz, H-6eq), 1.71 (ddd, 1H, J = 2.1, 12.0, 14.1 Hz, H-6ax);¹³C NMR (75 MHz, CDCl₃) δ = 165.65 (PhCO), 165.56 (PhCO), 138.53, 137.82, 134.85, 133.18, 133.08, 130.02, 129.92, 129.57, 128.46, 128.40, 128.30, 128.14, 128.00,

127.65, 117.32, 82.91, 81.52, 80.69, 76.09, 74.68, 72.15, 71.57, 66.95, 31.07 (C-6); MS (FAB) *m/e* calcd for C₃₇H₃₆O₇: 592, found: 592 (M⁺); elemental analysis calcd (%) for C₃₇H₃₆O₇: C 74.98, H 6.12; found: C 74.70, H 6.40.

1L-(1,2,4/3,5)-1,5-Di-O-acetyl-2-O-allyl-3,4-di-O-benzyl-cyclohexanepentol (24).

To a solution of 23 (150 mg, 0.25 mmol) in MeOH (5 mL), 30% NaOMe (0.1 mL) was added at room temperature. After stirring for 1 h, the mixture was neutralized to pH = 6-7 with ion-exchange resin (Dowex 50, strong acid form) at room temperature. The mixture was filtered and concentrated to give colorless oil. To the crude oil, CH₂Cl₂ (2 mL) and pyridine (204 µL, 2.5 mmol) were added, followed by addition of Tf₂O (174 µL, 1.0 mmol) at 0 °C. After stirring for 10 min, sat. NaHCO₃ (20 mL) was added to neutralize the mixture. The mixture was diluted with CH₂Cl₂ (20 mL) and washed with water (20 mL). The organic layer was collected, dried over Na₂SO₄, concentrated in vacuo and co-evaporated with toluene (3 mL) for three times to afford vellow oil. The crude product was dissolved in DMF (2 mL), n-Bu₄NOAc (226 mg, 0.75 mmol) was added to the mixture at 0 °C under argon, and stirred for 5 h at r.t. The mixture was concentrated, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 9:1) to give 24 (42 mg, 35% over three steps) as a white solid: $R_f = 0.32$ (petroleum ether/EtOAc 3:1); $[\alpha]_D = -2.4$ (c = 2.5, MeOH); ¹H NMR (300 MHz, CDCl₃) δ = 7.34-7.26 (m, 10H, Ar), 5.95 (ddt, 1H, J = 5.7, 10.8, 17.4 Hz, =CH-), 5.43-5.42 (m, 1H, H-1), 5.29 (ddt, 1H, J= 1.2, 1.2, 17.4 Hz, =CH₂), 5.23-5.14 (m, 2H, =CH₂, H-5), 4.92-4.67 (m, 4H, PhCH₂), 4.18 (dd, 1H, J = 5.7, 12.6

Hz, C=C-CH₂), 4.06 (dd, 1H, J = 6.0, 12.6 Hz, C=C-CH₂), 3.85 (t, 1H, J = 9.3 Hz, H-4), 3.51 (t, 1H, J = 9.6 Hz, H-3), 3.42 (dd, 1H, J = 3.0, 9.6 Hz, H-2), 2.20 (dt, 1H, J = 4.5, 14.1 Hz, H-6eq), 2.13 (s, 3H, COCH₃), 1.95 (s, 3H, COCH₃), 1.47 (ddd, 1H, J = 2.7, 12.3, 14.1 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 170.19$ (COCH₃), 170.09 (COCH₃), 138.57, 138.50, 134.55, 128.37, 128.15, 127.74, 127.69, 127.64, 117.45, 83.31, 81.57, 80.36, 76.09, 75.62, 71.36, 70.69, 66.66, 30.80 (C-6), 21.14 (COCH₃), 21.06 (COCH₃); HRMS (ESI) *m/e* calcd for C₂₇H₃₂O₇ (M+Na⁺) 491.2040, found: 491.2039.

1D-(1,2,4,5/3)-4-O-Allyl-2,3-di-O-benzyl-1,5-dihydroxylcyclohexanepentol (25).

To a solution of **18** (571 mg, 1.49 mmol) in methanol (15 mL) at 0 °C was added portion-wise NaBH₄ (225 mg, 5.96 mmol). After stirring for 10 min, sat. NH₄Cl aqueous solution was added to quench the reaction. The mixture was concentrated and extracted with EtOAc (30 mL) and water (30 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/acetone 4:1) to give **25** (467 mg, 82%) as a colorless oil: $R_f = 0.28$ (petroleum ether/acetone 2:1); $[\alpha]_D = +15.4$ (c = 2.6, EtOAc); ¹H NMR (300 MHz, CDCl₃, D₂O exchange) $\delta = 7.41-7.26$ (m, 10H, Ar), 5.94 (ddt, 1H, J = 5.4, 10.5, 17.1 Hz, =CH-), 5.29 (dd, 1H, J = 1.8, 17.1 Hz, =CH₂), 5.18 (dd, 1H, J = 1.8, 10.2 Hz, =CH₂), 5.16-4.73 (m, 4H, PhCH₂), 4.22-4.14 (m, 4H, H-1, H-5, =C-CH₂-), 4.05 (t, 1H, J = 9.3 Hz, H-3), 3.40-3.62 (m, 2H, H-2 or H-4, OH), 3.30 (dd, 1H, J = 3.3, 9.3 Hz, H-2 or H-4), 2.33 (dt, 1H, J = 3.6, 15.0 Hz, H-6eq), 1.46 (dt, 1H, J = 2.7, 15.0 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 138.80$, 138.10, 134,82, 128.39, 128.30, 128.12, 127.84, 127.75, 127.56, 117.31, 82.26, 78.66, 76.06, 72.62, 71.70, 68.53, 31.23 (C-6); HRMS (ESI) *m/e* calcd for C₂₃H₂₈O₅ (M+Na⁺) 407.1829, found: 407.1831.

2L-(2,4/3)-2-O-Allyl-3,4-di-O-benzyl-2,3,4-trihydroxy-5-cyclohexen-1-one (27).

To a solution of 18 (260 mg, 0.6mmol) in CH₂Cl₂ (5 mL), MsCl (156 mg, 1.4mmol) was added dropwise at 0 °C, followed by addition of triethylamine (0.5 mL, 3.6 mmol). The mixture was stirred at 0 °C for 2 h, diluted with CH₂Cl₂ (50 mL), washed successively with 0.5 M H₂SO₄, sat. NaHCO₃, and brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/ EtOAc 12:1) to give 27 (148 mg, 60%) as a colorless oil: $R_f = 0.28$ (petroleum ether/EtOAc 3:1); $[\alpha]_D = +21.0$ (c = 0.6, EtOAc); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 7.40-7.30 \text{ (m, 10H, Ar)}, 6.80 \text{ (dd, 1H, } J = 2.0, 10.5 \text{ Hz}, \text{H-6)},$ 6.02 (dd, 1H, J = 2 .0, 10.0 Hz, H-5), 6.04-5.95 (m, 1H, =CH-), 5.35 (dd, 1H, J = 1.5, 17.0 Hz, =CH₂), 5.21 (dd, 1H, J = 1.5, 10.5 Hz, =CH₂), 4.97 (d, 1H, J = 11.0 Hz, PhCH₂), 4.83(d, 1H, J = 11.5 Hz, PhCH₂), 4.81 (d, 1H, J = 10.5 Hz, PhCH₂), 4.74 (d, 1H, 12.0 Hz, PhCH₂), 4.51 (ddt, 1H, J = 1.5, 5.5, 12.5 Hz, =C-CH₂-), 4.35 (dt, 1H, J =2.0, 7.5 Hz, H-4), 4.25 (ddt, 1H, J = 1.5, 5.5, 12.5 Hz, =C-CH₂-), 3.97-3.91 (m, 2H, H-2, H-3); ¹³C NMR (125 MHz, CDCl₃) δ = 197.34 (C=O), 148.06, 138.17, 137.62, 134.39, 128.54, 128.40, 128.19, 128.03, 127.89, 127.82, 117.80, 84.72, 83.60, 78.89,

75.76, 73.66, 29.69; HRMS (ESI) *m/e* calcd for C₂₃H₂₄O₄ (M+H⁺) 365.1770, found: 365.1770.

1L-(1,5/4,6)-6-O-Allyl-4,5-di-O-benzyl-cyclohex-2-en-1-ol (28). To a mixture of 27 (86 mg, 0.24 mmol) and CeCl₃·7H₂O (132 mg, 0.35 mmol) in methanol (5 mL) was added NaBH₄ (13 mg, 0.34 mmol) at 0 °C. After stirring for 15 min, the reaction was quenched with water and extracted with EtOAc (50 mL), washed with brine, dried over Na₂SO₄. The organic layer was concentrated and purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give 28 (78 mg, 90%) as a light yellow oil: $R_f = 0.22$ (petroleum ether/acetone 2:1); $[\alpha]_D = +90.3$ (c = 3.9, MeOH); ¹H NMR (500 MHz, CDCl₃) δ = 7.38-7.27 (m, 10H, Ar), 5.95 (ddt, 1H, J = 6.0, 10.5, 17.5 Hz, =CH-), 5.72-5.67 (m, 2H, H-2, H-3), 5.28 (ddt, 1H, J = 1.5, 17.5 Hz, =CH₂), 5.19 (ddt, 1H, J = 1.5, 10.0 Hz, =CH₂), 4.89-4.65 (m, 4H, PhCH₂), 4.46 (ddt, 1H, J = 1.5, 5.0, 12.5Hz, =C-CH₂), 4.30 (d, 1H, J = 7.0 Hz, H-1), 4.23 (dd, 1H, J $= 5.0, 12.5 \text{ Hz}, = \text{C-CH}_2$, 4.22-4.19 (m, 1H, H-4), 3.71 (dd, 1H, J = 7.5, 10.5 Hz, H-5),3.41 (dd, 1H, J = 7.5, 10.0 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃) $\delta = 138.54$, 138.24, 134.97 (=CH-), 129.36 (C-2), 128.42, 128.36, 127.94, 127.80, 127.72, 127.45, 127.05 (C-3), 117.32 (=CH₂), 84.08 (C-6), 83.27 (C-5), 80.48 (C-4), 75.24 (PhCH₂), 74.12 (=C-CH₂), 72.28 (PhCH₂), 71.93 (C-1); MS (ESI) *m/e* calcd. for C₂₃H₂₆O₄: 389 $(M+Na^{+})$, found: 389; elemental analysis calcd (%) for C₂₃H₂₆O₄: C 75.38, H 7.15; found: C 75.29, H 7.23.

1D-(1,3,5/2,4)-1,6-Di-O-benzoyl-2,3-di-O-benzyl-4-O-(4-methoxybenzyl)-cyclohe

xanepentol (30) and

1L-(1,2,4/3,5)-3,4-di-O-benzyl-2-O-(4-methoxybenzyl)-1,5-dihydroxylcyclohexane pentol (31). To a solution of 20 (150 mg, 0.32 mmol) in dry dioxane (6 mL), was added NaBH₄ (65 mg, 1.72 mmol) under argon. After stirring for 4h, water was added to quench the reaction at 0 °C, continued to stir until no bubble spreading out. Then the mixture was concentrated in vacuo, the residue was dissolved with EtOAc (20 mL), washed with water and brine, dried over Na₂SO₄, concentrated, purified by column chromatography on silica gel (CH₂Cl₂/MeOH 100:1) to give **31** (34 mg, 22%): $R_f = 0.52$ (CH₂Cl₂/MeOH 20:1); $[\alpha]_D = -2.2$ (c = 0.5, EtOAc); ¹H NMR (500 MHz, $CDCl_3$) $\delta = 7.36-7.24$ (m, 12H, Ar), 6.86 (d, J = 8.5 Hz, Ar), 5.00 (d, 1H, J = 11.5 Hz, PhCH₂), 4.90 (d, 1H, J = 10.5 Hz, PhCH₂), 4.82 (d, 1H, J = 10.5 Hz, PhCH₂), 4.76 (2br, 2H, OH), 4.69-4.60 (m, 3H, PhCH₂), 4.08 (q, 1H, <math>J = 3.0 Hz, H-1), 4.95 (ddd, 1H, J = 5.0, 9.5, 12.0 Hz, H-5), 3.83-3.80 (m, 4H, H-3, OCH₃), 3.48 (dd, 1H, J = 3.0, 9.0 Hz, H-2), 3.26 (t, 1H, J = 9.5 Hz, H-4), 2.24 (dt, 1H, J = 4.5, 14.0 Hz, H-6eq), 1.37 (ddd, 1H, J = 2.5, 12.0, 14.0 Hz, H-6ax); ¹³C NMR(75 MHz, CDCl₃) $\delta = 159.42$ (PMB), 138.61, 129.91, 129.52, 128.60, 128.41, 127.92, 127.83, 127.65, 113.92, 86.12, 82.93, 81.50, 75.68, 75.40, 72.45, 67.67, 65.78, 55.27 (OCH₃), 33.42 (C-6); HRMS (ESI) *m/e* calcd. for C₂₈H₃₂O₆ (M+Na⁺) 487.2091, found: 487.2094. Another component 29 (116 mg) was collected as a colorless oil: $R_f = 0.45$ (CH₂Cl₂/ MeOH 20:1), but its purity was not satisfied in ¹H NMR spectrum. To the above crude oil (116 mg, 0.25 mmol) in pyridine (5 mL), was added BzCl (209 mg, 1.4 mmol) at 0 °C. After stirring for 5 h, pyridine was evaporated under vacuum. The residue was diluted with EtOAc, washed with sat. NaHCO₃ and water. The organic layer was collected, dried over Na₂SO₄, concentrated, purified by column chromatography on silica gel (petroleum ether /EtOAc 12 : 1) to give **30** (150 mg, 89%) as a white solid: $R_f = 0.30$ (petroleum ether /EtOAc 3:1); $[\alpha]_D = +3.2$ (c = 1.3, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.14$ -6.66 (m, 24H, Ar), 5.30 (ddd, 2H, J = 4.5, 9.0, 11.5 Hz, H-1, H-5), 4.89 (d, 2H, J = 11.5 Hz, PhCH₂), 4.86-4.69 (m, 4H, PhCH₂), 3.82 (t, 1H, J = 9.0 Hz, H-2), 3.79 (t, 1H, J = 9.0 Hz, H-4), 3.73 (t, 1H, J = 9.0 Hz, H-3), 3.71 (s, 3H, OCH₃), 2.58 (dt, 1H, J = 5.0, 12.5 Hz, H-6eq), 1.77 (q, 1H, J = 12.0 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 165.39$ (PhCO), 159.11 (PMB), 138.35, 137.94, 133.08, 130.14, 129.87, 129.62, 128.37, 128.26, 127.94, 127.70, 127.63, 113.64, 83.07, 82.71, 76.10, 75.52, 75,13, 70.85, 70.79, 55.13 (OCH₃), 32.16 (C-6). HRMS (ESI) *m/e* calcd. for C₄₂H₄₀O₈ (M+Na⁺) 695.2615, found: 695.2615.

