SUPPLEMENTARY INFORMATION

2,3-O-Cyclopentylidene-*myo***-inositol, 8.** *myo*-Inositol (30.0 g, 167 mmol) was taken up in DMSO (300 mL) and stirred at s 100 °C until all the solids dissolved. The solution was cooled to rt and 1,1-dimethoxycyclopentane (23.9 g, 184 mmol, 1.1 eq.) was added followed by *p*-toluene sulfonic acid monohydrate (3.17 g, 16.7 mmol, 0.1 eq.). The reaction was stirred at 35 °C for 3 days after which Et₃N (5.0 mL, 35.8 mmol) was added a After 1 b the DMSO may ended a days.

- ¹⁰ mmol) was added. After 1 h the DMSO was evaporated under high vacuum (oil pump) at 100 °C. The residual oil was diluted with EtOH (100 mL), and then further diluted with EtOAc (500 mL). The precipitate was collected by filtration and triturated with refluxing MeCN (*ca.* 750 mL) containing
- ¹⁵ Et₃N (3.0 mL) in a Soxhlet apparatus for 12 h. Upon cooling the *title compound* crystallised from the mother liquor as colourless plates (26.24 g, 64%). $R_{\rm f}$ (EtOAc) 0.10; $\delta_{\rm H}$ (400 MHz, d_6 -DMSO) 4.84 (1H, d, J 4.8, 4-OH), 4.81 (1H, d, J 5.2, 1-OH), 4.70 (1H, d, J 4.3, 6-OH), 4.66 (1H, d, J 4.3, 5-
- ²⁰ **OH**), 3.98 (1H, t, J 4.3, Ins 2-**H**), 3.75 (1H, dd, J 7.3, 5.1, Ins 3-**H**), 3.48 (1H, dt, J 9.1, 4.4, Ins 1-**H**), 3.29-3.22 (2H, m, Ins 6-**H** + 4-**H**), 2.90 (1H, td, J 9.3, 4.3, Ins 5-**H**), 1.86-1.80 (1H, m), 1.76-1.70 (1H, m), 1.66-1.47 (6H, m) (4 × C**H**₂) ppm; $\delta_{\rm C}$ (100 MHz, $d_{\rm 6}$ -DMSO) 117.7 (acetal **C**), 78.6, 77.0, 74.02,
- ²⁵ 73.90, 72.2, 69.7 (6 × Ins *C*H), 37.3, 37.1, 23.12, 22.96 (4 × *C*H₂) ppm; HRMS (EI+) m/z found [M]⁺ 246.1110, C₁₁H₁₈O₆ requires 246.1103.

2,3-O-Cyclopentylidene-1-O-tert-butyldiphenylsilyl-myo-

- ³⁰ inositol. 2,3-O-Cyclopentylidene-*myo*-inositol (8, 13.67 g, 55.5 mmol) and imidazole (7.56 g, 111 mmol, 2 eq.) were dissolved in DMF (100 mL). To this solution was slowly added *tert*-butyldiphenylsilyl chloride (15.9 mL, 61.1 mmol, 1.1 eq.) in DMF (20 mL), drop-wise over 15 min and the
 ³⁵ reaction was stirred overnight at rt. The solvent was evaporated under high vacuum, the residual oil was taken up in EtOAc (250 mL) and washed with sat. NaHCO₃, then water (× 2) and brine. The organic layers were dried (MgSO₄) and the solvent evaporated *in vacuo*. The residue was taken up in 40 EtOAc-hexane (1:1 v/v) and poured into a large sinter funnel containing a slurry of TLC grade silica in hexane. After
- containing a sturry of TLC grade since in nexane. After slowly drawing down the solvent, the silica was rinsed using a gradient of EtOAc-hexane (1:2 \rightarrow 1:0 v/v) to afford the *title compound* as a colourless solid (18.83 g, 70%); $R_{\rm f}$ (EtOAc) 45 0.52; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.79 (2H, d, J 6.8), 7.75 (2H, dd,
- $J 7.6, 1.3), 7.47-7.37 (6H, m) (10 \times Ph H), 3.88 (1H, t, J 9.4, Ins H), 3.76 (1H, t, J 4.2, Ins H), 3.71 (1H, dd, J 9.3, 3.8, Ins H), 3.62 (1H, dd, J 7.4, 4.6, Ins H), 3.54 (1H, dd, J 9.9, 7.6, Ins H), 3.28 (3H, bs, <math>3 \times OH$), 3.11 (1H, t, J 9.7, Ins H), 2.12-
- ⁵⁰ 1.88 (2H, m), 1.78-1.58 (4H, m), 1.57-1.53 (2H, m) (4 × CH₂), 1.10 (9H, s, SiCMe₃) ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃) 136.00 (2C), 135.92 (2C) (4 × Ph CH), 133.8, 133.3 (2 × Ph C), 130.02, 129.88, 127.9 (2C), 127.6 (2C) (6 × Ph CH), 119.5 (acetal C), 78.0, 76.6, 74.7, 73.1, 72.8, 72.5 (6 × Ins CH),
- ⁵⁵ 37.6, 37.1 (2 × *C*H₂), 27.1 (SiC*Me*₃), 23.49, 23.30 (2 × *C*H₂), 19.5 (Si*C*Me₃) ppm; LRMS (CI+) m/z (%) [M+H]⁺ 485 (31%), [M-C₄H₉]⁺ 427 (10), [M-C₆H₅]⁺ 407 (100); HRMS (CI+) m/zfound [M+H]⁺ 485.2359, C₂₇H₃₇O₆Si requires 485.2359.

