SUPPLEMENTARY INFORMATION

2,3-O-Cyclopentylidene-myo-inositol, 8. myo-Inositol (30.0 $\mathrm{g}, 167 \mathrm{mmol}$) was taken up in DMSO (300 mL) and stirred at ${ }_{5} 100{ }^{\circ} \mathrm{C}$ until all the solids dissolved. The solution was cooled to rt and 1,1-dimethoxycyclopentane ($23.9 \mathrm{~g}, 184 \mathrm{mmol}, 1.1$ eq.) was added followed by p-toluene sulfonic acid monohydrate ($3.17 \mathrm{~g}, 16.7 \mathrm{mmol}, 0.1$ eq.). The reaction was stirred at $35{ }^{\circ} \mathrm{C}$ for 3 days after which $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 35.8$ ${ }_{10} \mathrm{mmol}$) was added. After 1 h the DMSO was evaporated under high vacuum (oil pump) at $100{ }^{\circ} \mathrm{C}$. The residual oil was diluted with EtOH (100 mL), and then further diluted with EtOAc (500 mL). The precipitate was collected by filtration and triturated with refluxing MeCN ($c a .750 \mathrm{~mL}$) containing ${ }_{15} \mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL})$ in a Soxhlet apparatus for 12 h . Upon cooling the title compound crystallised from the mother liquor as colourless plates ($26.24 \mathrm{~g}, 64 \%$). R_{f} (EtOAc) 0.10; δ_{H} (400 MHz, d_{6}-DMSO) $4.84(1 \mathrm{H}, \mathrm{d}, J 4.8,4-\mathrm{OH}), 4.81(1 \mathrm{H}, \mathrm{d}, J$ 5.2, 1-OH), $4.70(1 \mathrm{H}, \mathrm{d}, J 4.3,6-\mathrm{OH}), 4.66(1 \mathrm{H}, \mathrm{d}, J 4.3,5-$ $\left.{ }_{20} \mathbf{O H}\right), 3.98(1 \mathrm{H}, \mathrm{t}, J 4.3$, Ins $2-\boldsymbol{H}), 3.75(1 \mathrm{H}, \mathrm{dd}, J 7.3,5.1$, Ins $3-\boldsymbol{H})$, 3.48 (1H, dt, $J 9.1$, 4.4, Ins 1-H), 3.29-3.22 (2H, m, Ins $6-\boldsymbol{H}+4-\boldsymbol{H}), 2.90(1 \mathrm{H}, \mathrm{td}, J 9.3,4.3$, Ins 5-H), 1.86-1.80 (1H, $\mathrm{m}), 1.76-1.70(1 \mathrm{H}, \mathrm{m}), 1.66-1.47(6 \mathrm{H}, \mathrm{m})\left(4 \times \mathrm{CH}_{2}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, d_{6}$-DMSO) 117.7 (acetal C), $78.6,77.0,74.02$, ${ }_{25} 73.90,72.2,69.7(6 \times$ Ins $\boldsymbol{C H})$, 37.3, 37.1, 23.12, 22.96 ($4 \times$ CH_{2}) ppm; HRMS (EI+) m/z found [M] 246.1110, $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6}$ requires 246.1103.