1D-(1,2,4/3,5)-5-Azido-2,3-di-O-benzyl-1-O-methyl-1,2,3,4-cyclohexanetetrol

(32). To a solution of 22 (34 mg, 0.085 mmol) in CH₂Cl₂ (1 mL), pyridine (28 μ L, 0.34 mmol) was added and followed by the addition of Tf₂O (29 μ L, 0.17 mmol) at 0 °C. After stirring for 10 min, sat. NaHCO₃ was added to quench the reaction, diluted with EtOAc, washed with water and brine. The extract was dried over Na₂SO₄, concentrated; the residue was co-evaporated with toluene for three times before dissolved in DMF (1 mL). To the mixture, NaN₃ (1.5 mg, 0.34 mmol) was added at 0 °C. After 5 h, the mixture was evaporated in vacuo, diluted with EtOAc, concentrated

to give a yellow oil. Mixed the oil with MeOH (1 mL), PdCl₂ (3 mg, 0.022 mmol) was added at r.t. After stirring for 12 h, the mixture was diluted with CH₂Cl₂, filtered, concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give **32** (9 mg, 35% for 3 steps) as a colorless oil: R_f = 0.34; [α]_D = -9.3 (c = 0.4, EtOAc); ¹H NMR (500 MHz, CDCl₃) δ = 7.37-7.29 (m, 10H, Ar), 5.02 (d, 1H, J = 11.1 Hz, PhCH₂), 4.71 (s, 2H, PhCH₂), 4.69(d, 1H, J = 11.1 Hz, PhCH₂), 3.76 (t, 1H, J = 9.0 Hz, H-3), 3.66-3.61 (m, 2H, H-4, H-5), 3.45-3.41 (m, 4H, H-1,OCH₃), 3.39 (dd, 1H, J = 3.0, 9.0 Hz, H-2), 2.58 (d, 1H, J = 2.5 Hz, OH), 2.21 (dt, 1H, J = 4.0, 14.5 Hz, H-6eq), 1.19 (ddd, 1H, J = 2.5, 12.0, 14.5 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) δ = 138.51, 137.98, 128.62, 128.46, 127.99, 127.93, 127.86, 82.05, 81.40, 76.49, 75.71, 74.86, 72.46, 58.93, 57.76 (OCH₃), 29.69 (C-6); IR υ = 2103.6 cm⁻¹ (-N₃); HRMS (ESI) *m/e* calcd. for C₂₁H₂₅N₃O₄ (M+NH₄⁺) 401.2183, found: 401.2189.

1,3-Di-azido-5,6-di-*O***-benzyl-2-deoxystreptamine (33).** The initial synthesis of **33** was almost the same as that of **32**, yield: 35% for 3 steps. The other method is: after debenzoylation of **35** (447 mg, 0.64 mmol, in 2mL MeOH) with 30% NaOMe (in MeOH, 0.1 mL), the reaction mixture was neutralized with ion-exchange resin (Dowex 50, strong acid form), filtered, and concentrated to give crude diol. The crude diol was dissolved in CH_2Cl_2 (5 mL), pyridine (0.6 mL, 7 mmol) was added dropwise, followed by the addition of Tf_2O (0.5 mL, 2.8 mmol) at 0 °C. After stirring for 10 min, sat. NaHCO₃ was added to quench the reaction. The mixture was extracted with

EtOAc (20 mL), washed with water (20 mL), dried over Na₂SO₄, concentrated, and co-evaporated with toluene for three times. The crude product was dissolved in DMF (2 mL), NaN₃ (194 mg, 2.8 mmol) was added at 0 °C. After stirring for 5 h, the mixture was concentrated, diluted with EtOAc, washed with water, and concentrated again. The residue was dissolved in CH₂Cl₂/H₂O (18:1, 5 mL), DDQ (250 mg, 0.94 mmol) was added. And the mixture was stirred for 12 h at r.t., then guenched with sat. NaHCO₃, diluted with CH₂Cl₂ (20 mL), washed with water and brine. The extract was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 9:1) to give 33 (162 mg, 61% over four steps) as a colorless oil: $R_f = 0.38$ (petroleum ether/acetone 3:1); $[\alpha]_D =$ +39.4 (c = 0.5, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.38-7.25$ (m, 10H, Ar), 4.94 (d, 1H, J = 11.5 Hz, PhCH₂), 4.89-4.84 (m, 2H, PhCH₂), 4.72 (d, 1H, J = 11.5 Hz, PhCH₂), 3.49-3.33 (m, 5H, H-1, H-3, H-4, H-5, H-6), 2.52 (s, 1H, OH), 2.17 (dt, 1H, J = 4.5, 13.0 Hz, H-2eq), 1.34 (q, 1H, J = 12.5 Hz, H-2ax); ¹³C NMR (75 MHz, $CDCl_3$) $\delta = 138.34, 137.84, 129.15, 128.92, 128.68, 128.56, 128.47, 128.26, 84.43, 128.26, 128.47, 128.47,$ 84.09, 76.56, 76.20, 61.00, 60.25, 32.73 (C-2); HRMS (ESI) m/e calcd. for $C_{20}H_{22}N_6O_3$ (M+NH₄⁺) 412.2092, found: 412.2091.

1D-(1,2,4,5/3)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-1,2,3,4,5-cyclohexanepentol

(34). To a solution of 25 (289 mg, 0.75 mmol) in pyridine (5 mL), BzCl (420 mg, 3 mmol) was added at 0 °C. After stirring for 12 h at room temperature, the reaction mixture was concentrated in vacuo, diluted with EtOAc, washed with sat. NaHCO₃,

dried over Na₂SO₄, concentrated to give yellow oil. The oil was dissolved in methanol (10 mL), PdCl₂ (25 mg, 0.14 mmol) was added at r.t. After stirring for 2 h, the reaction mixture was diluted with CH₂Cl₂, filtrated, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give 34 (365 mg, 88% over two steps) as a colorless oil: $R_f = 0.42$ (petroleum ether/EtOAc 1:1); $[\alpha]_{D} = +14.7 (c = 9.5, EtOAc); {}^{1}H NMR (500 MHz, DMSO, 35 {}^{\circ}C)$ $\delta = 7.93-7.91$ (m, 2H, PhCO), 7.82-7.80 (m, 2H, PhCO), 7.60-7.52 (m, 2H, PhCO), 7.40-7.37 (m, 4H, Ar), 7.33-7.21 (m, 10H, Ar), 5.67-5.66 (m, 1H, H-1), 5.32 (dd, 1H, J = 3.0, 3.5 Hz, H-5), 5.26 (d, 1H, J = 5.5 Hz, OH), 4.88 (d, 1H, J = 11.5 Hz, PhCH₂), 4.83 (d, 1H, J = 11.5 Hz, PhCH₂), 4.70 (d, 1H, J = 11.5 Hz, PhCH₂), 4.59 (d, 1H, J = 11.5 Hz, PhCH₂), 4.12 (t, 1H, J = 9.5 Hz, H-3), 3.83 (ddd, 1H, J = 3.5, 6.0, 9.5 Hz, H-4), 3.77 (dd, 1H, J = 3.5, 9.5 Hz, H-2), 2.23 (dt, 1H, J = 3.5, 16.0 Hz, H-6eq), 1.81 (dt, 1H, J = 3.5, 16.0 Hz, H-6ax); ¹³C NMR (75 MHz, DMSO) $\delta = 165.53$ (PhCO), 165.25 (PhCO), 139.17, 138.46, 133.03, 129.99, 129.72, 129.34, 129.12, 128.33, 128.03, 127.92, 127.68, 127.42, 127.29, 127.13, 79.86, 78.34, 74.04, 72.66, 71.45, 71.31, 68.68, 28.61 (C-6); HRMS (ESI) m/e calcd. for $C_{34}H_{32}O_7(M+H^+)$ 553.2221, found: 553.2225.

1D-(1,2,4,5/3)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-4-(4-methoxy)benzyl-1,2,3,4,5cyclohexanepentol (35). To a solution of 34 (659 mg, 1.04 mmol) in dry CH_2Cl_2 (3 mL), a solution of freshly prepared PMBOCNHCCl₃ (3.1 g) in hexane (6 mL) was added. Freshly distilled BF₃:Et₂O (35 uL) was added slowly at 0 °C. After stirring for

10 min, no starting material was detected, Et₃N was added to quench the reaction. The reaction mixture was extracted with EtOAc (20 mL), washed with water and brine, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 16:1) to give **35** (451 mg, 56%) as a white solid: $R_f = 0.37$ (petroleum ether/ EtOAc 4:1); $[\alpha]_D = -7.1(c = 1.3, EtOAc)$; ¹H NMR (300 MHz, CDCl₃) δ = 7.87-7.95 (m, 4H, PhCO), 7.5-7.45 (m, 2H, PhCO), 7.35-7.22 (m, 16H, Ar), 6.79-6.76 (m, 2H, Ar), 5.69-5.68 (m, 2H, H-1, H-5), 4.87 (s, 2H, PhCH₂), 4.78 (d, 1H, J =10.8 Hz, PhCH₂), 4.72 (d, 1H, J = 11.1 Hz, PhCH₂), 4.64 (d, 1H, J = 11.7 Hz, PhCH₂), 4.56 (d, 1H, J = 11.4 Hz, PhCH₂), 4.27 (t, 1H, J = 9.0 Hz, H-3), 3.76 (s, 3H, OCH₃), 3.75-3.63 (m, 2H, H-2, H-4), 2.56 (dt, 1H, J = 3.6, 15.6Hz, H-6eq), 1.87 (d, 1H, J = 15.6 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 166.14$ (PhCO), 159.09 (PMB), 138.67, 138.07, 132.75, 130.18, 130.13, 129.78, 129.50, 128.19, 128.12, 127.83, 127.53, 113.62, 79.76, 79.65, 77.92, 75.51, 72.42, 72.06, 68.39, 55.15 (OCH₃), 29.27 (C-6); HRMS (ESI) m/e calcd. for $C_{42}H_{40}O_8$ (M+Na⁺) 695.2615, found: 695.2608.