1-O-tert-Butyldiphenylsilyl-2,3-O-cyclopentylidene-4,5-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)-myo-inositol, 9. 2,3-O-Cyclopentylidene-1-O-tert-butyldiphenylsilyl-myo-inositol (4.51 g, 9.31 mmol) and imidazole (2.53 g, 37.2 mmol, 4 eq.) were dissolved in DMF (30 mL). To this was slowly added 65 Markiewicz reagent (3.0 mL, 9.3 mmol, 1.0 eq.) in DMF (10 mL) over 15 min and the reaction was stirred overnight at rt. Et₃N (3.9 mL, 28 mmol) followed by water (0.5 mL, 28 mmol) were then added and the solvent evaporated under high vacuum. The resulting oil was taken up in EtOAc (100 mL) 70 and washed with sat. NaHCO₃, then water (×2), and brine. The organic layers were dried (MgSO₄) and the solvent evaporated in vacuo. The crude material was taken up in hexane and poured into a large sinter funnel containing a slurry of TLC silica in hexane. After slowly drawing down the 75 solvent under gentle suction, the silica was rinsed using a gradient of EtOAc-hexane $(1:4 \rightarrow 1:1 \text{ v/v})$ to afford the *title* compound as a colourless glass (6.09 g, 90%). HPTLC $R_{\rm f}$ (Et₂O-hexane, 1:9 v/v) 0.76; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.85 (4H, d, J 7.1), 7.42-7.38 (6H, m) (10 × Ph H), 3.97 (1H, t, J 9.4, 80 Ins H), 3.82 (1H, dd, J 9.7, 3.8, Ins H), 3.78 (1H, t, J 4.1, Ins **H**), 3.74-3.67 (2H, m, $2 \times \text{Ins } H$), 3.28 (1H, t, J 9.1, Ins H), 2.55 (1H, s, ex, OH), 1.97-1.92 (2H, m, CH₂), 1.83-1.58 (6H, m, $3 \times CH_2$), 1.12 (9H, s, SiCMe₃), 1.11-0.94 (28H, m, $4 \times$ SiCHMe₂) ppm; δ_{C} (100 MHz, CDCl₃) 136.3 (2C), 136.0 (2C) ⁸⁵ (4 × Ph CH), 134.3, 133.0 (2 × Ph C), 129.80, 129.70, 127.61 (2C), 127.45 (2C) (6 × Ph CH), 119.1 (acetal C), 79.1, 78.1, 77.6, 76.7, 72.5, 71.7 (6 × Ar CH), 37.3, 36.7 (2 × CH₂), 26.9 $(SiCMe_3)$, 23.20, 23.12 $(2 \times CH_2)$, 19.6 $(SiCMe_3)$, 17.46-17.24 (8C, m, 4 × SiCHMe₂), 12.9, 12.6, 12.1, 11.9 (4 × ⁹⁰ SiCHMe₂) ppm; LRMS (CI+) m/z (%) found [M+H]⁺ 727 (2), $[M-C_4H_9]^+$ 669 (6), $[M-C_6H_5]^+$ 649 (18).

1-*O*-[3-(2,5,5-Trimethyl-1,3-dioxan-2-yl)ethyloxy](2cyanoethyloxy)phosphoryl]-2,3-*O*-cyclopentylidene-4,5-*O*-⁹⁵ (xanthen-9-ylidene)-6-*O*-[1-(4-chlorophenyl)-4-ethoxy-

piperidin-4-yl]-myo-inositol, 18a. Dicyanoethyl phosphate 6 (2.0 g, 2.4 mmol) was taken up in MeCN-Et₃N (2:1 v/v; 30 mL) and stirred at rt for 16 h. The solution was evaporated under reduced pressure and the residue was re-evaporated $_{100}$ from pyridine (3 \times 10 mL). The residue was dissolved in MeCN (1.3 mL) and to this was added N-methylimidazole (1.91 mL, 24 mmol, 10 eq.), followed by 3-(2,5,5-trimethyl-1,3-dioxan-2-yl)ethan-1-ol (945 mg, 5.4 mmol, 2.3 eq.). A solution of mesitylene sulfonyl chloride (2.6 g, 12 mmol, 5 105 eq.) in pyridine (3.25 mL) was added drop-wise to the reaction mixture over a period of 5 min. After 30 min water (0.5 mL) was added and the solution concentrated under reduced pressure. The residue was dissolved in EtOAc (100 mL), washed with sat. NaHCO₃ (2×20 mL) and the aqueous 110 washings were back-extracted with EtOAc (2×10 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The residual oil was fractionated by MPLC (silica pre-treated with 1% pyridine-EtOAc) using a gradient of EtOAc-hexane $(1:2 \rightarrow 9:1 \text{ v/v})$ to afford the *title* 115 compound as a colourless solid (2.04 g, 91%). TLC $R_{\rm f}$ (EtOAc-hexane, 7:3 v/v) 0.40; $\delta_{\rm H}$ (500 MHz, CDCl₃) 7.69

```
(1H, d, J 7.9), 7.64 (1H, dd, J 7.8, 1.8), 7.47-7.43 (2H, m), 7.30-7.26 (3H, m), 7.23 (1H, t, J 7.6) (8 × Ar H), 7.19 (2H, d, J 9.0), 6.81 (2H, d, J 8.9) (N-C<sub>6</sub>H_4Cl), 4.76-4.70 (2H, m), 4.67-4.64 (1H, m), 4.57 (1H, m), 4.50 (1H, bt, J 7.4) (5 × Ins
```