2,3-O-Cyclopentylidene-1-O-tert-butyldiphenylsilyl-myo-

${ }_{30}$ inositol. 2,3-O-Cyclopentylidene-myo-inositol (8, 13.67 g , 55.5 mmol) and imidazole ($7.56 \mathrm{~g}, 111 \mathrm{mmol}, 2$ eq.) were dissolved in DMF (100 mL). To this solution was slowly added tert-butyldiphenylsilyl chloride ($15.9 \mathrm{~mL}, 61.1 \mathrm{mmol}$, 1.1 eq.) in DMF (20 mL), drop-wise over 15 min and the ${ }_{35}$ reaction was stirred overnight at rt. The solvent was evaporated under high vacuum, the residual oil was taken up in EtOAc (250 mL) and washed with sat. NaHCO_{3}, then water $(\times 2)$ and brine. The organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated in vacuo. The residue was taken up in ${ }_{40} \mathrm{EtOAc}$-hexane ($1: 1 \mathrm{v} / \mathrm{v}$) and poured into a large sinter funnel containing a slurry of TLC grade silica in hexane. After slowly drawing down the solvent, the silica was rinsed using a gradient of EtOAc-hexane ($1: 2 \rightarrow 1: 0 \mathrm{v} / \mathrm{v}$) to afford the title compound as a colourless solid ($18.83 \mathrm{~g}, 70 \%$); R_{f} (EtOAc) ${ }_{45} 0.52$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.79(2 \mathrm{H}, \mathrm{d}, J 6.8), 7.75(2 \mathrm{H}, \mathrm{dd}$, $J 7.6,1.3), 7.47-7.37(6 \mathrm{H}, \mathrm{m})(10 \times \mathrm{Ph} \boldsymbol{H}), 3.88(1 \mathrm{H}, \mathrm{t}, J 9.4$, Ins $\boldsymbol{H}), 3.76(1 \mathrm{H}, \mathrm{t}, J 4.2$, Ins $\boldsymbol{H}), 3.71(1 \mathrm{H}, \mathrm{dd}, J 9.3,3.8$, Ins $\boldsymbol{H}), 3.62(1 \mathrm{H}$, dd, $J 7.4,4.6$, Ins $\boldsymbol{H})$, $3.54(1 \mathrm{H}, \mathrm{dd}, J 9.9,7.6$, Ins \boldsymbol{H}), $3.28(3 \mathrm{H}, \mathrm{bs}, 3 \times \mathrm{OH}), 3.11(1 \mathrm{H}, \mathrm{t}, J 9.7$, Ins $\boldsymbol{H})$, 2.12${ }_{50} 1.88(2 \mathrm{H}, \mathrm{m}), 1.78-1.58(4 \mathrm{H}, \mathrm{m}), 1.57-1.53(2 \mathrm{H}, \mathrm{m})(4 \times$ CH_{2}), $\left.1.10(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe})_{3}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 136.00 (2C), 135.92 (2C) ($4 \times \mathrm{Ph}$ CH), 133.8, $133.3(2 \times \mathrm{Ph}$ C), $130.02,129.88,127.9$ (2C), 127.6 (2C) ($6 \times \mathrm{Ph}$ CH), 119.5 (acetal C), 78.0, 76.6, 74.7, 73.1, 72.8, $72.5(6 \times$ Ins $\boldsymbol{C H}$), ${ }_{55}$ 37.6, $37.1\left(2 \times \mathrm{CH}_{2}\right)$, $27.1\left(\mathrm{SiCMe}_{3}\right), 23.49,23.30\left(2 \times \mathrm{CH}_{2}\right)$, $19.5\left(\mathrm{SiCMe}_{3}\right) \mathrm{ppm}$; LRMS (CI+) $\mathrm{m} / \mathrm{z}(\%)[\mathrm{M}+\mathrm{H}]^{+} 485$ (31\%), $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+} 427$ (10), $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+} 407$ (100); HRMS (CI+) m/z found $[\mathrm{M}+\mathrm{H}]^{+}$485.2359, $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{Si}$ requires 485.2359 .