1D-(1,2,4/3,5)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-4-O-(4-methoxybenzyl)-

1,2,3,4,5-cyclohexanepentol (36). Following the procedure in synthesis of **23**, $Me_4NBH(OAc)_3$ was freshely prepared from Me_4NBH_4 (285 mg, 3.2 mmol) and AcOH (0.64 ml, 11.1 mmol) in THF (5 mL). To the mixture, a solution of **19** (298 mg, 0.64 mmol) in dry CH₃CN (5 mL) was added dropwise. After stirring for 12 h, TLC monitoring indicated no starting material left, sat. NH₄Cl was added to quench the

reaction. The reaction mixture was neutralized with sat. KHCO₃, extracted with EtOAc, dried over Na₂SO₄, concentrated to give a colorless oil. To this colorless oil in dry pyridine (2 mL), BzCl (0.3 mL) and cat. DMAP were added slowly at 0 °C. The mixture was allowed to stir at r.t. for 5 h, concentrated in vacuo. The residue was dissolved in EtOAc (20 mL), washed with sat. NaHCO₃, water and brine. The organic layer was collected, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 16:1) to give 36 (382 mg, 88% over two steps) as a white solid: $R_f = 0.29$ (petroleum ether/EtOAc 3:1); $[\alpha]_{D} = +35.0 \ (c = 0.5, \text{ EtOAc}); {}^{1}\text{H} \text{ NMR} \ (300 \text{ MHz}, \text{CDCl}_{3}) \ \delta = 8.14-8.09 \ (m, 2\text{H}, 100 \text{ MHz})$ PhCO), 7.99-7.97 (m, 2H, PhCO), 7.61-7.28 (m, 16H, Ar), 7.25-7.16 (m, 2H, Ar), 7.09-7.06 (m, 2H, Ar), 5.84 (m, 1H, , H-1), 5.57 (ddd, 1H, J = 5.0, 10.0, 10.0 Hz, H-5), 4.94 (d, 1H, J = 11.5 Hz, PhCH₂), 4.89-4.79 (m, 3H, PhCH₂), 4.70 (d, 1H, J = 11.5 Hz, PhCH₂), 4.60 (d, 1H, J = 11.4 Hz, PhCH₂), 4.04 (t, 1H, J = 9.5 Hz, H-3), 3.79-3.67 (m, 5H, H-2, H-4, OCH₃), 2.50 (dt, 1H, J = 4.5, 14.5 Hz, H-6eq), 1.73 (ddd, 1H, J = 2.5, 12.5, 14.5 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 165.67$ (PhCO), 165.56 (PhCO), 159.15 (PMB), 138.62, 137.81, 133.18, 133.06, 130.21, 129.91, 129.77, 129.61, 128.46, 128.39, 128.32, 128.03, 127.67, 127.59, 113.68, 82.80, 81.74, 80.80, 76.05, 75.44, 72.15, 71.59, 66.92, 55.14 (OCH₃), 31.15 (C-6); HRMS (ESI) m/e calcd. for C₄₂H₄₀O₈ (M+NH₄⁺) 690.3061, found: 690.3059.

1L-(1,2,4/3,5)-1,5-Di-azido-3,4-di-*O*-benzyl-2,3,4-cyclohexanetriol (37). To a solution of 36 (382 mg, 0.57 mmol) in MeOH (5 mL), 30% NaOMe (in MeOH, 0.1

- 21 -

mL) was added and the mixture was stirred for 1 h. The reaction mixture was neutralized with ion-exchanged resin (Dowex 50, strong acid form), filtered, and concentrated to give crude diol (207 mg). To a suspension of crude diol product in CH₂Cl₂ (5 mL), pyridine (0.36 mL, 4.4 mmol) was added, followed by the addition of Tf₂O (306 µL, 1.7 mmol) dropwise at 0 °C. After stirring for 10 min, sat. NaHCO₃ was added to quench the reaction. The reaction mixture was diluted with EtOAc $(2 \times 50 \text{ mL})$, washed with water and brine. The extract was dried over Na₂SO₄ and concentrated. The residue was coevaporated with toluene for three times before dissolved in DMF (5 mL). To the above mixture, NaN₃ (116 mg, 1.78 mmol) was added at 0 °C. After stirring for 12 h, the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give 37 (91 mg, 41% over three steps): $R_f = 0.40$ (petroleum ether/EtOAc 2:1). To the crude diol described above, -OTf was substituted by $N_3^$ whereas PMB group was deprotected at the same time by the above procedure. $[\alpha]_D =$ +18.3 (c = 1.8, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.39-7.25$ (m, 10H, Ar), 4.97 (d, 1H, J = 11.5 Hz, PhCH₂), 4.88 (d, 1H, J = 10.5 Hz, PhCH₂), 4.84 (d, 1H, J = 11.0 Hz, PhCH₂), 4.69 (d, 1H, J = 11.0 Hz, PhCH₂), 4.00 (q, 1H, J = 3.5 Hz, H-1), 3.74-3.69 (m, 2H, H-3, H-5), 3.65 (dd, 1H, J = 3.5, 9.5 Hz, H-2), 3.33 (t, 1H, J = 9.0Hz, H-4), 2.36 (d, 1H, J = 3.0 Hz, OH), 2.09 (dt, 1H, J = 4.5, 14.5 Hz, H-6eq), 1.44 (ddd, 1H, J = 3.0, 12.5, 14.5 Hz, H-6ax). ¹³C NMR (75 MHz, CDCl₃) $\delta = 138.94$, 137.54, 128.74, 128.49, 128.16, 127.98, 127.88, 84.65, 81.70, 75.77, 75.57, 74.12,

59.97, 59.29, 31.54 (C-6).; HRMS (ESI) *m/e* calcd. for C₂₀H₂₂N₆O₃ (M+NH₄⁺) 412.2092, found: 412.2095.

1D-(1,2,4/3,5)-1,5-Di-azido-2,3-di-O-benzyl-2,3,4-cyclohexanetriol (38). To a solution of **31** (78 mg, 0.17 mmol) in CH₂Cl₂ (5 mL), was added dry pyridine (0.14 mL, 1.7 mmol), followed by the addition of Tf₂O (0.11 mL, 0.67 mmol) dropwise at 0 °C. After stirring for 10 min, sat. NaHCO₃ was added to quench the reaction. The reaction mixture was diluted with CH₂Cl₂ (20 mL), washed with water (10 mL) and brine (10 mL). The organic layer was collected, dried over Na₂SO₄, concentrated, and co-evaporated with toluene (5 mL×3). The residue was dissolved in dry DMF (2 mL), and NaN₃ (44 mg, 0.67 mmol) was added. After stirring for 5 h, the reaction mixture was concentrated, diluted with EtOAc, washed with water, and again concentrated to give a colorless oil. To a solution of this oil in CH₂Cl₂/H₂O (5 mL, 18:1), DDQ (71 mg, 0.30 mmol) was added. After stirring for 4 h at room temperature, sat. NaHCO₃ was added to quench the reaction. The mixture was extracted with CH₂Cl₂ (20 mL), dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 10:1) to give 38 (26 mg, 40% over three steps) as a colorless oil: $R_f = 0.40$ (petroleum ether/EtOAc 2:1); $[\alpha]_D = -0.9$ (c = 0.2, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.38-7.25$ (m, 10H, Ar), 4.97 (d, 1H, J = 11.5 Hz, PhCH₂), 4.75-4.69 (m, 3H, PhCH₂), 3.98 (q, 1H, J = 3.5 Hz, H-1), 3.71 (t, 1H, J = 9.0 Hz, H-3), 3.60 (ddd, 1H, J = 4.5, 9.5, 11.5 Hz, H-5), 3.54 (dd, 1H, J = 3.5, 9.0 Hz, H-2), 3.39 (dt, 1H, J = 2.0, 9.0 Hz, H-4), 2.59 (d, 1H, J = 2.0 Hz, OH),

- 23 -

2.03 (dt, 1H, J = 4.5, 14.5 Hz, H-6eq), 1.34 (ddd, 1H, J = 2.5, 12.0, 14.5 Hz, H-6ax); ¹³C-NMR (125 MHz, CDCl₃) $\delta = 138.19$, 137.38, 128.63, 128.58, 128.09, 127.99, 127.91, 82.05, 81.06, 76.26, 75.77, 72.93, 58.89, 57.74, 31.11 (C-6); HRMS (ESI) *m/e* calcd. for C₂₀H₂₂N₆O₃ (M+NH₄⁺) 412.2092, found: 412.2093.

1D-(1,2,4/3,5)-5-O-Benzoyl-2,3-di-O-benzyl-1-O-methyl-1,2,3,4,5-cyclohexanepe

ntol (39). To a solution of 21 (306 mg, 0.77 mmol) in pyridine (5 mL), was added DMAP (ca. 0.05 equiv.), followed by the addition of BzCl (0.36 mL, 3.1 mmol) dropwise at 0 °C. After stirring for 5 h, the mixture was concentrated, extracted with EtOAc, washed with sat. NaHCO₃ and water. The organic layer was collected and dried over Na₂SO₄, filtered and concentrated in vacuo. To a solution of the above crude product in MeOH (10 mL), was added PdCl₂ (36 mg, 0.21 mmol). After stirring at room temperature for 2 h, the mixture was diluted with CH₂Cl₂, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give **39** (351 mg, 98%) as a white solid: $R_f = 0.48$ (petroleum ether/EtOAc 2:1); $[\alpha]_{D} = +10.9$ (c = 1.1, MeOH); ¹H NMR (300 MHz, $CDCl_3$) $\delta = 8.04-8.00$ (m, 2H, PhCO), 7.57-7.51 (m, 1H, Ar), 7.44-7.29 (m, 12H, Ar), 5.25 (ddd, 1H, J = 4.5, 9.0, 11.0 Hz, H-5), 5.00 (d, 1H, J = 11.1 Hz, PhCH₂), 4.79-4.70 (m, 3H, PhCH₂), 3.90 (t, 1H, J = 9.0 Hz, H-3), 3.79-3.72 (m, 2H, H-1, H-4), 3.54 (dd, 1H, J = 3.0, 9.0 Hz, H-2), 3.49 (s, 3H, OCH₃), 2.54 (d, 1H, J = 2.7 Hz, OH), 2.53 (dt, 1H, J = 4.5, 14.1 Hz, H-6eq), 1.39 (ddd, 1H, J = 2.4, 11.1, 14.1 Hz, H-6ax); 13 C NMR (75 MHz, CDCl₃) δ = 166.15 (PhCO), 138.59, 138.06, 132.99, 130.08,

- 24 -

129.62, 128.52, 128.41, 128.30, 127.99, 127.88, 127.79, 81.58, 81.27, 75.53, 74.67, 72.51, 71.73, 57.20 (OCH₃), 28.73 (C-6); elemental analysis calcd. (%) for C₂₈H₃₀O₆: C 72.71, H 6.54, found: C, 72.44, H, 6.49; HRMS (ESI) *m/e* calcd. for C₂₈H₃₀O₆ (M+Na⁺) 485.1935, found: 485.1942.

1D-(1,2,4,5/3)-2-O-Allyl-1-O-benzoyl-2,3-di-O-benzyl-5-O-methyl-1,2,3,4,5-cyclo hexanepentol (40). To a solution of 22 (1.083 g, 2.7 mmol) and DMAP (16.5 mg, 0.14 mmol) in pyridine (10 mL), BzCl (0.93 mL, 8.1 mmol) was added dropwise at 0 °C. After stirring for 5 h, the mixture was concentrated in vacuo. The residue was dissolved in EtOAc (50 mL), washed with sat. NaHCO₃ and water. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give 40 (1.339 g, 98%) as a white solid: $R_f = 0.52$ (petroleum ether/EtOAc 2:1); $[\alpha]_D = -6.6$ (c = 0.6, EtOAc); ¹H NMR (300 MHz, CDCl₃) $\delta = 8.15 \cdot 8.12$ (m, 2H, PhCO), 7.57 \cdot 7.52 (m, 1H, Ar), 7.45-7.25 (m, 12H, Ar), 5.88 (ddt, 1H, J = 6.0, 10.5, 17.5 Hz, =CH-), 5.57-5.56 (m, 1H, H-1), 5.24 (d, 1H, J = 17.1 Hz, =CH₂), 5.11 (d, 1H, J = 7.5 Hz, =CH₂), 4.90-4.72 (m, 4H, PhCH₂), 4.25-4.08 (m, 3H, H-3, =C-CH₂-), 3.67-3.66 (m, 1H, H-5), 3.50-3.46 $(m, 2H, H-2, H-4), 3.30 (s, 3H, OCH_3), 2.50 (dt, 1H, J = 3.6, 15.6 Hz, H-6eq), 1.41 (d, J-2)$ 1H, J = 15.6 Hz, H-6ax); ¹³C NMR (125 MHz, CDCl₃) $\delta = 166.20$ (PhCO), 138.90, 138.51, 134.91, 133.63, 132.88, 130.34, 130.13, 129.96, 128.28, 127.98, 127.64, 127.55, 117.15, 81.14, 80.11, 78.72, 76.04, 75.90, 72.89, 71.59, 68.60, 56.83 (OCH₃), 26.42 (C-6); MS (ESI) *m/e* calcd for $C_{31}H_{34}O_6$ (M+Na⁺) 525, found: 525; elemental analysis calcd (%) for $C_{31}H_{34}O_6$: C 74.08, H 6.82, found: C 74.11, H 6.99.

1D-(1,2,4,5/3)-5-O-Benzoyl-2,3-di-O-benzyl-1-O-methyl-1,2,3,4,5-cyclohexanepe ntol (41). To a solution of 40 (31 mg, 0.06 mmol) in MeOH (1 mL), was added PdCl₂ (3 mg, 0.018 mmol) at room temperature. After stirring for 3 h, the reaction mixture was diluted with CH₂Cl₂, filtered, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 4:1) to give 41 (25 mg, 87%) as a colorless oil: $R_f = 0.42$ (petroleum ether/EtOAc 2:1); $[\alpha]_D = -1.9$ (c = 2.1, EtOAc). Acceptor 41 was not stable in CDCl₃ or CD₃OD at room temperature. Besides, it is hard to identify the structure from its ¹H NMR. For further identification, allyl group was reintroduced by the following procedure: To a mixture of 41 (33 mg, 0.07 mmol) and freshly prepared AllylOCNHCCl₃ (70 mg) in CH₂Cl₂/ hexane (1:2, 2 mL) with 4 Å molecular sieves, TfOH (7 µL) was added slowly at 0 °C. Stirring the mixture for 12 h from 0 °C to room temperature, Et₃N was added to quench the reaction. The reaction mixture was filtered and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give 40^* (25) mg, 70%) as a white solid: $R_f = 0.52$ (petroleum ether/EtOAc 2:1). From the NMR spectra it was find the allylation product 40^* and 40 are the same compound. It was demonstrated that the benzoyl group did not migrate during the deprotection of allyl

group. Compound 41 was directly used for the glycosyl coupling reaction.