- *H*), 4.46-4.25 (4H, m, 2 × POCH₂), 4.08 (1H, m, Ins *H*), 3.63-3.54 [3H, m, OCH*H*Me + (2 × OCH*H*CMe₂)], 3.53 (1H, m, OCH*H*Me), 3.42-3.38 (2H, m, 2 × OCH*H*CMe₂), 3.35-3.30 (1H, m), 3.22-3.17 (2H, m), 3.04-2.99 (1H, m) (C*H*₂NC*H*₂), 2.85-2.75 (2H, m, *C*H₂CN), 2.26-2.18 (2H, m, POCH₂C*H*₂-
- ¹⁰ dioxan), 2.12-1.90 (6H, m), 1.78-1.68 (6H, m) ($6 \times CH_2$), 1.43 (3H, s, dioxan 2-*Me*), 1.08 (3H, t, *J* 6.9, OCH₂*Me*), 1.033 (1.5H, s), 1.031 (1.5H, s), 0.852 (1.5H, s), 0.847 (1.5H, s) (C*Me*₂) ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃) 151.94, 151.89, 149.52 (0.5C), 149.50 (0.5C) (3 × Ar *C*), 130.2 (2C), 128.9 (2C),
- ¹⁵ 125.81 (0.5C), 125.76 (0.5C), 125.5 ($6 \times \text{Ar}$ CH), 124.17 (0.5C), 124.14 (0.5C) (Ar C), 123.35, 123.27 ($2 \times \text{Ar}$ CH), 122.69, 122.63 ($2 \times \text{Ar}$ C), 121.27 (0.5C), 121.17 (0.5C) (acetal C), 117.6 (2C), 116.9 (2C) ($4 \times \text{Ar}$ CH), 116.3 (CN), 103.5, 100.3, 97.5 ($3 \times \text{acetal}$ C), 81.3 (0.5C), 81.1 (0.5C),
- ²⁰ 79.67-79.59 (m), 76.58 (0.5C), 76.43 (0.5C), 75.9, 73.92-73.81 (m) (5 × Ins *C*H), 70.3 (O*C*H₂CMe₂*C*H₂O), 69.80 (0.5C), 69.67 (0.5C) (Ins *C*H), 64.98-64.85 (m), 62.08-61.96 (m) (2 × POCH₂), 56.3 (OCH₂Me), 47.2, 46.5 (*C*H₂NCH₂), 39.56-39.38 (m, POCH₂CH₂-dioxan), 35.99 (0.5C), 35.87 (0.5C), 35.44 (0.5C), 35.37 (0.5C), 34.0, 33.2 (4 × *C*H₂), 29.9 (*C*Me₂), 23.8 (*C*H₂), 22.93 (*Me*), 22.87 (*C*H₂), 22.4, 20.1 (2 × *Me*), 19.64-19.54 (m, *C*H₂CN), 15.0 (OCH₂*Me*) ppm; $\delta_{\rm P}$ (162 MHz, CDCl₃) -2.43 (0.5P), -2.82 (0.5P) ppm; HRMS (ESI+) *m/z* (%) found [M+H]⁺ 951.3622 (85), C₄₉H₆₁ClN₂O₁₃P

³⁰ requires 951.3600, [M-OEt]⁺ 905.3219 (22).

1-*O*-[(But-3-ynyloxy)(2-cyanoethyloxy)phosphoryl]-2,3-*O*-cyclopentylidene-4,5-*O*-(xanthen-9-ylidene)-6-*O*-[1-(4chlorophenyl)-4-ethoxypiperidin-4-yl]-*myo*-inositol, 18b.

- ³⁵ Dicyanoethyl phosphate **6** (410 mg, 0.48 mmol) was taken up in MeCN-Et₃N (2:1 v/v; 6 mL) and stirred at rt for 16 h. The solvent was evaporated under reduced pressure and the residue was re-evaporated from pyridine (3 × 5 mL). The residue was dissolved in MeCN (0.7 mL) and to this was
- ⁴⁰ added *N*-methylimidazole (0.39 mL, 4.8 mmol, 10 eq.), followed by but-3-yn-1-ol (0.11 mL, 1.45 mmol, 3 eq.). A solution of mesitylene sulfonyl chloride (529 mg, 2.4 mmol, 5 eq.) in pyridine (1.5 mL) was added drop-wise to the reaction mixture over 10 min. After 30 min water (0.1 mL) was added
- $_{45}$ and the solution concentrated under reduced pressure. The residue was dissolved in EtOAc (100 mL) and washed with sat. NaHCO₃ (2 \times 20 mL). The aqueous washings were back-extracted with EtOAc (2 \times 10 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced
- ⁵⁰ pressure. The residual oil was fractionated by MPLC (silica pre-treated with 1% pyridine-EtOAc) using a gradient of EtOAc-hexane (1:2 \rightarrow 9:1 v/v) to afford the *title compound* as a colourless glass (383 mg, 95%). TLC $R_{\rm f}$ (EtOAc-hexane, 1:1 v/v) 0.32; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.69 (0.5H, dd, *J* 7.8, 1.4),
- ⁵⁵ 7.68 (0.5H, dd, J 7.7, 1.4), 7.64 (1H, dd, J 7.8, 1.5), 7.48-7.43 (2H, m), 7.30-7.26 (3H, m), 7.23 (1H, bt, J 7.7) ($8 \times \text{Ar} H$), 7.19 (2H, d, J 8.9), 6.81 (2H, d, J 8.5) (N-C₆H₄Cl), 4.77-4.71 (2H, m), 4.66-4.61 (1H, m), 4.57-4.54 (1H, m), 4.50 (1H, bt, J

7.4) (5 × Ins *H*), 4.41-4.21 (4H, m, 2 × POCH₂), 4.09-4.03 60 (1H, m, Ins *H*), 3.62-3.46 (2H, m, OCH₂Me), 3.35-3.29 (1H, m), 3.23-3.16 (2H, m), 3.02 (1H, ddd, *J* 12.3, 8.6, 3.2) (CH₂NCH₂), 2.84-2.79 (2H, m, CH₂CN), 2.69 (1H, td, *J* 6.5, 2.6), 2.67 (1H, td, *J* 6.6, 2.5) (CH₂CC), 2.12-1.90 (6H, m, 3 × CH₂), 2.08 (0.5H, t, *J* 2.6), 2.06 (0.5H, t, *J* 2.6) (CCH), 1.78-65 1.65 (6H, m, 3 × CH₂), 1.07 (3H, t, *J* 6.9, OCH₂Me) ppm; $\delta_{\rm C}$