${ }_{60}$ 1-O-tert-Butyldiphenylsilyl-2,3-O-cyclopentylidene-4,5-O-(1,1,3,3-tetraisopropyldisiloxan-1,3-diyl)-myo-inositol, 9. 2,3-O-Cyclopentylidene-1-O-tert-butyldiphenylsilyl-myo-inositol ($4.51 \mathrm{~g}, 9.31 \mathrm{mmol}$) and imidazole ($2.53 \mathrm{~g}, 37.2 \mathrm{mmol}, 4 \mathrm{eq}$.) were dissolved in DMF (30 mL). To this was slowly added ${ }_{65}$ Markiewicz reagent ($3.0 \mathrm{~mL}, 9.3 \mathrm{mmol}, 1.0$ eq.) in DMF (10 mL) over 15 min and the reaction was stirred overnight at rt . $\mathrm{Et}_{3} \mathrm{~N}(3.9 \mathrm{~mL}, 28 \mathrm{mmol})$ followed by water $(0.5 \mathrm{~mL}, 28$ mmol) were then added and the solvent evaporated under high vacuum. The resulting oil was taken up in EtOAc (100 mL) 70 and washed with sat. NaHCO_{3}, then water $(\times 2)$, and brine. The organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated in vacuo. The crude material was taken up in hexane and poured into a large sinter funnel containing a slurry of TLC silica in hexane. After slowly drawing down the 75 solvent under gentle suction, the silica was rinsed using a gradient of EtOAc-hexane ($1: 4 \rightarrow 1: 1 \mathrm{v} / \mathrm{v}$) to afford the title compound as a colourless glass ($6.09 \mathrm{~g}, 90 \%$). HPTLC R_{f} $\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, $\left.1: 9 \mathrm{v} / \mathrm{v}\right) 0.76$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85(4 \mathrm{H}$, d, $J 7.1), 7.42-7.38(6 \mathrm{H}, \mathrm{m})(10 \times \mathrm{Ph} \boldsymbol{H}), 3.97(1 \mathrm{H}, \mathrm{t}, J 9.4$, ${ }_{80}$ Ins $\left.\boldsymbol{H}\right), 3.82(1 \mathrm{H}, \mathrm{dd}, J 9.7,3.8$, Ins $\boldsymbol{H}), 3.78(1 \mathrm{H}, \mathrm{t}, J 4.1$, Ins $\boldsymbol{H}), 3.74-3.67(2 \mathrm{H}, \mathrm{m}, 2 \times \operatorname{Ins} \boldsymbol{H}), 3.28(1 \mathrm{H}, \mathrm{t}, J 9.1$, Ins $\boldsymbol{H})$, $2.55(1 \mathrm{H}, \mathrm{s}, \mathrm{ex}, \mathrm{OH}), 1.97-1.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.83-1.58(6 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{CH}_{2}$), $1.12\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.11-0.94(28 \mathrm{H}, \mathrm{m}, 4 \times$ $\left.\mathrm{SiCHMe}{ }_{2}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.3$ (2C), 136.0 (2C) ${ }_{85}(4 \times \mathrm{Ph} \boldsymbol{C H}), 134.3,133.0(2 \times \mathrm{Ph} \boldsymbol{C}), 129.80,129.70,127.61$ (2C), 127.45 (2C) ($6 \times \mathrm{Ph} \boldsymbol{C H}$), 119.1 (acetal \boldsymbol{C}), 79.1, 78.1, 77.6, 76.7, 72.5, $71.7(6 \times \mathrm{Ar} \boldsymbol{C H})$, 37.3, $36.7\left(2 \times \mathrm{CH}_{2}\right), 26.9$ $\left(\mathrm{SiCMe}_{3}\right), 23.20,23.12\left(2 \times \mathrm{CH}_{2}\right), \quad 19.6\left(\mathrm{SiCMe}_{3}\right), 17.46-$ 17.24 (8C, m, $4 \times \mathrm{SiCHMe}_{2}$), 12.9, 12.6, 12.1, 11.9 ($4 \times$ ${ }_{90} \mathrm{SiCHMe}_{2}$) ppm; LRMS (CI+) m / z (\%) found $[\mathrm{M}+\mathrm{H}]^{+} 727$ (2), $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+} 669$ (6), $\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+} 649$ (18).