1D-(1,2,4/3,5)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-1,2,3,4,5-cyclohexanepentol (42).

To a solution of 23 (261 mg, 0.44 mmol) in methanol (5 mL), was added PdCl₂ (25 mg, 0.14 mmol) at room temperature. After stirring for 2 h, no starting material was detected. The reaction mixture was diluted with CH₂Cl₂, filtrated, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 8:1) to give 42 (237 mg, 98%) as a colorless oil: $R_f = 0.26$ (petroleum ether/EtOAc 2:1); $[\alpha]_D = -22.4$ (c = 2.1, MeOH); ¹H NMR (300 MHz, CDCl₃) $\delta =$ 8.11-8.08 (m, 2H, PhCO), 8.03-8.01 (m, 2H, PhCO), 7.63-7.25 (m, 16H, Ar), 5.86 (dt, 1H, J = 2.4, 4.8 Hz, H-1), 5.48 (ddd, 1H, J = 4.8, 8.7, 11.1 Hz, H-5), 4.97 (d, 1H, J =11.1 Hz, PhCH₂), 4.84 (d, 1H, J = 11.1 Hz, PhCH₂), 4.74 (d, 1H, J = 11.1 Hz, PhCH₂), 4.60 (d, 1H, J = 11.1 Hz, PhCH₂), 3.96-3.82 (m, 2H, H-3, H-4), 3.74 (dd, 1H, J = 3.0, 8.7 Hz, H-2), 2.74 (d, 1H, J = 2.7 Hz, OH), 2.50 (dt, 1H, J = 4.8, 14.1 Hz, H-6eq), 1.81 (ddd, 1H, J = 2.4, 10.8, 14.1 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 165.97$ (PhCO), 165.61 (PhCO), 138.24, 137.57, 133.24, 133.11, 129.88, 129.68, 128.51, 128.38, 128.02, 127.88, 127.79, 80.64, 80.18, 75.39, 74.38, 72.13, 71.45, 67.08, 30.62 (C-6); HRMS (ESI) m/e calcd. for C₃₄H₃₂O₇ (M+Na⁺) 575.2040, found: 575.2034.

1L-(1,2,4/3,5)-1,5-Di-O-benzoyl-3,4-di-O-benzyl-1,2,3,4,5-cyclohexanepentol (43).

To a solution of **24** (112 mg, 0.24 mmol) in methanol (2 mL), 30% MeONa (in MeOH, 0.1 mL) was added dropwise. The reaction mixture was neutralized with ion-exchange resin (Dowex 50, strong acid form), filtered, and concentrated to give yellow oil. The oil was dissolved in pyridine (5 mL), BzCl (0.17 mL, 1.44 mmol) was

added at 0 °C, and the mixture was stirred for 6 h. The reaction mixture was concentrated in vacuo, diluted with EtOAc (20 mL), and washed with sat. KHCO₃. The organic layer was collected and concentrated to give a yellow oil. To the solution of this oil in methanol (2 mL), PdCl₂ (13 mg, 0.07 mmol) was added at room temperature. After stirring for 2 h, the mixture was diluted with CH₂Cl₂, filtered, and concentrated. The resulting residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give 43 (118 mg, 89% over three steps) as a white solid: $R_f = 0.31$ (petroleum ether/EtOAc 2:1); $[\alpha]_D = -24.1$ (c = 1.7, EtOAc); ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3) \delta = 8.06-8.04 \text{ (m, 2H, PhCO)}, 8.01-7.99 \text{ (m, 2H, PhCO)},$ 7.60-7.54 (m, 2H, Ar), 7.47-7.40 (m, 4H, Ar), 7.36-7.28 (m, 5H, Ar), 7.20-7.19 (m, 5H, Ar), 5.64-5.62 (dt, 1H, J = 2.5, 4.5 Hz, H-1), 5.58 (ddd, 1H, J = 5.0, 8.5, 9.0 Hz, H-5), 4.94 (d, 1H, J = 11.0 Hz, PhCH₂), 4.85-4.79 (m, 3H, PhCH₂), 3.96 (t, 1H, J = 8.5 Hz, H-4), 3.91 (dd, 1H, J = 3.0, 9.0 Hz, H-2), 3.83 (t, 1H, J = 8.5 Hz, H-3), 2.40-3.00 (br, 1H, OH), 2.52 (dt, 1H, J = 4.5, 14.5 Hz, H-6eq), 1.83 (ddd, 1H, J = 2.5, 11.0, 14.0 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) δ = 166.02 (PhCO), 165.57 (PhCO), 138.05, 137.60, 133.23, 133.13, 129.83, 129.73, 129.60, 128.54, 128.42, 128.39, 128.12, 128.08, 127.96, 127.84, 82.60, 81.18, 75.53, 75.43, 72.72, 71.68, 70.01, 30.70 (C-6); MS (ESI) m/e calcd. for C₃₄H₃₂O₇: 575 (M+Na⁺), found: 575; elemental analysis calcd (%) for C₃₄H₃₂O₇: C 73.62, H 5.84, found: C 73.62, H 5.99.

1L-(1,3,5/2,4)-1,5-Di-O-benzoyl-2,3-di-O-benzyl-1,2,3,4,5-cyclohexanepentol

(44). To a solution of 30 (48 mg, 0.07 mmol) in CH₂Cl₂/H₂O (2 mL, 18:1), was added

- 28 -

DDQ (26 mg, 0.11 mmol) at room temperature. After stirring for 2 h, sat. NaHCO₃ was added to quench the reaction. The solution was diluted with CH₂Cl₂ (20 mL) and washed with brine (20 mL). The organic layer was collected, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 10:1) to give 44 (24 mg, 62%) as a white solid: $R_f = 0.30$ (petroleum ether/EtOAc 3:1); $[\alpha]_D = -33.6$ (c = 0.1, EtOAc); ¹H NMR (500 MHz, $CDCl_3$) $\delta = 8.03-7.98$ (m, 4H, PhCO), 7.58-7.53 (m, 2H, Ar), 7.44-7.40 (m, 4H, Ar), 7.34-7.29 (m, 5H, Ar), 7.18 (s, 5H, Ar), 5.30 (ddd, 1H, J = 4.5, 9.0, 11.5 Hz, H-1), 5.17 (ddd, 1H, J = 5.0, 9.5, 12.0 Hz, H-5), 4.97 (d, 1H, J = 11.5 Hz, PhCH₂), 4.85-4.78 (m, 3H, PhCH₂), 3.87 (t, 1H, J = 9.0 Hz, H-3), 3.81 (t, 1H, J = 9.0 Hz, H-4), 3.58 (t, 1H, J = 9.0 Hz, H-2), 2.60 (dt, 1H, J = 4.5, 12.5 Hz, H-6eq), 2.53 (br, 1H, OH), 1.80 (q, 1H, J = 12.0 Hz, H-6ax); ¹³C NMR (125 MHz, CDCl₃) $\delta = 165.92$ (PhCO), 165.42 (PhCO), 138.18, 137.82, 133.15, 133.16, 129.82, 129.71, 129.63, 128.61, 128.41, 128.35, 128.31, 128.04, 127.97, 127.72, 82.85, 82.68, 75.83, 75.42, 75.05, 71.04, 70.84, 31.94 (C-6); HRMS (ESI) *m/e* calcd. for C₃₄H₃₂O₇ (M+Na⁺) 575.2040, found: 575.2030.

(2R,3S,4R,5R)-2-O-Allyl-3-O-benzyl-5-O-methyl-7-oxa-bicyclo[2.2.1]heptane

(46). To a solution of 21 (14 mg, 0.04 mmol) in CH_2Cl_2 (1 mL), was added dry pyridine (32.6 μ L, 0.4 mmol) followed by the addition of Tf_2O (27.8 μ L, 0.16 mmol) dropwise at 0 °C. After 1 h, TLC monitoring showed the completion of the reaction, and sat. NaHCO₃ was added to quench the reaction. The reaction mixture was diluted

with CH₂Cl₂ and washed with water. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give **46** (10 mg, 99%) as a white solid: $R_f = 0.40$ (petroleum ether/EtOAc 2:1); $[\alpha]_D = -49.2$ (c = 0.7, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.39-7.32$ (m, 5H, Ar), 5.90 (ddt, 1H, J = 6.0, 10.5, 17.5 Hz, =CH-), 5.25 (dq, 1H, J = 1.5, 17.5 Hz, =CH₂), 5.18 (dq, 1H, J = 1.5, 6.0 Hz, =CH₂), 4.56-4.50 (m, 4H, H-1, H-2, PhCH₂), 4.07 (dd, 1H, J = 2.4, 6.9 Hz, H-5), 3.99-3.92 (m, 2H, =C-CH₂), 3.84 (dt, 1H, J = 1.5, 6.5 Hz, H-3), 3.35 (d, 1H, J = 1.5 Hz, H-4), 3.26 (s, 3H, OCH₃), 1.87 (dd, 1H, J = 7.0, 13.0 Hz, H-6ax), 1.72 (ddq, 1H, J = 1.5, 6.5, 13.0 Hz, H-6eq); ¹³C NMR (75 MHz, CDCl₃) $\delta = 137.46$, 134.27, 128.52, 128.03, 127.85, 117.45, 85.65, 84.06, 79.97, 79.35, 72.85, 69.96, 56.49 (OCH₃), 35.34 (C-6); HRMS (ESI) m/e calcd. for C₁₇H₃₀O₆ (M+Na⁺) 313.1410, found: 313.1408.

p-Methylphenyl

2,6-di-azido-3,4-O-isopropylidene-1-thio-2,6-di-deoxy-β-D-galactopyranoside

(51). To a solution of 48³ (762 mg, 2.27 mmol) in 2,2-dimethoxypropane (10 mL), was added CSA (29 mg, 0.12 mmol) at room temperature. After stirring overnight, Et₃N was added to neutralize the reaction. The reaction mixture was concentrated and coevaperated with toluene for three times. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 15:1) to give 51 (372 mg, 50%) as a white solid: $R_f = 0.41$ (petroleum ether/EtOAc 4:1); $[\alpha]_D = +145.5$ (c = 4.2, EtOAc); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.49$ (d, 2H, J = 7.9 Hz, Ar), 7.15 (d, 2H, J

= 7.9 Hz, Ar), 4.33 (d, 1H, *J* = 10.5 Hz, H-1), 4.11-4.06 (m, 2H, H-3, H-4), 3.81 (ddd, 1H, *J* = 2.1, 5.4, 5.7 Hz, H-5), 3.66 (dd, 1H, *J* = 7.8, 12.7 Hz, H-6a), 3.44-3.32 (m, 2H, H-2, H-6b), 2.35 (s, 3H, PhCH₃), 1.42 (s, 3H, CH₃), 1.34 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ = 138.78, 133.97, 129.74, 127.28, 110.79 (isopropylidene), 85.91 (C-1), 78.25, 75.28, 72.69, 63.55, 51.13, 27.97 (isopropyliden), 26.23 (isopropyliden), 21.14 (CH₃); MS (ESI-TOF) *m/e* calcd. for C₁₆H₂₀N₆O₃S 399 (M+Na⁺), found 399; elemental analysis calcd (%) for C₁₆H₂₀N₆O₃S: C 51.06, H 5.36, N, 22.23, found: C 51.27, H 5.55, N 22.09.

p-Methylphenyl 2,6-di-azido-3,4-di-O-acetyl-1-thio-2,6-di-deoxy-α

-D-mannopyranoside (52). To a solution of **49**⁴ (530 mg, 1.2 mmol) in MeOH (5 mL), 30% NaOMe in MeOH (0.1 mL) was added. The solution was neutralized with ion-exchange resin (Dowex 50, strong acid form), filtered, and concentrated to give colorless oil. To this oil in pyridine (5 mL), TsCl (462 mg, 2.4 mmol) was added at 0 °C, and the mixture was stirred overnight. The reaction mixture was diluted with CH₂Cl₂ (50 mL), washed with sat. NaHCO₃ and brine. The organic layer was collected and concentrated. The resulting residue was dissolved in DMF (5 mL), NaN₃ (112 mg, 1.7 mmol) was added, and the reaction mixture was heated at 80 °C for 10 h. The mixture was concentrated in vacuo, diluted with EtOAc, and washed with water. The organic layer was dried over Na₂SO₄ and concentrated. The residue was mixed with pyridine (5 mL), Ac₂O (0.28 mL, 2.7 mmol) was then added at 0 °C, and the mixture was stirred overnight at room temperature. The reaction mixture was

concentrated in vacuo. The resulting residue was dissolved in EtOAc, washed with sat. NaHCO₃ and brine. The organic layer was collected, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 6:1) to give 52 (258 mg, 51% over four steps) as a white solid: $R_f = 0.36$ (petroleum ether/EtOAc 4:1); mp 64-65 °C; $[\alpha]_D = +8.7$ (c = 4.1, EtOAc); ¹H NMR (500 MHz, CDCl₃) δ = 7.40 (d, 2H, J = 8.0 Hz, Ar), 7.16 (d, 2H, J = 8.0 Hz, Ar), 5.43 (d, 1H, J = 1.5 Hz, H-1), 5.35 (dd, 1H, J = 4.0, 9.5 Hz, H-3), 5.29 (t, 1H, J = 9.5 Hz, H-4), 4.44 (ddd, 1H, J = 2.5, 7.0, 9.5 Hz, H-5), 4.30 (dd, 1H, J = 1.5)1.5, 4.0 Hz, H-2), 3.40 (dd, 1H, J = 7.0, 13.5 Hz, H-6a), 3.26 (dd, 1H, J = 2.5, 13.5 Hz, H-6b), 2.34 (s, 3H, CH₃), 2.11 (s, 3H, CH₃), 2.08 (s, 3H, CH₃); ¹³C NMR (75 MHz, $CDCl_3$) $\delta = 169.87$ (COCH₃), 169.60 (COCH₃), 138.68, 132.52, 130.11, 128.38, 86.09 (C-1), 70.88, 67.18, 62.64, 51.07, 21.11 (CH₃), 20.64 (COCH₃), 20.49(COCH₃); MS (ESI-TOF) m/e calcd. for C₁₆H₂₀N₆O₃S 443 (M+Na⁺), found 443; elemental analysis calcd (%) for C₁₆H₂₀N₆O₃S: C 48.56, H 4.79, N 19.99, found: C 48.83, H 5.07, N 19.82.