- (100 MHz, CDCl₃) 151.9 (2C), 149.5 ($3 \times \text{Ar} C$), 130.2 (2C), 128.9 (2C), 125.75 (0.5C), 125.68 (0.5C), 125.48 ($6 \times \text{Ar} C$), 124.2 (Ar C), 123.3 (2C, $2 \times \text{Ar} C$), 122.64, 122.58 ($2 \times \text{Ar} C$), 121.26 (0.5C), 121.21 (0.5C) (acetal C), 117.6 (2C), 117.0 (2C) ($4 \times 4 \times C$) 117.0 (C) ($102.6 \times 10^{-1} \text{C}$) ($102.6 \times 10^{-1} \text{C}$) ($112.6 \times 10^{-1} \text{C}$) (
- ⁷⁰ 117.0 (2C) (4 × Ar *C*H), 116.2 (*C*N), 103.6, 100.4 (2 × acetal *C*), 81.2 (0.5C), 81.0 (0.5C), 79.9 (d, *J* 6.8) (2 × Ins *C*H), 79.2 (acetylene *C*), 76.6 (0.5C), 76.4 (0.5C), 75.8, 73.88-73.78 (m) (3 × Ins *C*H), 70.99 (0.5C), 70.82 (0.5C) (acetylene *C*H), 69.8 (b, Ins *C*H), 66.13-66.03 (m), 62.29-62.18 (m) (2 × PO*C*H₂), 75 56.4 (O*C*H₂Me), 47.2, 46.5 (*C*H₂N*C*H₂), 35.97 (0.5C), 35.88 (0.5C), 35.47 (0.5C), 35.42 (0.5C), 34.0, 33.2, 23.8, 22.9 (6 × *C*H₂), 20.73-20.57 (m, *C*H₂CCH), 19.67-19.56 (m, *C*H₂CN), 15.0 (*Me*) ppm; $\delta_{\rm P}$ (162 MHz, CDCl₃) -3.06 (0.5P), -3.27 (0.5P) ppm; LRMS (ESI+) *m/z* (%) [M+Na]⁺ 869 (11), 80 [M+H]⁺ 847 (100), [M-OEt]⁺ 801 (30), [M-C₁₃H₁₆CINO]⁺ 610 (30).

1-O-[3-(2,5,5-Trimethyl-1,3-dioxan-2-yl)ethyloxy](2-cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-6-O-[1-85 (4-chlorophenyl)-4-ethoxypiperidin-4-yl]-myo-inositol, 19a. TFA-DCM (1:9 v/v, 4.7 mL, 3 eq.) was added to a solution of masked 3-oxobutyl phosphate 18a (2.00 g, 2.1 mmol) in pyrrole-DCM (1:9 v/v, 13.1 mL, 9 eq.). After 50 s the reaction was quenched with sat. NaHCO₃ (100 mL) and extracted with 90 CHCl₃ (3 × 20 mL). The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The

- residual oil was fractionated by MPLC using a gradient of hexane-EtOAc (4:1 \rightarrow 0:1 v/v) then MeOH-EtOAc (0:1 \rightarrow 1:9 v/v) to afford the *title compound* as a colourless solid (1.28 g,
- ⁹⁵ 79%). TLC *R*_f (EtOAc-hexane, 9:1 v/v) 0.35; δ_H (400 MHz, CDCl₃) 7.20 (1H, d, *J* 8.8), 7.19 (1H, d, *J* 8.9), 6.86 (1H, d, *J* 9.0), 6.85 (1H, d, *J* 9.0) (N-C₆*H*₄Cl), 4.91 (0.5H, d, *J* 1.1), 4.88 (0.5H, d, *J* 1.3) (5-O*H*), 4.59-4.53 (1H, m, Ins 1-*H*), 4.45 (0.5H, dd, *J* 5.5, 4.0), 4.42 (0.5H, dd, *J* 5.2, 4.2) (Ins 2-*H*), ¹⁰⁰ 4.34-4.12 [5H, m, (2 × POCH₂) + Ins 6-*H*], 4.06 (0.5H, t, *J* 5.2), 4.04 (0.5H, t, *J* 5.2) (Ins 3-*H*), 3.78 (1H, bt, *J* 8.4, Ins 4-*H*), 3.76-3.69 (1H, m, OCH*H*Me), 3.64-3.55 [3H, m,
- OCHHMe + (2 × OCHHCMe₂)], 3.42-3.29 [5H, m, (2 × NCHH) + (2 × OCHHCMe₂) + Ins 5-H), 3.23-3.16 (1H, m), ¹⁰⁵ 3.14-3.05 (1H, m) (2 × NCHH), 3.00 (1H, bs, 4-OH), 2.75 (1H, t, *J* 6.5), 2.72-2.59 (1H, m) (*C*H₂CN), 2.12-1.93 (8H, m), 1.82-1.58 (6H, m) (7 × CH₂), 1.38 (1.5H, s), 1.36 (1.5H, s)
- (dioxan 2-*Me*), 1.25 (3H, t, *J* 7.0, OCH₂*Me*), 1.03 (1.5H, s), 1.02 (1.5H, s), 0.83 (1.5H, s), 0.82 (1.5H, s) (C*Me*₂) ppm; $\delta_{\rm C}$ 110 (100 MHz, CDCl₃) 149.45 (0.5C), 149.32 (0.5C) (Ar *C*), 128.99, 128.96 (2 × Ar *C*H), 124.28 (0.5C), 124.24 (0.5C) (Ar *C*), 120.1 (acetal *C*), 117.68, 117.62 (2 × Ar *C*H), 116.35 (0.5C), 116.21 (0.5C) (*C*N), 100.2, 97.5 (2 × acetal *C*), 77.3,
- 75.81 (0.5C), 75.76 (0.5C), 74.37 (0.5C), 74.30 (0.5C), 73.69-115 73.52 (3C, m) (6 × Ins *C*H), 70.3 (OCH₂CMe₂*C*H₂O), 64.68 (0.5C, d, *J* 4.9), 64.52 (0.5C, d, *J* 5.3), 61.86 (0.5C, d, *J* 4.9),

61.75 (0.5C, d, *J* 5.0), (2 × POCH₂), 56.66 (0.5C), 56.62 (0.5C) (OCH₂Me), 46.64 (0.5C), 46.60 (0.5C), 46.42 (0.5C), 46.29 (0.5C) (CH₂NCH₂), 39.51 (0.5C), 39.44 (0.5C), 37.28, 37.20 (0.5C), 37.15 (0.5C), 33.4, 32.99 (0.5C), 32.92 (0.5C) $(5 \times CH_2)$, 29.8 (CMe₂), 23.8, 23.4 (2 × CH₂), 22.9, 22.32 (0.5C), 22.29 (0.5C), 19.89 (0.5C), 19.86 (0.5C) (3 × *Me*), 19.48-19.38 (m, *CH*₂CN), 14.9 (OCH₂*Me*) ppm; δ_P (162 MHz, CDCl₃) -2.12 ppm; HRMS (ESI+) *m/z* (%) found [M+H]⁺ 773.3199 (100), C₃₆H₅₅ClN₂O₁₂P requires 773.3181, [M+Na]⁺ 10 795.3027 (19), [M-OEt]⁺ 727.2786 (20).