1-O-[3-(2,5,5-Trimethyl-1,3-dioxan-2-yl)ethyloxy](2-cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-4,5-O${ }_{95}$ (xanthen-9-ylidene)-6-O-[1-(4-chlorophenyl)-4-ethoxy-piperidin-4-yl]-myo-inositol, 18a. Dicyanoethyl phosphate 6 $(2.0 \mathrm{~g}, 2.4 \mathrm{mmol})$ was taken up in $\mathrm{MeCN}-\mathrm{Et}_{3} \mathrm{~N}(2: 1 \mathrm{v} / \mathrm{v} ; 30$ mL) and stirred at rt for 16 h . The solution was evaporated under reduced pressure and the residue was re-evaporated from pyridine $(3 \times 10 \mathrm{~mL})$. The residue was dissolved in MeCN (1.3 mL) and to this was added N-methylimidazole ($1.91 \mathrm{~mL}, 24 \mathrm{mmol}, 10 \mathrm{eq}$.$) , followed by 3-(2,5,5-trimethyl-$ 1,3-dioxan-2-yl)ethan-1-ol ($945 \mathrm{mg}, 5.4 \mathrm{mmol}, 2.3 \mathrm{eq}$.). A solution of mesitylene sulfonyl chloride ($2.6 \mathrm{~g}, 12 \mathrm{mmol}, 5$
${ }_{105} \mathrm{eq}$.) in pyridine (3.25 mL) was added drop-wise to the reaction mixture over a period of 5 min . After 30 min water $(0.5 \mathrm{~mL})$ was added and the solution concentrated under reduced pressure. The residue was dissolved in EtOAc (100 $\mathrm{mL})$, washed with sat. $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and the aqueous 110 washings were back-extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residual oil was fractionated by MPLC (silica pre-treated with 1% pyridine-EtOAc) using a gradient of EtOAc-hexane ($1: 2 \rightarrow 9: 1 \mathrm{v} / \mathrm{v}$) to afford the title 115 compound as a colourless solid ($2.04 \mathrm{~g}, 91 \%$). TLC R_{f} (EtOAc-hexane, 7:3 v/v) 0.40; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.69$
(1H, d, $J 7.9$), 7.64 (1H, dd, $J 7.8,1.8$), 7.47-7.43 ($2 \mathrm{H}, \mathrm{m}$), 7.30-7.26 (3H, m), $7.23(1 \mathrm{H}, \mathrm{t}, J 7.6)(8 \times \mathrm{Ar} \boldsymbol{H}), 7.19(2 \mathrm{H}, \mathrm{d}$, J 9.0), $6.81(2 \mathrm{H}, \mathrm{d}, J 8.9)\left(\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right), 4.76-4.70(2 \mathrm{H}, \mathrm{m})$, 4.67-4.64 ($1 \mathrm{H}, \mathrm{m}$), $4.57(1 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{bt}, J 7.4)(5 \times$ Ins $\left.{ }_{5} \boldsymbol{H}\right), 4.46-4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{POCH}_{2}\right), 4.08(1 \mathrm{H}, \mathrm{m}$, Ins $\boldsymbol{H})$, 3.63$3.54\left[3 \mathrm{H}, \mathrm{m}, \mathrm{OCHHMe}+\left(2 \times \mathrm{OCHHCMe}_{2}\right)\right], 3.53(1 \mathrm{H}, \mathrm{m}$, ОСННМе), 3.42-3.38 ($2 \mathrm{H}, \mathrm{m}, 2 \times$ OСННСМе $_{2}$), 3.35-3.30 ($1 \mathrm{H}, \mathrm{m}$), 3.22-3.17 ($2 \mathrm{H}, \mathrm{m}$), 3.04-2.99 ($1 \mathrm{H}, \mathrm{m}$) ($\mathrm{CH}_{2} \mathrm{NCH}_{2}$), 2.85-2.