General procedure for the preparation of pseudodisaccharides 53-58 and 60-65.

Donor 50^5 (0.3 mmol) and acceptor (0.2 mmol) were coevaporated twice with toluene and further dried under vaccum. To a solution of donor and acceptor in CH₂Cl₂ (5 mL), 4 Å molecular sieves (600 mg) and *N*-iodosucccinimide (0.3 mmol) were added, and the mixture was stirred for 30 min before cooled to -40 °C under argon. Trifluoromethanesulfonic acid (0.03 mmol, 1N in Et₂O) was added, the temperature was then allowed to rise to -20 °C, and maintained at this temperature for 30 min to 3 h until donor disappeared by TLC monitoring. Et₃N was added to quench the reaction. The reaction mixture was filtered, washed with CH_2Cl_2 , and concentrated. The residue was purified by column chromatography on silica gel. To the disaccharides with benzoyl protective group, 30% NaOMe in MeOH was added to give **53-58**. Compound **65** was obtained by the coupling of donor **51** and acceptor **33** followed by the deprotection of acetal group with 80% AcOH/H₂O at 60 °C for 2 h.

1L-(**1**,2,4,5/3)-2-*O*-(**2**',6'-Di-azido-3',4'-di-*O*-benzyl-2',6'-di-deoxy-α-D-glucopyr anosyl)-3,4-di-*O*-benzyl-1,2,3,4,5-cyclohexanepentol (53). Yield: 80%; $[α]_D = +19.9$ (c = 3.2, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.41$ -7.25 (m, 20H, Ar), 5.28 (d, 1H, J = 3.5 Hz, H-1'), 5.02 (d, 1H, J = 10.0 Hz, PhCH₂), 4.92-4.85 (m, 4H, PhCH₂), 4.74 (d, 1H, J = 12.0 Hz, PhCH₂), 4.69 (d, 1H, J = 11.5 Hz, PhCH₂), 4.59 (d, 1H, J =11.5 Hz, PhCH₂), 4.18-4.10 (m, 4H, H-1 or H-5, H-2 or H-4, H-3 H-5'), 4.05 (dd, 1H, J = 9.0, 10.0 Hz, H-3'), 3.58 (dd, 1H, J = 3.5, 10.0 Hz, H-2'), 3.52-3.44 (m, 5H, H-1 or H-5, H-2 or H-4, H-4', H-6a', OH), 3.33 (dd, 1H, J = 6.0, 13.5 Hz, H-6b'), 3.12 (d, 1H, J = 2.5 Hz, OH), 2.32 (dt, 1H, J = 3.5, 15.5 Hz, H-6eq), 1.53 (d, 1H, J = 15.5 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 138.74$, 137.75, 137.58, 128.53, 128.36, 128.12, 127.98, 127.90, 127.83, 127.74, 127.53, 99.14 (C-1'), 82.10, 82.16, 80.37, 78.94, 78.18, 75.84, 75.59, 75.13, 72.78, 70.93, 70.34, 68.50, 63.86, 51.10, 31.52 (C-6); MS (ESI-TOF) *m/e* calcd. for C₄₀H₄₄N₆O₈ 754 (M+NH₄⁺), found 754; elemental analysis calcd (%) for C₄₀H₄₄N₆O₈: C 65.20, H 6.02, N 11.41, found: C, 65.09, H, 6.00, N, 11.19.

ID-(1,3,5/2,4)-2-*O***-(2',6'-Di-azido-3',4'-di-***O***-benzyl-2',6'-di-deoxy-α-D-glucopyr anosyl)-3,4-di-***O***-benzyl-1,2,3,4,5-cyclohexanepentol (54). Yield: 77%; [α]_D = +0.6 (c = 0.3, EtOAc); ¹H NMR (500 MHz, CDCl₃) \delta = 7.38-7.27 (m, 20H, Ar), 5.37 (d, 1H, J = 3.5 Hz, H-1'), 5.02 (d, 1H, J = 11.0 Hz, PhCH₂), 4.94 (d, 1H, J = 11.0 Hz, PhCH₂), 4.88-4.86 (m, 4H, PhCH₂), 4.67 (d, 1H, J = 11.5 Hz, PhCH₂), 4.59 (d, 1H, J = 11.0 Hz, PhCH₂), 4.88-4.86 (m, 4H, PhCH₂), 4.67 (d, 1H, J = 11.5 Hz, PhCH₂), 4.59 (d, 1H, J = 11.0 Hz, PhCH₂), 4.21 (ddd, 1H, J = 2.5, 5.5, 10.0 Hz, H-5'), 3.97 (dd, 1H, J = 9.0, 10.0 Hz, H-4'), 3.64-3.46 (m, 7H, H-1, H-2, H-3 or H-4, H-5, H-2', H-3', H-6a'), 3.37-3.33 (m, 2H, H-3 or H-4, H-6b'), 2.96 (br, 1H, OH), 2.24 (dt, 1H, J = 4.5, 12.5 Hz, H-6eq), 1.62 (br, 1H, OH), 1.48 (q, 1H, J = 12.5 Hz, H-6ax); ¹³C NMR (125 MHz, CDCl₃) \delta = 138.36, 138.20, 137.44, 137.38, 128.69, 128.59, 128.49, 128.42, 128.16, 128.10, 128.02, 127.92, 127.87, 127.54, 127.29, 98.28 (C-1'), 86.17, 85.48, 82.68, 80.27, 78.74, 75.57 (×2), 75.47, 75.28, 70.82, 68.51, 68.26, 63.76, 51.22, 36.43 (C-6); HRMS (ESI)** *m/e* **calcd. for C₄₀H₄N₆O₈ (M+Na⁺) 759.3113, found: 759.3124.**

1D-(1,2,4/3,5)-4-*O*-(2',6'-Di-azido-3',4'-di-*O*-benzyl-2',6'-di-deoxy-α-D-glucopyr anosyl)-2,3-di-*O*-benzyl-1,2,3,4,5-cyclohexanepentol (55). Yield: 70%; [α]_D = +76.5 (c = 0.3, EtOAc); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.40-7.24$ (m, 20H, Ar), 5.39 (d, 1H, J = 3.6 Hz, H-1'), 4.97-4.85 (m, 4H, PhCH₂), 4.71-4.66 (m, 2H, PhCH₂), 4.56 (d, 1H, J = 11.0 Hz, PhCH₂), 4.26-4.22 (m, 1H, H-5'), 4.13-4.07 (m, 1H, H-1), 4.12-3.96 (m, 2H, H-3 or H-4, H-3'), 3.85 (t, 1H, J = 9.0 Hz, H-4'), 3.56-3.43 (m, 5H, H-2, H-3 or H-4, H-5, H-2', H-6a'), 3.33 (dd, 1H, J = 5.1, 13.2 Hz, H-6b'), 2.25 (dt, 1H, J = 4.2, 13.8 Hz, H-6eq), 1.53 (ddd, 1H, J = 2.4, 13.0, 13.8 Hz, H-6ax). ¹³C NMR (75 MHz, CDCl₃) $\delta = 138.70$, 137.65, 137.50, 137.43, 128.56, 128.49, 128.34, 128.11, 128.01, 127.87, 127.52, 127.45, 98.14 (C-1'), 85.13, 83.01, 80.49, 80.24, 78.75, 75.55, 75.24, 72.73, 70.74, 67.41, 65.60, 63.76, 51.13, 34.47 (C-6); MS (ESI-TOF) *m/e* calcd. for C₄₀H₄₄N₆O₈ 754 (M+NH₄⁺), found: 754; elemental analysis calcd (%) for C₄₀H₄₄N₆O₈: C 65.20, H 6.02, N 11.41, found: C 65.07, H 5.99, N 11.19.

IL-(1,2,4/3,5)-2-*O***-(2',6'-Di-azido-3',4'-di-***O***-benzyl-2',6'-di-deoxy-α-D-glucopyr anosyl)-3,4-di-***O***-benzyl-1,2,3,4,5-cyclohexanepentol (56). Yield: 86%; [α]_D = +8.7 (c = 0.3, EtOAc); ¹H NMR (300 MHz, CDCl₃) \delta = 7.39-7.25 (m, 20H, Ar), 5.35 (d, 1H, J = 3.9 Hz, H-1'), 5.02-4.95 (m, 2H, PhCH₂), 4.91-4.84 (m, 4H, PhCH₂), 4.70 (d, 1H, J = 11.7 Hz, PhCH₂), 4.58 (d, 1H, J = 11.1 Hz, PhCH₂), 4.11-4.12 (m, 1H, H-1), 4.03-3.89 (m, 4H, H-3 or H-4, H-3', H-4', H-5'), 3.72 (dd, 1H, J = 2.7, 9.6 Hz, H-2), 3.50-3.42 (m, 3H, H-3 or H-4, H-5, H-6a'), 3.34-3.27 (m, 2H, H-2', H-6b'), 2.39-2.33 (2×br, 2H, OH), 2.22 (dt, 1H, J = 4.2, 13.8 Hz, H-6eq), 1.45 (ddd, 1H, J = 2.0, 12.0, 13.5 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) \delta = 138.43, 138.38, 137.33, 137.19, 128.59, 128.49, 128.40, 128.18, 128.05, 127.88, 127.74, 127.50, 98.59 (C-1'), 86.54, 81.20, 81.10, 80.22, 78.76, 75.58, 75.44, 75.38, 75.29, 71.23, 68.10, 67.76, 63.59, 51.09, 34.24 (C-6); HRMS (ESI)** *m/e* **calcd. for C₄₀H₄₄N₆O₈ (M+Na⁺) 759.3113, found: 759.3116.** **1D**-(**1**,**2**,**4**/**3**,**5**)-**4**-*O*-(**2**',**6**'-**Di**-**azido**-**3**',**4**'-**di**-*O*-**benzyl**-**2**',**6**'-**di**-**deoxy**-*a*-**D**-**glucoyyr anosyl**)-**2**,**3**-**di**-*O*-**benzyl**-**1**-*O*-**methyl**-**1**,**2**,**3**,**4**,**5**-**cyclohexanepentol** (**57**). Yield: 70%; $[\alpha]_D = +72.7 (c = 4.4, EtOAc)$; ¹H NMR (300 MHz, CDCl₃) $\delta = 7.38-7.26$ (m, 20H, Ar), 5.37 (d, 1H, *J* = 3.6 Hz, H-1'), 4.99-4.84 (m, 5H, PhCH₂), 4.74-4.65 (m, 2H, PhCH₂), 4.59 (d, 1H, *J* = 11.0 Hz, PhCH₂), 4.18 (ddd, 1H, *J* = 2.4, 5.1, 10.2 Hz, H-5'), 4.00 (dd, 1H, *J* = 9.0, 10.2 Hz, H-4'), 3.91 (t, 1H, *J* = 9.0 Hz, H-3'), 3.84-3.80 (m, 1H, H-1), 3.60 (m, 1H, H-5), 3.56-3.41 (m, 8H, H-2, H-3, H-4, H-2', H-6a', OCH₃), 3.33 (dd, 1H, *J* = 5.1, 13.2 Hz, H-6b'), 2.90 (d, 1H, *J* = 3.9 Hz, OH), 2.28 (dt, 1H, *J* = 4.5, 14.4 Hz, H-6eq), 1.23 (t, 1H, *J* = 14.4 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) $\delta =$ 138.85, 138.13, 137.47, 137.42, 128.56, 128.49, 128.36, 128.27, 128.12, 127.99, 127.90, 127.86, 127.71, 127.63, 127.34, 98.21 (C-1'), 85.97, 82.70, 80.44, 80.14, 78.76, 75.53, 75.21, 74.75, 72.69, 70.75, 67.62, 63.76, 57.54 (OCH₃), 51.17, 31.97 (C-6); HRMS (ESI) *m/e* calcd. for C₄₁H₄₆N₆O₈ (M+Na⁺)</sup> 773.3269, found: 773.3262.