1-O-[(But-3-ynyloxy)(2-cyanoethyloxy)phosphoryl]-2, 3-O-cyclopentylidene-6-O-[1-(4-chlorophenyl)-4-ethoxy-0-cyclopentylidene-6-0-cyclop

- piperidin-4-yl]-myo-inositol, 19b. TFA-DCM (1:9 v/v, 4.4
 ¹⁵ mL, 3 eq.) was added to a solution butynyl phosphate 18b (1.15 g, 1.36 mmol) in pyrrole-DCM (1:9 v/v, 12.3 mL, 9 eq.) After 50 s the reaction was quenched with sat. NaHCO₃ (100 mL) and extracted with CHCl₃ (3 × 20 mL). The combined organic layers were dried (MgSO₄) and concentrated under ²⁰ reduced pressure. The residual oil was fractionated by MPLC
- using a gradient of MeOH-EtOAc (0:1 \rightarrow 1:9 v/v) to afford the *title compound* as a colourless glass (920 mg, 80%). TLC $R_{\rm f}$ (EtOAc) 0.40; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.22 (2H, d, J 8.7), 6.89 (1H, d, J 8.5), 6.87 (1H, d, J 8.5) (N-C₆H₄Cl), 4.97 (1H,
- ²⁵ bd, J 8.7), 4.60 (1H, td, J 8.0, 4.1), 4.47 (1H, t, J 4.0) (3 × Ins *H*), 4.30-4.13 [5H, m, (2 × POCH₂) + Ins *H*], 4.07 (1H, dt J
 7.7, 5.1, Ins *H*), 3.81-3.73 (2H, OCH*H*Me + Ins *H*), 3.66-3.59 (1H, quin, J 7.0, OCH*H*Me), 3.34-3.31 [3H, m, (2 × NCH*H*) + O*H*], 3.23-3.19 (1H, m), 3.16-3.08 (1H, m) (2 × NCH*H*), 2.89
- ³⁰ (1H, bs, OH), 2.77 (1H, t, J 6.4), 2.67 (1H, td, J 6.0, 2.4), 2.61 (1H, td, J 6.8, 2.5), 2.55 (1H, td, J 6.7, 2.5) (CH₂CN + CH₂CC), 2.14-1.95 (7H, m, $3 \times CH_2 + CCH$), 1.84-1.60 (6H, m, $3 \times CH_2$), 1.32-1.25 (3H, m, OCH₂Me) ppm; $\delta_{\mathbb{C}}$ (100 MHz, CDCl₃) 149.33 (0.5C), 149.29 (0.5C) (Ar C), 129.0 (2 × Ar
- ³⁵ CH), 124.28 (0.5), 124.23 (0.5C) (Ar C), 120.1 (acetal C) 117.6 (2 × Ar CH), 116.35 (0.5C), 116.23 (0.5C) (CN), 100.2 (acetal C), 79.18 (0.5C), 79.10 (0.5C) (acetylene C), 77.33 (0.5C), 77.30 (0.5C), 76.05 (0.5C), 75.99 (0.5C), 74.2, 73.8, 73.54-73.46 (2C, m) (6 × Ins CH), 70.7 (acetylene CH), 65.88
- ⁴⁰ (0.5C, d, *J* 5.7), 65.73 (0.5C, d, *J* 5.7), 62.10 (0.5C, d, *J* 4.8), 61.97 (0.5C, d, *J* 4.8) (2 × POCH₂), 56.7 (OCH₂Me), 46.6, 46.39 (0.5C), 46.29 (0.5C) (CH₂NCH₂), 37.19, 37.06, 33.4, 32.96 (0.5C), 32.91 (0.5C), 23.8, 23.4 (6 × CH₂), 20.53-20.45 (m, CH₂CCH), 19.49-19.42 (m, CH₂CN), 14.9 (*Me*) ppm; $\delta_{\rm P}$ 45 (162 MHz, CDCl₃) -2.65 (0.5P), -2.76 (0.5P) ppm; LRMS
- (EI+) m/z (%) $[M+H]^+$ 668.9 (100), $[M-OEt]^+$ 610 (10).

1-O-[3-(2,5,5-Trimethyl-1,3-dioxan-2-yl)ethyloxy](2cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-4,5-O-50 bis[di(2-cyanoethyloxy)phosphoryl]-6-O-[1-(4-

- chlorophenyl)-4-ethoxypiperidin-4-yl]-*myo*-inositol, 20a. Masked 3-oxobut-1-yl diol 19a (300 mg, 0.39 mmol) was evaporated from pyridine (3×4 mL) and the residue redissolved in pyridine (0.8 mL) and MeCN (2.5 mL). To this
- ⁵⁵ was added *N*-methylimidazole (0.37 mL, 4.7 mmol, 12 eq.), followed by crude (CneO)₂PCl (**11**, 521 mg, *ca.* 1.55 mmol, 4 eq.) in MeCN (1 mL). After 30 min the reaction was quenched with 3-hydroxypropionitrile (0.32 mL, 4.7 mmol, 12 eq.) and

stirred for 15 min. The solvent was stripped off, the residue ⁶⁰ re-dissolved in MeCN (3 mL) and the solution cooled to 0 °C. *tert*-Butyl hydroperoxide (5M in hexane, 1.24 mL, 6.2 mmol) was added, the mixture allowed to warm to rt and it was stirred for 2.5 h. The solution was diluted with water until turbidity appeared and fractionated through a column of ⁶⁵ silanised silica, eluting with a gradient of water-MeCN (1:0 \rightarrow 0:1 v/v). The appropriate fractions were combined and the MeCN evaporated under reduced pressure. The resulting aqueous suspension was saturated with NaCl and extracted with CHCl₃ (× 3). The organic phase was dried (Na₂SO₄) and ⁷⁰ the solvent stripped off. The residual oil was fractionated by MPLC using a gradient of MeOH-DCM (0:1 \rightarrow 5:95 v/v) to