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}$), 2.26-2.18 ($2 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2} \mathrm{CH}_{2^{-}}$ ${ }_{10}$ dioxan), 2.12-1.90 ($6 \mathrm{H}, \mathrm{m}$), 1.78-1.68 ($6 \mathrm{H}, \mathrm{m}$) $\left(6 \times \mathrm{CH}_{2}\right), 1.43$ $\left(3 \mathrm{H}, \mathrm{s}\right.$, dioxan 2-Me), $1.08\left(3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{OCH}_{2} \mathbf{M e}\right), 1.033$ $(1.5 \mathrm{H}, \mathrm{s}), 1.031(1.5 \mathrm{H}, \mathrm{s}), 0.852(1.5 \mathrm{H}, \mathrm{s}), 0.847(1.5 \mathrm{H}, \mathrm{s})$ $\left(\mathrm{CMe}_{2}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 151.94,151.89,149.52$ (0.5C), 149.50 (0.5 C) ($3 \times \mathrm{Ar}$ C), 130.2 (2C), 128.9 (2C), ${ }_{15} 125.81$ (0.5 C), 125.76 (0.5 C), 125.5 ($6 \times \mathrm{Ar} \mathrm{CH}$), 124.17 (0.5C), 124.14 (0.5 C) ($\mathrm{Ar} \boldsymbol{C}$), 123.35, 123.27 ($2 \times \mathrm{Ar} \boldsymbol{C H}$), 122.69, 122.63 ($2 \times \mathrm{Ar}$ C), 121.27 (0.5C), 121.17 (0.5C) (acetal C), 117.6 (2C), 116.9 (2C) ($4 \times \mathrm{Ar} \boldsymbol{C H}$), $116.3(C N)$, 103.5, 100.3, 97.5 ($3 \times$ acetal C), 81.3 (0.5 C), 81.1 (0.5 C), 20 79.67-79.59 (m), 76.58 (0.5C), 76.43 (0.5C), 75.9, 73.92$73.81(\mathrm{~m})(5 \times$ Ins $\boldsymbol{C H}), 70.3\left(\mathrm{OCH}_{2} \mathrm{CMe}_{2} \boldsymbol{C H}_{2} \mathrm{O}\right), 69.80$ (0.5C), 69.67 (0.5C) (Ins $\boldsymbol{C H}$), 64.98-64.85 (m), 62.08-61.96 (m) $\left(2 \times \mathrm{POCH}_{2}\right), 56.3\left(\mathrm{OCH}_{2} \mathrm{Me}\right)$, $47.2,46.5\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$, 39.56-39.38 (m, $\mathrm{POCH}_{2} \mathrm{CH}_{2}$-dioxan), 35.99 (0.5 C), 35.87

25 (0.5 C), 35.44 (0.5 C), 35.37 (0.5 C), 34.0, $33.2\left(4 \times \mathrm{CH}_{2}\right), 29.9$ $\left(\mathbf{C M e}_{2}\right), 23.8\left(\mathbf{C H}_{2}\right), 22.93(\mathbf{M e}), 22.87\left(\mathrm{CH}_{2}\right), 22.4,20.1(2 \times$ Me), 19.64-19.54 (m, CH2CN), $15.0\left(\mathrm{OCH}_{2}\right.$ Me) ppm; $\delta_{\mathrm{P}}(162$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-2.43(0.5 \mathrm{P}),-2.82(0.5 \mathrm{P}) \mathrm{ppm}$; HRMS (ESI+) m / z (\%) found $[\mathrm{M}+\mathrm{H}]^{+} 951.3622$ (85), $\mathrm{C}_{49} \mathrm{H}_{61} \mathrm{ClN}_{2} \mathrm{O}_{13} \mathrm{P}$ ${ }_{30}$ requires $951.3600,[\mathrm{M}-\mathrm{OEt}]^{+} 905.3219$ (22).

1-O-[(But-3-ynyloxy)(2-cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-4,5-O-(xanthen-9-ylidene)-6-O-[1-(4-chlorophenyl)-4-ethoxypiperidin-4-yl]-myo-inositol, 18 b .