1L-(1,2,4,5/3)-2-*O*-(2',6'-Di-azido-3',4'-di-*O*-benzyl-2',6'-di-deoxy-α-D-glucopyr anosyl)-3,4-di-*O*-benzyl-5-*O*-methyl-1,2,3,4,5-cyclohexanepentol (58). Yield: 70%; $[α]_D = +34.8 \ (c = 2.4, \text{ EtOAc}); {}^{1}\text{H} \text{ NMR} (300 \text{ MHz}, \text{ CDCl}_3) \delta = 7.42-7.24 \ (m, 20\text{H}, \text{Ar}), 5.23 \ (d, 1\text{H}, J = 3.6 \text{ Hz}, \text{H-1'}), 5.02 \ (d, 1\text{H}, J = 10.5 \text{ Hz}, \text{PhCH}_2), 4.91-4.83 \ (m, 4\text{H}, \text{PhCH}_2), 4.77 \ (d, 1\text{H}, J = 12.0 \text{ Hz}, \text{PhCH}_2), 4.67 \ (d, 1\text{H}, J = 11.7 \text{ Hz}, \text{PhCH}_2), 4.59 \ (d, 1\text{H}, J = 11.4 \text{ Hz}, \text{PhCH}_2), 4.22-4.06 \ (m, 4\text{H}, \text{H-1 or H-3}, \text{H-3'}, \text{H-4'}, \text{H-5'}), 3.70-3.65 \ (m, 2\text{H}, \text{H-1 or H-3}, \text{OH}), 3.54-3.41 \ (m, 8\text{H}, \text{H-4}, \text{H-5}, \text{H-6}, \text{H-2'}, \text{H-6a'}, \text{H-6a'})$
OCH₃), 3.34 (dd, 1H, *J* = 5.1, 13.2 Hz, H-6b'), 2.27 (d, 1H, *J* = 15.0 Hz, H-6eq), 1.23 (d, 1H, *J* = 14.4 Hz, H-6ax); ¹³C NMR (75 MHz, CDCl₃) δ = 138.80, 138.14, 137.66, 128.41, 128.28, 128.09, 127.92, 127.87, 127.82, 127.75, 127.64, 127.44, 99.33 (C-1'), 82.99, 82.70, 80.35, 78.99, 78.61, 78.35, 75.77, 75.52, 75.00, 73.13, 70.76, 70.17, 63.97, 59.06 (OCH₃), 51.10, 29.71 (C-6); HRMS (ESI) *m/e* calcd. for C₄₁H₄₆N₆O₈ (M+Na⁺) 773.3269, found: 773.3254.

11-(1,3,4/2,6)-1-*O***-(2',6'-Di-azido-3',4'-di-***O***-benzyl-2',6'-di-***d***eoxy-α-D-glucopyr anosyl)-2,3-di-***O***-benzyl-4,6-di-azido-1,2,3-cyclohexanetriol (60).** Yield: 56%; [α]_D = +60.0 (c = 0.3, EtOAc); ¹H NMR (500 MHz, CDCl₃) δ = 7.37-7.24 (m, 20H, Ar), 5.59 (d, 1H, J = 4.0 Hz, H-1'), 5.05 (d, 1H, J = 10.5 Hz, PhCH₂), 4.91-4.86 (m, 4H, PhCH₂), 4.70 (s, 2H, PhCH₂), 4.61 (d, 1H, J = 11.0 Hz, PhCH₂), 4.07 (ddd, 1H, J =2.5, 4.0, 9.5 Hz, H-5'), 4.01 (dd, 1H, J = 9.0, 10.0 Hz, H-3'), 3.99 (dd, 1H, J = 3.5, 7.7 Hz, H-2'), 3.95 (t, 1H, J = 9.5 Hz, H-4'), 3.65-3.58 (m, 2H, H-1 or H-2, H-4), 3.53-3.46 (m, 3H, H-1 or H-2, H-6, H-6a'), 3.36 (dd, 1H, J = 4.5, 13.0 Hz, H-6b'), 3.31 (dd, 1H, J = 4.0, 10.0 Hz, H-3), 2.15 (dt, 1H, J = 4.5, 14.5 Hz, H-5eq), 1.47 (ddd, 1H, J = 3.0, 12.0, 14.5 Hz, H-5ax); ¹³C NMR (125 MHz, CDCl₃) δ = 138.24, 137.68 (× 2), 137.22, 128.59, 128.48, 128.41, 128.14, 128.05, 128.01, 127.90, 127.74, 127.58, 127.45, 97.74 (C-1'), 82.93, 81.71, 80.04, 78.71, 78.26, 75.47, 75.35, 75.00, 73.19, 70.89, 63.28, 58.28, 57.27, 51.00, 31.17 (C-5); HRMS (ESI) *m/e* calcd. for C₄₀H₄₂N₁₂O₆ (M+Na⁺) 809.3242, found: 809.3241. **1L**-(**1**,**3**,**6**/2,**4**)-**1**-*O*-(**2**',**6**'-**Di**-**azido**-**3**',**4**'-**di**-*O*-**benzyl-2**',**6**'-**di**-**deoxy**-*α*-**D**-**glucopyr anosyl)-4,6-di**-**azido**-2,**3**-di-*O*-**benzyl-1**,**2**,**3**-cyclohexanetriol (61). Yield: 50%; $[α]_D$ = +82.1 (c = 0.6, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.36-7.25$ (m, 20H, Ar), 5.37 (d, 1H, J = 4.0 Hz, H-1'), 5.01 (d, 1H, J = 11.0 Hz, PhCH₂), 4.93 (d, 1H, J = 10.5Hz, PhCH₂), 4.88-4.82 (m, 5H, PhCH₂), 4.56 (d, 1H, J = 11.5 Hz, PhCH₂), 4.06 (dd, 1H, J = 3.0, 6.0 Hz, H-6), 4.03 (dd, 1H, J = 9.0, 10.5 Hz, H-3'), 3.97 (t, 1H, J = 9.0Hz, H-4'), 3.91 (ddd, 1H, J = 2.5, 7.0, 9.5 Hz, H-5'), 3.85 (dd, 1H, J = 3.5, 9.5 Hz, H-2'), 3.71 (ddd, 1H, J = 4.5, 9.5, 12.5 Hz, H-4), 3.45-3.32 (m, 4H, H-1, H-2, H-3, H-6a'), 3.27 (dd, 1H, J = 7.0, 12.5 Hz, H-6b'), 2.11 (dt, 1H, J = 4.0, 14.0 Hz, H-5eq), 1.45 (ddd, 1H, J = 2.0, 11.5, 13.5 Hz, H-5ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 138.24$, 137.56, 137.44, 137.39, 128.56, 128.44, 128.16, 128.05, 127.88, 127.60, 127.32, 99.02 (C-1'), 85.04, 81.64, 79.79, 79.41, 78.72, 75.81, 75.61, 75.53, 75.06, 71.87, 63.27, 59.96, 59.43, 51.10, 31.72 (C-5); HRMS (ESI) *m/e* calcd. for C₄₀H₄₂N₁₂O₆ (M+Na⁺) 809.3242, found: 809.3232.

1L-(1,3,4/2,5)-1-*O*-(2',6'-Di-azido-3',4'-di-*O*-benzyl-2',6'-di-deoxy-α-D-glucopyr anosyl)-6-azido-2,3-di-*O*-benzyl-4-*O*-methyl-1,2,3,4-cyclohexanetetrol (62). Yield: 86%; $[α]_D = +47.7$ (c = 0.3, EtOAc); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.37-7.26$ (m, 20H, Ar), 5.62 (d, 1H, J = 4.0 Hz, H-1'), 5.07 (d, 1H, J = 10.5 Hz, PhCH₂), 4.91-4.86 (m, 4H, PhCH₂), 4.70-4.60 (m, 3H, PhCH₂), 4.28 (ddd, 1H, J = 2.5, 4.0, 10.0 Hz, H-5'), 4.03 (t, 1H, J = 9.0 Hz, H-3'), 4.00 (t, 1H, J = 9.0 Hz, H-4'), 3.67-3.36 (m, 10H, H-1, H-2, H-3, H-4, H-6, H-2', H-6a', OCH₃), 3.30 (dd, 1H, J = 4.0, 10.5 Hz, H-6b'),

- 38 -

2.32 (dt, 1H, J = 4.0, 14.0 Hz, H-5eq), 1.32 (ddd, 1H, J = 2.0, 13.5, 14.0 Hz, H-5ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 138.52$, 137.82, 137.70, 128.44, 128.35, 128.03, 127.93, 127.87, 127.73, 127.45, 97.74 (C-1'), 82.86, 81.75, 79.98, 78.70, 78.61, 75.43, 75.15, 74.98, 74.35, 72.73, 70.74, 63.23, 58.28, 57.90 (OCH₃), 50.97, 29.74 (C-5); HRMS (ESI) *m/e* calcd. for C₄₁H₄₅N₉O₇ (M+NH₄⁺) 793.3780, found: 793.3786.

5,6,3',4'-Tetra-*O***-benzyl-1,3,2',6'-tetraazidoneamine (63).** Yield: 80%; $[\alpha]_D =$ +55.1 (*c* = 1.3, EtOAc); 1H NMR (300 MHz, CDCl3) $\delta =$ 7.38-7.26 (m, 20H, Ar), 5.58 (d, 1H, *J* = 3.9 Hz, H-1'), 5.02 (d, 1H, *J* = 11.1 Hz, PhCH₂), 4.94-4.80 (m, 6H, PhCH₂), 4.61 (d, 1H, *J* = 11.1 Hz, PhCH₂), 4.27 (m, 1H, H-5'), 4.00 (t, 1H, *J* = 9.0 Hz, H-3'), 3.65-3.29 (m, 9H, H-1, H-3, H-4, H-5, H-6, H-2', H-4', H-6a', H-6b'), 2.32 (dt, 1H, *J* = 4.2, 13.2 Hz, H-2eq), 1.49 (q, 1H, *J* = 13.2 Hz, H-2ax). The ¹H NMR data coinside with the previous report.¹

4-*O*-(2',6'-Di-azido-2',6'-di-deoxy-3'4'-di-*O*-acetyl-α-D-mannopyranosyl)-1,3-di -azido-5,6-di-*O*-benzyl-2-deoxystreptamine (64). Yield: 84%; $[α]_D = +68.9$ (c = 0.9, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.39-7.26$ (m, 10H, Ar), 5.29-5.21(m, 2H, H-3', H-4'), 5.18 (d, 1H, J = 2.5 Hz, H-1'), 5.02 (d, 1H, J = 11.5 Hz, PhCH₂), 4.90 (d, 1H, J = 10.5 Hz, PhCH₂), 4.83 (d, 1H, J = 10.5 Hz, PhCH₂), 4.62 (d, 1H, J = 11.5 Hz, PhCH₂), 4.32 (ddd, 1H, J = 3.0, 6.0, 9.0 Hz, H-5'), 3.53-3.46 (m, 4H, H-2', H-4, H-5, H-6), 3.43-3.37 (m, 2H, H-1, H-3), 3.33 (dd, 1H, J = 6.5, 13.5 Hz, H-6a'), 3.25 (dd, 1H, J = 3.0, 13.5 Hz, H-6b'), 2.34 (dt, 1H, J = 4.5, 13.0 Hz, H-2eq), 2.05 (s, 3H, COCH₃), 2.04 (s, 3H, COCH₃), 1.50 (q, 1H, J = 13.0 Hz, H-2ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 169.94$ (COCH₃), 169.65 (COCH₃), 137.35, 137.09, 128.72, 128.52, 128.26, 128.11, 128.05, 127.22, 98.76 (C-1'), 84.38, 84.10, 79.51, 75.91 (×2), 70.70, 70.30, 66.76, 61.01, 60.18, 58.79, 51.01, 32.15 (C-2), 20.68 (COCH₃), 20.45 (COCH₃); HRMS (ESI) *m/e* calcd. for C₃₀H₃₄N₁₂O₈ (M+Na⁺) 713.2515, found: 713.2506.

4-*O*-(2',6'-Di-azido-2',6'-di-deoxy-α-D-galactopyranosyl)-1,3-di-azido-5,6-di-*O*benzyl-2-deoxystreptamine (65). Yield: 60% over two steps; $[α]_D = +20.7$ (c = 0.3, EtOAc); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.35-7.25$ (m, 10H, Ar), 5.68 (d, 1H, J = 4.0Hz, H-1'), 5.02 (d, 1H, J = 11.0 Hz, PhCH₂), 4.89-4.86 (m, 2H, PhCH₂), 4.82 (d, 1H, J = 10.0 Hz, PhCH₂), 4.39 (t, 1H, J = 5.5 Hz, H-3'), 4.13 (dd, 1H, J = 3.0, 5.5 Hz, H-2'), 4.03 (d, 1H, J = 2.0 Hz, H-4'), 3.67-3.57 (m, 3H, H-4, H-5, H-6), 3.53-3.39 (m, 5H, H-1, H-3, H-5', H-6a', H-6b'), 2.52 (br, 2H, OH), 2.31 (dt, 1H, J = 4.5, 13.0 Hz, H-2eq), 1.50 (q, 1H, J = 12.5 Hz, H-2ax); ¹³C NMR (75 MHz, CDCl₃) $\delta = 137.75$, 137.23, 128.49, 128.13, 128.05, 127.69, 127.06, 97.80 (C-1'), 84.62, 84.40, 77.19, 75.95, 75.20, 69.65, 69.04, 68.13, 60.24, 59.72, 59.51, 51.22, 32.30 (C-2); HRMS (ESI) *m/e* calcd. for C₂₆H₃₀N₁₂O₆ (M+Na⁺) 629.2304, found: 629.2307.