- afford the *title compound* as a colourless oil (308 mg, 70%). TLC $R_{\rm f}$ (MeOH-EtOAc, 8:92 v/v) 0.58; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.20 (2H, d, J 9.0), 6.85 (2H, d, J 8.9) (N-C₆H₄Cl), 4.91-4.82
- ⁷⁵ (2H, m), 4.64-4.58 (2H, m), 4.51 (0.5H, dd, J 4.2, 2.3), 4.49 (0.5H, dd, J 4.1, 2.6) (5 × Ins H), 4.43-4.27 [13H, m, (6 × POCH₂) + Ins H], 3.62-3.50 [4H, m, OCH₂Me + (2 × OCHHCMe₂)], 3.40-3.31 [4H, m, (2 × OCHHCMe₂) + (2 × NCHH)], 3.16-3.03 (2H, m, 2 × NCHH), 2.90-2.74 (10H, 5 ×
- ⁸⁰ CH₂CN), 2.15 (2H, t, J 7.4, POCH₂CH₂-dioxan), 2.11-1.82 (6H, m), 1.80-1.66 (6H, m) (6 × CH₂), 1.415 (1.5H, s), 1.412 (1.5H, s) (dioxan 2-Me), 1.28 (3H, t, J 7.0, OCH₂Me), 1.04 (1.5H, s), 1.03 (1.5H, s), 0.849 (1.5H, s), 0.846 (1.5H, s) (CMe₂) ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃) 149.2 (Ar C), 129.0 (2 ×
- ⁸⁵ Ar CH), 124.4 (Ar C), 120.8 (acetal C), 117.6 (2 × Ar CH), 117.09-116.50 (m, 5 × CN), 101.3, 97.5 (2 × acetal C), 81.60-81.29 (2C, m), 74.58 (0.5C), 74.50 (0.5C), 72.47-72.27 (2C, m), 70.8 (6 × Ins CH), 70.3 (OCH₂CMe₂CH₂O), 65.08 (0.5C, d, J 6.5), 64.93 (0.5C, d, J 4.8), 63.21-63.14 (m), 62.82-62.72
- ⁹⁰ (2C, m), 62.5 (d, J 5.0), 62.25-62.16 (m) (6 × POCH₂), 57.0 (OCH₂Me), 46.9, 46.6 (CH₂NCH₂), 39.46 (0.5C, d, J 6.0), 39.28 (0.5C, d, J 6.2), 36.2, 35.83 (0.5C), 35.78 (0.5C), 33.4, 33.0 (5 × CH₂), 29.9 (CMe₂), 24.0, 23.2 (2 × CH₂), 22.9, 22.36 (0.5C), 22.33 (0.5C), 20.10 (0.5C), 20.02 (0.5C) (3 × ⁹⁵ Me), 19.67-19.51 (m, 5 × CH₂CN), 15.1 (OCH₂Me) ppm; $\delta_{\rm P}$

1-O-[(But-3-ynyloxy)(2-cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-4,5-O-bis[di(2-cyanoethyloxy)-

phosphoryl]-6-*O*-[1-(4-chlorophenyl)-4-ethoxypiperidin-4-¹⁰⁵ yl]-*myo*-inositol, 20b. Butynyl diol 19b (225 mg, 0.34 mmol) was evaporated from pyridine (3×5 mL) and the residue was re-dissolved in pyridine (0.5 mL) and MeCN (1.6 mL). To this was added *N*-methylimidazole (0.32 mL, 4.0 mmol, 12 eq.), then crude (CneO)₂PCl (11, 452 mg, *ca.* 1.35 mmol, 4 eq.) in ¹¹⁰ MeCN (1 mL). After 30 min the reaction was quenched with 3-hydroxypropionitrile (0.27 mL, 4.0 mmol, 12 eq.) and stirred for 15 min. The solvent was stripped off, the residue re-dissolved in MeCN (2 mL) and the solution cooled to 0°C. *tert*-Butyl hydroperoxide (5M in hexane, 1.08 mL, 5.38 ¹¹⁵ mmol) was added, the mixture allowed to warm to rt and it was stirred for 2.5 h. The solution was diluted with water until turbidity appeared and fractionated through a column of silanised silica, eluting with a gradient of water-MeCN (1:0 \rightarrow 0:1 v/v). The appropriate fractions were combined and the MeCN evaporated under reduced pressure. The resulting