${ }_{35}$ Dicyanoethyl phosphate 6 ($410 \mathrm{mg}, 0.48 \mathrm{mmol}$) was taken up
 solvent was evaporated under reduced pressure and the residue was re-evaporated from pyridine ($3 \times 5 \mathrm{~mL}$). The residue was dissolved in $\mathrm{MeCN}(0.7 \mathrm{~mL})$ and to this was 40 added N-methylimidazole ($0.39 \mathrm{~mL}, 4.8 \mathrm{mmol}, 10$ eq.), followed by but-3-yn-1-ol (0.11 mL , $1.45 \mathrm{mmol}, 3$ eq.). A solution of mesitylene sulfonyl chloride ($529 \mathrm{mg}, 2.4 \mathrm{mmol}, 5$ eq.) in pyridine (1.5 mL) was added drop-wise to the reaction mixture over 10 min . After 30 min water (0.1 mL) was added 45 and the solution concentrated under reduced pressure. The residue was dissolved in EtOAc (100 mL) and washed with sat. $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$. The aqueous washings were backextracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced
${ }_{50}$ pressure. The residual oil was fractionated by MPLC (silica pre-treated with 1% pyridine-EtOAc) using a gradient of EtOAc-hexane ($1: 2 \rightarrow 9: 1 \mathrm{v} / \mathrm{v}$) to afford the title compound as a colourless glass ($383 \mathrm{mg}, 95 \%$). TLC R_{f} (EtOAc-hexane, 1:1 $\mathrm{v} / \mathrm{v}) 0.32 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.69(0.5 \mathrm{H}, \mathrm{dd}, J 7.8,1.4)$,
557.68 ($0.5 \mathrm{H}, \mathrm{dd}, J 7.7,1.4$), 7.64 (1H, dd, $J 7.8,1.5$), $7.48-7.43$ $(2 \mathrm{H}, \mathrm{m}), 7.30-7.26(3 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{bt}, J 7.7)(8 \times \mathrm{Ar} \boldsymbol{H})$, $7.19(2 \mathrm{H}, \mathrm{d}, J 8.9), 6.81(2 \mathrm{H}, \mathrm{d}, J 8.5)\left(\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right), 4.77-4.71$ $(2 \mathrm{H}, \mathrm{m}), 4.66-4.61(1 \mathrm{H}, \mathrm{m}), 4.57-4.54(1 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{bt}, J$
7.4) ($5 \times$ Ins \boldsymbol{H}), 4.41-4.21 $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{POCH}_{2}\right), 4.09-4.03$ ${ }_{60}(1 \mathrm{H}, \mathrm{m}$, Ins $\boldsymbol{H})$, 3.62-3.46 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}$), 3.35-3.29 $(1 \mathrm{H}$, $\mathrm{m}), 3.23-3.16(2 \mathrm{H}, \mathrm{m}), 3.02(1 \mathrm{H}$, ddd, $J 12.3,8.6,3.2)$ $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.84-2.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}\right), 2.69(1 \mathrm{H}, \mathrm{td}, J 6.5$, 2.6), 2.67 (1H, td, $J 6.6,2.5$) ($\mathrm{CH}_{2} \mathrm{CC}$), 2.12-1.90 ($6 \mathrm{H}, \mathrm{m}, 3 \times$ $\left.