2-O-(2',6'-Di-azido-3',4'-di-O-benzyl-2',6'-di-deoxy-α-D-glucopyranosyl)-3-O-b enzyl-5-O-methyl-(2R,3S,4R,5R)-7-oxa-bicyclo[2.2.1]heptane (59). To a solution of 57 (39 mg, 0.052 mmol) in CH_2Cl_2 (2 mL), was added pyridine (42 µL, 0.52 mmol) and Tf₂O (35 µL, 0.21 mmol) at 0 °C. After stirring for 40 min, sat. NaHCO₃ was added to quench the reaction. The mixture was diluted with CH₂Cl₂ and washed with brine. The organic layer was collected, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 3:1) to give **59** (33 mg, 99%) as a white solid: $R_f = 0.23$ (petroleum ether/EtOAc 3:1); $[\alpha]_D = +64.0 \ (c = 2.9, \text{ EtOAc});^1 \text{H NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta = 7.39-7.24 \ (m, 15\text{H}, 15\text{H})$ Ar), 4.92 (d, 1H, J = 3.5 Hz, H-1'), 4.90-4.84 (m, 3H, PhCH₂), 4.62-4.55 (m, 4H, PhCH₂, H-1), 4.51 (d, 1H, J = 5.0 Hz, H-2), 4.05 (dd, 1H, J = 2.5, 7.0 Hz, H-5), 4.02-3.98 (m, 2H, H-3', H-5'), 3.93 (d, 1H, J = 5.5 Hz, H-3), 3.59 (d, 1H, J = 1.5 Hz, H-4), 3.54 (t, 1H, J = 9.5 Hz, H-4'), 3.50 (dd, 1H, J = 2.5, 13.5 Hz, H-6a'), 3.35 (dd, 1H, J = 5.0, 13.5 Hz, H-6b'), 3.31 (dd, 1H, J = 3.5, 10.0 Hz, H-2'), 3.26 (s, 3H, OCH₃), 1.90 (dd, 1H, J = 7.0, 13.5 Hz, H-6eq), 1.74 (ddt, 1H, J = 1.5, 7.0, 13.5 Hz, H-6ax); ¹³C NMR (125 MHz, CDCl₃) δ = 137.97, 137.88, 137.67, 128.82, 128.78, 128.35, 128.31, 128.23, 128.11, 127.97, 98.30 (C-1'), 86.91, 84.56, 81.09, 79.99, 79.51, 79.05, 77.56, 75.68, 75.45, 73.23, 71.20, 63.49, 56.76 (OCH₃), 51.30, 35.60 (C-6); HRMS (ESI) m/e calcd. for $C_{34}H_{38}N_6O_7$ (M+Na⁺) 665.2694, found: 665.2697.

General procedure for the preparation of compounds 3-14 from 53-62, and 64-65. The preparation of compounds 3-9: to a solution of the pseudodisaccharide (53-59) in methanol, 10% Pd/C (1.5 times as the weight of the starting material) was added. The mixture was stirred for 18 h under an atmosphere of H_2 . The mixture was filtered and concentrated. The residue was purified by ion-exchange chromatography

(Amberlite CG-50, NH₄⁺ form) with a linear gradient of aqueous ammonia. Gradient ammonia aqueous solution (0-10%, 0-15%, 0-20%) was used. The fractions were collected and concentrated in vacuo. The products were dissolved in water, and 0.1N HCl was used to adjust the pH values to 3-4. The final products were obtained after lyophilization. The preparation of compounds **10-14**: H₂S gas was introduced into the solution of pseudodisaccharide (**60-62**, **64-65**) in a mixed solvent of pyridine/H₂O/Et₃N (3:2:1) to reduce the azido groups to amino groups. The solvent was removed and the residue was purified by column chromatography on silica gel (EtOAc or CHCl₃/methanol/NH₄OH as eluents) to give benzyl-protected pseudodisaccharides. Finally, the benzyl groups were removed under Pd/C/H₂ conditions as described above to provide target compounds.

1L-(1,2,4,5/3)-2-*O*-(2',6'-Di-amino-2',6'-di-deoxy-*α*-D-glucopyranosyl)-1,2,3,4,5cyclohexanepentol (3): 32 mg, yield: 98%; $[α]_D = +95.0 (c = 0.6, H_2O)$; ¹H NMR (500 MHz, D₂O) δ = 5.52 (d, 1H, *J* = 3.5 Hz, H-1'), 4.22-4.21 (m, 1H, H-1), 4.11-4.05 (m, 3H, H-4, H-5, H-5'), 3.98 (dd, 1H, *J* = 9.0, 11.0 Hz, H-3), 3.71 (dd, 1H, *J* = 3.0, 9.5 Hz, H-2'), 3.57 (dd, 1H, *J* = 2.5, 9.0 Hz, H-2), 3.46-3.41 (m, 3H, H-3', H-4', H-6a'), 3.20 (dd, 1H, *J* = 8.5, 13.5 Hz, H-6b'), 2.16 (dt, 1H, *J* = 4.0, 15.5 Hz, H-6eq), 1.78 (dt, 1H, *J* = 3.0, 15.5 Hz, H-6ax); ¹³C NMR (125 MHz, D₂O) δ = 97.09 (C-1'), 82.12 (×2), 74.47, 71.81, 70.53(×2), 69.84, 69.31, 54.78, 40.88, 32.45 (C-6); HRMS (ESI) *m/e* calcd. for C₁₂H₂₄N₂O₈ (M+H⁺) 325.1605, found: 325.1672. **1b**-(**1**,**3**,**5**/2,**4**)-**2**-*O*-(**2**',**6**'-**Di**-amino-2',**6**'-**di**-deoxy-α-D-glucopyranosyl)-1,2,3,4,5cyclohexanepentol (4): 25 mg, yield: 98%; $[α]_D = +70.0 \ (c = 0.9, H_2O)$; ¹H NMR (500 MHz, D₂O) δ = 5.54 (d, 1H, *J* = 4.0 Hz, H-1'), 4.29 (ddd, 1H, *J* = 3.0, 8.5, 11.0 Hz, H-5'), 3.92 (dd, 1H, *J* = 9.0, 11.0 Hz, H-3 or H-4), 3.71 (ddd, 1H, *J* = 5.0, 9.5, 12.5 Hz, H-5), 3.57-3.51 (m, 2H, H-1, H-3'), 3.48-3.39 (m, 4H, H-2, H-3 or H-4, H-2', H-6a'), 3.31 (t, 1H, *J* = 9.0 Hz, H-4'), 3.20 (dd, 1H, *J* = 8.5, 13.5 Hz, H-6b'), 2.23 (dt, 1H, *J* = 4.5, 12.5 Hz, H-6eq), 1.51 (q, 1H, *J* = 12.5 Hz, H-6ax); ¹³C NMR (125 MHz, D₂O) δ = 96.67 (C-1'), 83.93, 77.53, 75.17, 71.69, 69.97, 68.85, 68.75, 67.56, 54.79, 40.84, 37.92 (C-6); HRMS (ESI) *m/e* calcd. for C₁₂H₂₄N₂O₈ (M+H⁺) 325.1605, found: 325.1615.

1D-(**1**,**2**,**4**/3,**5**)-**4**-*O*-(**2**',**6**'-**Di**-amino-2',**6**'-**di**-deoxy-*α*-**D**-glucopyranosyl)-1,**2**,**3**,**4**,**5**cyclohexanepentol (5): 17 mg, yield: 99%; $[α]_D = +169.2$ (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) $\delta = 5.56$ (d, 1H, J = 3.5 Hz, H-1'), 4.29 (ddd, 1H, J = 3.0, 9.0 Hz, H-5), 4.07 (dd, 1H, J = 3.0, 6.0 Hz, H-1), 3.93 (dd, 1H, J = 9.0, 9.5 Hz, H-3'), 3.88 (ddd, 1H, J = 5.0, 9.0, 12.0 Hz, H-5'), 3.77 (t, 1H, J = 9.0 Hz, H-4), 3.54-3.39 (m, 5H, H-2, H-3, H-2', H-4', H-6a'), 3.20 (dd, 1H, J = 8.5, 13.5 Hz, H-6b'), 2.14 (dt, 1H, J =4.5, 13.5 Hz, H-6eq), 1.62 (ddd, 1H, J = 2.5, 12.0, 13.5 Hz, H-6ax); ¹³C NMR (125 MHz, D₂O) $\delta = 96.66$ (C-1'), 84.36, 74.34, 73.85, 71.73, 70.00, 68.76, 68.73, 67.28, 54.84, 40.87, 36.30 (C-6); HRMS (ESI) *m/e* calcd. for C₁₂H₂₄N₂O₈ (M+H⁺) 325.1605, found: 325.1619. **1**L-(**1**,**2**,**4**/3,**5**)-2-*O*-(**2**',**6**'-Di-amino-2',**6**'-di-deoxy-α-D-glucopyranosyl)-1,2,3,4,5cyclohexanepentol (6): 13 mg, yield: 99%; $[α]_D = +26.7$ (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) $\delta = 5.52$ (d, 1H, J = 3.5 Hz, H-1'), 4.21 (dd, 1H, J = 3.0, 5.5 Hz, H-1), 4.01 (ddd, 1H, J = 3.0, 7.5, 10.5 Hz, H-5'), 3.95 (dd, 1H, J = 9.5, 10.5 Hz, H-3'), 3.81-3.76 (m, 2H, H-4, H-5), 3.71 (dd, 1H, J = 3.0, 10.0 Hz, H-2), 3.46-3.39 (m, 3H, H-3, H-2', H-6a'), 3.29 (t, 1H, J = 9.0 Hz, H-4'), 3.22 (dd, 1H, J = 8.0, 13.5 Hz, H-6b'), 2.11 (dt, 1H, J = 4.5, 14.5 Hz, H-6eq), 1.58 (ddd, 1H, J = 2.5, 12.0, 13.5 Hz, H-6ax); ¹³C NMR (125 MHz, D₂O) $\delta = 97.56$ (C-1'), 81.68, 77.99, 73.08, 71.66, 69.73, 69.34, 68.65, 68.51, 54.72, 40.86, 35.74 (C-6); HRMS (ESI) *m/e* calcd. for C₁₂H₂₄N₂O₈ (M+H⁺) 325.1605, found: 325.1585.

1b-(**1**,**2**,**4**/3,**5**)-**4**-*O*-(**2**',**6**'-**Di**-amino-2',**6**'-**di**-deoxy-α-D-glucopyranosyl)-1-*O*-met **hyl-1**,**2**,**3**,**4**,**5**-cyclohexanepentol (7): 18 mg, yield: 96%; [α]_D = +93.3 (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) δ = 5.60 (d, 1H, J = 4.0 Hz, H-1'), 4.32 (ddd, 1H, J = 3.0, 7.5, 10.5 Hz, H-5), 3.97 (dd, 1H, J= 9.5, 10.5 Hz, H-3'), 3.82 (ddd, 1H, J = 4.5, 9.5, 12.0 Hz, H-5'), 3.76-3.72 (m, 1H, H-1, H-4), 3.62 (dd, 1H, J = 3.5, 10.0 Hz, H-2), 3.57-3.42 (m, 7H, H-3, H-2', H-4', H-6a', OCH₃), 3.24 (dd, 1H, J = 8.0, 13.5 Hz, H-6b'), 2.42 (dt, 1H, J= 4.5, 14.5 Hz, H-6b), 1.51 (ddd, 1H, J = 2.5, 12.0, 13.5 Hz, H-6a); ¹³C NMR (125 MHz, D₂O) δ = 96.67 (C-1'), 84.24, 78.53, 74.24, 74.08, 71.71, 69.99, 68.76, 67.19, 57.64 (OCH₃), 54.82, 40.85, 32.21 (C-6); HRMS (ESI) *m/e* calcd. for C₁₃H₂₆N₂O₈ (M+H⁺) 339.1767, found: 339.1759. **1**L-(**1**,**2**,**4**,**5**/3)-**2**-*O*-(**2**',**6**'-Di-amino-2',**6**'-di-deoxy-α-D-glucopyranosyl)-5-*O*-met hyl-1,**2**,**3**,**4**,**5**-cyclohexanepentol (8): 19 mg, yield: 99%; [α]_D = +57.5 (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) δ = 5.51 (d, 1H, J = 3.5 Hz, H-1'), 4.18-4.17 (m, 1H, H-1), 4.11 (td, 1H, J = 2.5, 9.0 Hz, H-2), 4.06 (t, 1H, J = 9.0 Hz, H-3'), 3.99 (t, 1H, J = 9.0 Hz, H-4'), 3.74-4.73 (m, 1H, H-5), 3.68-3.63 (m, 2H, H-2', H-5'), 3.46-3.42 (m, 6H, H-3, H-4, H-6a', OCH₃), 3.20 (dd, 1H, J = 8.5, 13.5 Hz, H-6b'), 2.35 (d, 1H, J = 15.0 Hz, H-6eq), 1.65 (d, 1H, J = 15.0 Hz, H-6ax); ¹³C NMR (125 MHz, D₂O) δ = 97.01 (C-1'), 81.92, 79.98, 73.83 (×2), 71.82, 70.61, 69.85, 69.30, 58.11 (OCH₃), 54.77, 40.87, 28.72 (C-6); HRMS (ESI) *m/e* calcd. for C₁₃H₂₆N₂O₈ (M+H⁺) 339.1767, found: 339.1761.