- ⁵ aqueous suspension was saturated with NaCl and extracted with CHCl₃ (× 3). The organic phase was dried (Na₂SO₄) and the solvent stripped off. The residual oil was fractionated by MPLC using a gradient of MeOH-DCM (0:1 → 5:95 v/v) to afford the *title compound* as a colourless oil (270 mg, 77%).
- ¹⁰ TLC R_f (MeOH-DCM, 1:9 v/v) 0.38; δ_H (400 MHz, CDCl₃) 7.21 (2H, d, J 9.0), 6.86 (2H, d, J 8.9) (N-C₆ H_4 Cl), 4.97 (1H, bd, J 8.7), 4.96-4.86 (2H, m), 4.64-4.60 (2H, m), 4.54-4.50 (1H, m) (5 × Ins H), 4.45-4.31 [11H, m, (5 × POCH₂CH₂CN) + Ins H), 4.29-4.21 (2H, m, POCH₂CH₂CCH), 3.63-3.52 (2H,
- ¹⁵ m, OCH₂Me), 3.41-3.32 (2H, m), 3.17-3.05 (2H, m) (CH₂NCH₂), 2.87-2.80 (5 × CH₂CN), 2.66 (1H, td, *J* 6.4, 2.6), 2.65 (1H, td, *J* 6.8, 2.6) (CH₂CC), 2.12 (0.5H, t, *J* 2.8), 2.11 (0.5H, t, *J* 2.8) (CCH), 2.07-2.00 (4H, m), 1.97-1.84 (2H, m), 1.82-1.70 (6H, m) (6 × CH₂), 1.30 (3H, t, *J* 7.0, OCH₂Me)
- ²¹⁰ ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃) 149.0 (Ar *C*), 128.9 (2 × Ar *C*H), 124.3 (Ar *C*), 120.7 (acetal *C*), 117.5 (2 × Ar *C*H), 116.91-116.25 (m, 5 × *C*N), 101.3 (acetal *C*), 81.42-81.32 (m, 2 × Ins *C*H), 79.2 (0.5C), 79.0 (0.5C) (acetylene *C*), 74.32 (0.5C), 74.23 (0.5C), 72.39-72.27 (m), 72.10 (0.5C), 72.06 (0.5C), 25 70.65, 70.55 [(4 × Ins *C*H) + acetylene *C*H], 66.04-65.99 (m), 63.04-63.00 (m), 62.70-62.61 (2C, m), 62.37-62.27 (2C, m) (6 × POCH₂), 56.9 (OCH₂Me), 46.8, 46.5 (*C*H₂NCH₂), 35.94 (0.5C), 35.89 (0.5C), 35.69 (0.5C), 35.61 (0.5C), 33.3, 32.8, 23.8, 22.9 (6 × *C*H₂), 20.47-20.34 (m, *C*H₂CCH), 19.47-19.40 30 (m, 5 × *C*H₂CN), 15.0 (*Me*) ppm; $\delta_{\rm P}$ (162 MHz, CDCl₃) -3.09 (0.5P), -3.91 (1P), -3.54 (0.5P), -3.71 (1P) ppm; LRMS

(ESI+) m/z (%) $[\text{M+Na}]^+$ 1063.2 (83), $[\text{M+H}]^+$ 1040.9 (100).

- 1-O-(But-3-ynyloxyphosphoryl)-myo-inositol 4,5-0-35 bisphosphate, 21. The fully protected butynyl InsP₃ 20b (180 mg, 0.17 mmol) was evaporated from MeCN (3×2 mL) and re-dissolved in MeCN (1.5 mL). TmsCl (0.44 mL, 3.5 mmol, 20 eq.) was added followed by Barton's base (0.50 mL, 4.3 mmol, 25 eq.). The reaction was stirred at rt for 16 h, then the 40 solvent was evaporated under reduced pressure and the residue was evaporated from MeCN $(3 \times 5 \text{ mL})$. The resulting mixture was triturated with Et₂O under argon. The filtrate was evaporated to dryness and taken up in 1M methanolic ammonia (3 mL). The solution was evaporated under reduced 45 pressure and the residue was dissolved in 80% acetic acid (10 mL). After 5 h, the solvent was stripped off under reduced pressure and the residue re-evaporated from EtOH (3 \times 10 mL). The solids were triturated with DCM and then with MeCN to give the *title compound* as an amorphous colourless
- ⁵⁰ solid (69 mg, 85%). $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.13 (1H, t, *J* 1.3, Ins 2-*H*), 4.11 (1H, q, *J* 9.3, Ins *H*), 3.91-3.79 [4H, m, (2 × Ins *H*) + POC*H*₂], 3.72 (1H, t, *J* 9.6, Ins *H*), 3.55 (1H, dd, *J* 9.8, 2.6, Ins 1-*H*), 2.40 (2H, td, *J* 6.3, 2.6, C*H*₂CC), 2.26 (1H, t, *J* 2.6, CC*H*) ppm; $\delta_{\rm C}$ (100 MHz, CDCl₃) 82.0 (acetylene *C*),
- ⁵⁵ 78.2 (b), 76.7 (b), 75.6 (d, *J* 5.2), 70.9 (d, *J* 4.3), 70.62 (2C), 70.43 [(6 × Ins *C*H) + acetylene *C*H], 63.8 (d, *J* 5.0, PO*C*H₂), 20.1 (d, *J* 7.8, *C*H₂CCH) ppm; $\delta_{\rm P}$ (162 MHz, CDCl₃) -3.06 (2P), -3.27 ppm; HRMS (ESI-) *m/z* (%) found [M-H]⁻

470.9870 (100), $C_{10}H_{18}O_{15}P_3$ requires 470.9859, $[M+Na-2H]^-$ 60 492.9682 (78), $[M-H_2PO_3]^-$ 391.0207 (58).

1-*O*-[(But-3-ynyloxy)(2-cyanoethyloxy)phosphoryl]-2,3-*O*-cyclopentylidene-4,5-*O*-bis[di(2-cyanoethyloxy)phosphorothioyl]-6-*O*-[1-(4-chlorophenyl)-4-ethoxy-

- 65 piperidin-4-yl]-myo-inositol, 22. Butynyl diol 20b (241 mg, 0.36 mmol) was evaporated from pyridine $(3 \times 3 \text{ mL})$ and the residue was re-dissolved in pyridine (0.5 mL) and MeCN (1.6 mL). To this was added N-methylimidazole (0.35 mL, 4.3 mmol, 12 eq.), then crude (CneO)₂PCl (11, 484 mg, ca. 1.4 70 mmol, 4 eq.) in MeCN (1 mL). After 30 min the reaction was quenched with 3-hydroxypropionitrile (0.29 mL, 4.3 mmol, 12 eq.) and stirred for 15 min. The solvent was stripped off and the residue was re-dissolved in THF (5 mL). Dibenzoyl tetrasulfide (732 mg, 2.16 mmol, 2 eq.) was added and the 75 mixture was stirred for 1 h. The solution was diluted with water until turbidity appeared and fractionated through a column of silanised silica, eluting with a gradient of water-MeCN (1:0 \rightarrow 0:1 v/v). The appropriate fractions were combined and the MeCN evaporated under reduced pressure. 80 The resulting aqueous suspension was saturated with NaCl and extracted with $CHCl_3$ (× 3). The organic phase was dried (Na₂SO₄) and the solvent stripped off. The residual oil was fractionated by MPLC using a gradient of MeOH-DCM (0:1
- → 2:98 v/v) to afford the *title compound* as a colourless oil ⁸⁵ (213 mg, 55%). TLC $R_{\rm f}$ (EtOAc-hexane, 8:2 v/v) 0.45; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.20 (2H, d, J 8.9), 6.86 (2H, d, J 8.9) (N-C₆H₄Cl), 5.09-5.01 (1H, m), 4.95-4.88 (1H, m), 4.76 (0.5H, d, J 7.3), 4.74 (0.5H, d, J 7.3), 4.59 (1H, t, J 4.2), 4.55-4.51 (1H, m) (5 × Ins H), 4.45-4.21 [13H, m, (6 × POCH₂) + Ins H],
- ⁹⁰ 3.63-3.49 (2H, m, OCH₂Me), 3.40-3.31 (2H, m), 3.15-3.03 (2H, m) (CH₂NCH₂), 2.85-2.77 (10H, m, $5 \times CH_2CN$), 2.69-2.62 (2H, m, CH₂CC), 2.10 (0.5H, t, *J* 2.6), 2.06 (0.5H, t, *J* 2.6) (CCH), 2.05-1.98 (4H, m), 1.96-1.88 (2H, m), 1.86-1.64 (6H, m) ($6 \times CH_2$), 1.26 (3H, t, *J* 7.0, OCH₂Me) ppm; δ_C (100
- ⁹⁵ MHz, CDCl₃) 149.1 (Ar C), 129.0 (2 × Ar CH), 124.4 (Ar C), 120.9 (acetal C), 117.7 (2 × Ar CH), 117.05-116.40 (m, 5 × CN), 101.3 (acetal C), 82.17-81.73 (m, 2 × Ins CH), 79.6 (0.5C), 79.1 (0.5C) (acetylene C), 74.32 (0.5C), 74.23 (0.5C), 72.43-72.33 (2C, m), 70.71, 70.52 [(4 × Ins CH) + acetylene
- ¹⁰⁰ *C*H], 66.2 (d, *J* 4.8), 63.49-63.39 (m), 63.09-62.77 (3C, m), 62.54-62.41 (m) (6 × POCH₂), 57.1 (OCH₂Me), 47.0, 46.7 (*C*H₂N*C*H₂), 36.2, 35.84 (0.5C), 35.76 (0.5C), 33.73, 33.05, 23.91, 23.09 (6 × *C*H₂), 20.68-20.49 (m, *C*H₂CCH), 19.77-19.33 (m, 5 × *C*H₂CN), 15.3 (*Me*) ppm; $\delta_{\rm P}$ (162 MHz, CDCl₃)
- 105 67.02 (0.5P), 66.90 (0.5P), 66.78 (0.5P), 66.51 (0.5P), -3.56 (0.5P), -3.80 (0.5P) ppm; HRMS (ESI+) m/z (%) found $\rm [M+H]^+$ 1073.2245 (100), $\rm C_{43}H_{57}ClN_6O_{14}P_3S_2$ requires 1073.2276.
- 1101-O-(But-3-ynyloxyphosphoryl)-myo-inositol4,5-O-bisphosphorothioate,23.The fully protected butynyl $InsP(PS)_2$ 22 (198 mg, 0.18 mmol) was evaporated fromMeCN (3×2 mL) and re-dissolved in MeCN (1.6 mL).TmsCl(0.46 mL, 3.7 mmol, 20 eq.) was added followed by Barton's115 base (0.54 mL, 4.6 mmol, 25 eq.).The reaction was stirred atrt for 16 h, then the solvent was evaporated under reduced

pressure. The residue was evaporated from MeCN (3×6 mL) and triturated with Et₂O under argon. The filtrate was evaporated to dryness and taken up in 1M methanolic ammonia (3 mL). The solution was evaporated under reduced ⁵ pressure and the residue was dissolved in 80% acetic acid (10

- mL). After 3 h, the solvent was stripped off under reduced pressure and the residue re-evaporated from EtOH (3×10 mL). The solids were triturated with DCM and then with MeCN to give the *title compound* as an off-white amorphous
- ¹⁰ solid (74 mg, 82%). $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.45 (1H, q, J 10.1, Ins **H**), 4.23 (1H, t, J 2.6, Ins 2-**H**), 4.19 (1H, q, J 10.3, Ins **H**), 3.99-3.90 (3H, m, Ins **H** + POC**H**₂), 3.86 (1H, t, J 9.6,

25

Ins *H*), 3.67 (1H, dd, *J* 9.8, 2.6, Ins 1-*H*), 2.49 (2H, td, *J* 6.3, 2.5, C*H*₂CC), 2.35 (1H, t, *J* 2.5, CC*H*) ppm; $\delta_{\rm C}$ (100 MHz, 15 CDCl₃) 82.0 (acetylene *C*), 78.5 (b), 76.7 (b), 75.6 (d, *J* 6.0), 71.1 (d, *J* 3.9), 70.75, 70.66, 70.54 [(6 × Ins *C*H) + acetylene *C*H], 63.9 (d, *J* 5.1, POCH₂), 20.1 (d, *J* 8.3, *C*H₂CCH) ppm; $\delta_{\rm P}$ (162 MHz, CDCl₃) 49.93 (2P), -0.62 (1P) ppm; HRMS (ESI-) *m/z* (%) found [M-H]⁻ 502.9414 (45), C₁₀H₁₈O₁₅P₃S₂ requires 502.9402, [M-H₂PO₂S]⁻ 407.0009 (100), [M+Na-H₂PO₂S]⁻ 428.9803 (38), [M+Na-2H]⁻ 524.9225 (31),

[M+2Na-3H] 546.9033 (22).

¹H-NMR 30 (D_2O) 6-**H** 35 3-H 2, Ins(1,4,5)P3 ୍ର 40 45 4.15 3,90 3,85 delta (ppm) ¹³C-NMR ³¹P-NMR (D_2O) (D_2O) 55 60 65 70.5 78.5 70.0 69.5 0.5 delta (pomi 77.0

24 22 52 50 48 delta (ppm)

84 82