2-*O*-(**2**',**6**'-**Di**-**amino**-**2**',**6**'-**di**-**deoxy**-*α*-**D**-**glucopyranosyl**)-**5**-*O*-**methyl**-(**2R**,**3S**,**4R**, **5R**)-**7**-**oxa**-**bicyclo**[**2.2.1**]**heptane** (**9**): 37 mg, yield: 96%; $[α]_D = +60.0 (c = 1.0, H_2O)$; ¹H NMR (500 MHz, D₂O) $\delta = 5.36 (d, 1H, J = 3.5 Hz, H-1')$, 4.67 (t, 2H, J = 6.0 Hz, H-4), 4.18-4.16 (m, 2H, H-5, H-3'), 3.94 (ddd, 1H, J = 3.0, 8.5, 9.5 Hz, H-5'), 3.89 (dd, 1H, J = 9.0, 10.5 Hz, H-4'), 3.76 (d, 1H, J = 1.0 Hz, H-2), 3.48-3.40 (m, 3H, H-1, H-2', H-6a'), 3.33 (s, 3H, OCH₃), 3.22 (dd, 1H, J = 8.5, 13.5 Hz, H-6b'), 2.10 (dd, 1H, J = 7.0, 14.0 Hz, H-6ax), 1.76 (ddt, 1H, J = 2.0, 6.5, 14.0 Hz, H-6eq); ¹³C NMR (125 MHz, D₂O) $\delta = 94.30$ (C-1'), 85.14, 82.54, 81.40, 77.82, 76.36, 71.76, 69.88, 69.30, 56.66 (OCH₃), 54.21, 40.88, 35.00 (C-6); HRMS (ESI) *m/e* calcd. for C₁₃H₂₄N₂O₇ (M+H⁺) 321.1656, found: 321.1647. 1L-(1,3,4/2,6)-1-*O*-(2',6'-Di-amino-2',6'-di-deoxy-α-D-glucopyranosyl)-4,6-di-a mino-1,2,3-cyclohexanetriol (10): 18 mg, yield: 90%; [α]_D = +84.2 (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) δ = 5.80 (d, 1H, J = 3.5 Hz, H-1'), 4.14-4.12 (m, 3H, H-5', H-2, H-1 or H-3), 4.06-4.01 (m, 2H, H-3', H-1 or H-3), 3.94-3.92 (m, 1H, H-4 or H-6), 3.83-3.81 (m, 1H, H-4 or H-6), 3.55-3.51 (m, 3H, H-2', H-4', H-6a'), 3.31 (dd, 1H, J= 7.5, 13.5 Hz, H-6b'), 2.53 (ddd, 1H, J = 4.5, 7.0, 15.0 Hz, H-5eq), 2.22 (ddd, 1H, J= 4.5, 9.0, 15.0 Hz, H-5ax); ¹³C NMR (125 MHz, D₂O) δ = 95.68 (C-1'), 75.17, 71.46, 70.78, 69.83, 69.25, 69.19, 54.24, 48.71, 47.66, 40.84, 25.68 (C-5); HRMS (ESI) *m/e* calcd. for C₁₂H₂₆N₄O₆ (M+H⁺) 323.1925, found: 323.1954.

1L-(**1**,3,6/2,4)-1-*O*-(**2**',6'-Di-amino-2',6'-di-deoxy-α-D-glucopyranosyl)-4,6-di-a mino-1,2,3-cyclohexanetriol (**11**): 21 mg, yield: 90%; [α]_D = +68.3 (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) δ = 5.76 (d, 1H, J = 3.5 Hz, H-1'), 4.20 (dd, 1H, J = 4.5, 10.0 Hz, H-1), 4.08 (m, 1H, H-6), 4.02 (t, 1H, J = 9.0 Hz, H-3'), 3.96 (ddd, 1H, J = 3.0, 7.5, 9.0 Hz, H-5'), 3.86 (t, 1H, J = 9.0 Hz, H-4'), 3.61 (t, 1H, J = 9.0 Hz, H-3), 3.52-3.42 (m, 4H, H-2, H-4, H-2', H-6'a), 3.25 (dd, 1H, J = 8.0, 13.5 Hz, H-6b'), 2.46 (dt, 1H, J = 3.0, 15.5 Hz, H-5eq), 2.16 (ddd, 1H, J = 4.0, 14.0, 16.0 Hz, H-5ax); ¹³C NMR (125 MHz, D₂O) δ = 97.55 (C-1'), 75.24, 73.38, 73.22, 71.60, 69.73, 69.16, 54.34, 50.08, 49.06, 40.90, 27.81 (C-5); HRMS (ESI) *m/e* calcd. for C₁₂H₂₆N₄O₆ (M+H⁺) 323.1925, found: 323.1924. **1**L-(**1**,**3**,**4**/**2**,**6**)-**1**-*O*-(**2**',**6**'-Di-amino-**2**',**6**'-di-deoxy-α-D-glucopyranosyl)-6-amino-**4**-*O*-methyl-**1**,**2**,**3**,**4**-cyclohexanetetrol (**12**): 16 mg, yield: 70%; $[α]_D = +89.2$ (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) $\delta = 5.92$ (d, 1H, J = 4.0 Hz, H-1'), 4.02 (ddd, 1H, J = 3.5, 7.0, 10.0 Hz, H-5'), 3.99 (dd, 1H, J = 9.0, 11.0 Hz, H-3'), 3.88 (t, 1H, J = 9.0 Hz, H-4'), 3.83 (t, 1H, J = 9.0 Hz, H-2 or H-1), 3.79 (dd, 1H, J = 3.5, 5.5 Hz, H-4), 3.63 (dd, 1H, J = 3.0, 9.5 Hz, H-2'), 3.53-3.45 (m, 4H, H-1 or H-2, H-3, H-6, H-6a'), 3.41 (s, 3H, OCH₃), 3.30 (dd, 1H, J = 7.0, 13.5 Hz, H-6b'), 2.51 (dt, 1H, J = 4.5, 14.0 Hz, H-5eq), 1.71 (ddd, 1H, J = 2.0, 14.0, 14.5 Hz, H-5ax); ¹³C NMR (125 MHz, D₂O) $\delta = 96.75$ (C-1'), 79.61, 77.34, 74.38, 73.69, 71.41, 69.83, 69.10, 57.76 (OCH₃), 54.28, 48.33, 40.84, 27.94 (C-5); HRMS (ESI) *m/e* calcd. for C₁₃H₂₇N₃O₇ (M+H⁺) 338.1922, found: 338.1914.

4-O-(2',6'-Di-amino-2',6'-di-deoxy-α-D-mannopyranosyl)-2-deoxystreptamine

(13): 17 mg, yield: 96% over three steps; $[\alpha]_D = +53.3$ (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) $\delta = 5.67$ (d, 1H, J = 4.0 Hz, H-1'), 4.26 (dd, 1H, J = 4.0, 7.5 Hz, H-3'), 4.19 (dt, 1H, J = 5.0, 7.5 Hz, H-5'), 4.01 (t, 1H, J = 9.5 Hz, H-4 or H-5), 3.84 (t, 1H, J = 4.0 Hz, H-2'), 3.72 (t, 1H, J = 7.5 Hz, H-4'), 3.68 (t, 1H, J = 9.0 Hz, H-4 or H-5), 3.61-3.52(m, 2H, H-1 or H-3, H-6), 3.47-3.41 (m, 2H, H-6a', H-6b'), 3.35 (dt, 1H, J = 4.0, 12.0 Hz, H-1 or H-3), 2.51 (dt, 1H, J = 4.0, 12.5 Hz, H-2eq), 1.92 (q, 1H, J = 12.5 Hz, H-2ax); ¹³C NMR (125 MHz, D₂O) $\delta = 96.41$ (C-1'), 79.13, 75.50, 73.29, 72.48, 68.40, 67.25, 53.61, 50.45, 49.27, 40.50, 28.82 (C-2); HRMS (ESI) *m/e* calcd. for C₁₂H₂₆N₄O₆ (M+H⁺) 323.1925, found: 323.1921.

4-*O*-(2',6'-Di-amino-2',6'-di-deoxy-α-D-galactopyranosyl)-2-deoxystreptamine (14): 14 mg, yield: 95% over two steps; $[α]_D = +31.7$ (c = 0.6, H₂O); ¹H NMR (500 MHz, D₂O) $\delta = 5.99$ (d, 1H, J = 4.0 Hz, H-1'), 4.32 (td, 1H, J = 1.0, 5.0 Hz, H-5'), 4.23 (dd, 1H, J = 3.0, 11.0 Hz, H-3'), 4.13 (dd, 1H, J = 1.5, 3.0 Hz, H-4'), 4.00 (dd, 1H, J = 9.0, 10.0 Hz, H-4), 3.71 (t, 1H, J = 9.0 Hz, H-5), 3.67 (dd, 1H, J = 4.0, 11.5 Hz, H-2'), 3.61 (t, 1H, J = 9.5 Hz, H-6), 3.57 (ddd, 1H, J = 4.0, 10.0, 12.5 Hz, H-1 or H-3), 3.39-3.34 (m, 3H, H-1 or H-3, H-6a', H-6b'), 2.52 (dt, 1H, J = 4.0, 12.5 Hz, H-2eq), 1.92 (q, 1H, J = 12.5 Hz, H-2ax); ¹³C NMR (125 MHz, D₂O) $\delta = 96.95$ (C-1'), 78.13, 75.97, 73.25, 70.02, 68.22, 65.81, 50.83, 50.45, 49.27, 41.29, 28.99 (C-2); HRMS (ESI) *m/e* calcd. for C₁₂H₂₆N₄O₆ (M+H⁺) 323.1925, found: 323.1925.

References:

- (1) A. Köhn and R. R. Schmidt, Liebigs Ann. Chem., 1987, 12, 1045–1054.
- (2) C. Jia, A. Pearce, Y. Blériot, Y. Zhang, L. H. Zhang, M. Sollogouba and P. Sinaÿ, *Tetrahedron: Asymmetry*, 2004, 15, 699-703.
- (3) T. Ritter, K. K. Mong, H. Liu, T. Nakatani and C. H. Wong, Angew. Chem. Int. Ed., 2003, 42, 4657-4660.
- (4) J. Liu, M. D. Numa, H. Liu, S. J. Huang, P. Sears, A. R. Shikhman and C. H. Wong, J. Org. Chem., 2004, 69, 6273-6283.
- (5) D. Jenkins, D. Dubreuil and B. L. Potter, J. Chem. Soc. Perkin Trans. I, 1996, 1365-1372.

- 72 -

рljРМВ

임

- 82 -

- 85 -

- 93 -

- 94 -

File: PROTON

- 99 -

pijozosos upijozos / ANNO rmo

- 106 -

- 109 -

1

- 116 -

Pulse Sequence: s2pul File: PROTON

- 118 -

- 122 -

- 126 -

p1j070829

1. PONTON

HO OBA OBZ

10 NMA plot CX F1 F1 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2	F2 - Proces SI SF WDW SSB LB GB GB PC	F2 - Acquis Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AG AG AG AG AG AG AG AG AG AG AG AG AG	Current Dat NAME EXPNO
parameters 18.00 cm 7.963 ppm 2393.41 Hz -0.300 ppm -90.05 Hz 0.45901 ppm/cm 137.96967 Hz/cm	sing parameters 16384 300.5790105 MHz 0 0.00 Hz 0.00 Hz 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1	a Parameters plj051017-1 2

,

PLJ051108-2

- 144 -

.

- 149 -

SS HO OBM

- 153 -

p1j070228

- 154 -

- 155 -

Increments Increments PH1. 499.9019057 MHZ PSSING PSSING ROCESSING ROCESSING 0.028 sec 1096 x 4096 0.028 sec 1096 x 4096 min, 45 sec 枞 lul 劌 A_is 2.0⊣ F2 (ppm) ^{+'}____ω ______ 4.0-3.0-2.5-5.0-4.5 5.0 ;° 4.5 Θ ۰ °°0 4.0 9 1 0 0 F1 (ppm) ر ۵ α 3.5 ٩, •8 â 0 3.0 2.5 4 Ø 1.42 ŧ, 2.0 0 ¢ 1 6 ٥ 9 Ø ٥ 8

p1j070228

Relax. delay 1.000 sec Mixing 0.600 sec Acq. time 0.205 sec Vidth 4955.3 Hz 20 Width 4955.3 Hz 16 repetitions

Tota

Pulse Sequence: NOESY Solvent: CDC13 Temp. 25.0 C / 298.1 K INOVA-500 "BMU500"

File: PROTON

- 161 -

- 162 -

- 164 -