\mathrm{CH}_{2}\right), 2.08(0.5 \mathrm{H}, \mathrm{t}, J 2.6), 2.06(0.5 \mathrm{H}, \mathrm{t}, J 2.6)(\mathrm{CCH}), 1.78-$ ${ }_{65} 1.65\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.07\left(3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{OCH}_{2} \mathbf{M e}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 151.9 (2C), 149.5 ($3 \times \mathrm{Ar}$ C), 130.2 (2C), 128.9 (2C), 125.75 (0.5 C), 125.68 (0.5 C), 125.48 ($6 \times \mathrm{Ar}$ CH), 124.2 ($\mathrm{Ar} \boldsymbol{C}$), 123.3 (2C, $2 \times \mathrm{Ar} \boldsymbol{C H}$), 122.64, 122.58 (2 $\times \operatorname{Ar} \boldsymbol{C}), 121.26$ (0.5 C), 121.21 (0.5 C) (acetal \boldsymbol{C}), 117.6 (2C), $70117.0(2 \mathrm{C})(4 \times \mathrm{Ar} \boldsymbol{C H}), 116.2(\mathrm{CN}), 103.6,100.4(2 \times$ acetal C), 81.2 (0.5 C), 81.0 (0.5 C), 79.9 (d, $J 6.8$) ($2 \times$ Ins $\boldsymbol{C H}$), 79.2 (acetylene C), 76.6 (0.5C), 76.4 (0.5C), 75.8, 73.88-73.78 (m) ($3 \times$ Ins $\boldsymbol{C H}$), 70.99 (0.5 C), 70.82 (0.5 C) (acetylene $\boldsymbol{C H}$), 69.8 (b, Ins $\boldsymbol{C H}$), 66.13-66.03 (m), 62.29-62.18 (m) $\left(2 \times \mathrm{POCH}_{2}\right)$, ${ }_{75} 56.4\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 47.2,46.5\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 35.97(0.5 \mathrm{C}), 35.88$ (0.5C), 35.47 (0.5 C), 35.42 (0.5 C), 34.0, 33.2, 23.8, 22.9 ($6 \times$ CH_{2}), 20.73-20.57 (m, $\left.\boldsymbol{C H}_{2} \mathrm{CCH}\right)$, 19.67-19.56 (m, $\boldsymbol{C H}_{2} \mathrm{CN}$), 15.0 (Me) ppm; $\delta_{\mathrm{p}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-3.06$ (0.5 P), -3.27 (0.5P) ppm; LRMS (ESI+) m/z (\%) $[\mathrm{M}+\mathrm{Na}]^{+} 869$ (11), ${ }_{80}[\mathrm{M}+\mathrm{H}]^{+} 847$ (100), $[\mathrm{M}-\mathrm{OEt}]^{+} 801$ (30), $\left[\mathrm{M}-\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClNO}\right]^{+} 610$ (30).

1-O-[3-(2,5,5-Trimethyl-1,3-dioxan-2-yl)ethyloxy](2-cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-6-O-[1${ }_{85}$ (4-chlorophenyl)-4-ethoxypiperidin-4-yl]-myo-inositol, 19a. TFA-DCM (1:9 v/v, $4.7 \mathrm{~mL}, 3 \mathrm{eq}$.) was added to a solution of masked 3-oxobutyl phosphate 18a ($2.00 \mathrm{~g}, 2.1 \mathrm{mmol}$) in pyrrole-DCM ($1: 9 \mathrm{v} / \mathrm{v}, 13.1 \mathrm{~mL}, 9 \mathrm{eq}$.). After 50 s the reaction was quenched with sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and extracted with ${ }_{90} \mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residual oil was fractionated by MPLC using a gradient of hexane-EtOAc ($4: 1 \rightarrow 0: 1 \mathrm{v} / \mathrm{v}$) then MeOH-EtOAc $(0: 1 \rightarrow 1: 9$ v / v) to afford the title compound as a colourless solid (1.28 g , ${ }_{95} 79 \%$). TLC R_{f} (EtOAc-hexane, 9:1 v/v) 0.35 ; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.20(1 \mathrm{H}, \mathrm{d}, J 8.8), 7.19(1 \mathrm{H}, \mathrm{d}, J 8.9), 6.86(1 \mathrm{H}, \mathrm{d}, J$ 9.0), $6.85(1 \mathrm{H}, \mathrm{d}, J 9.0)\left(\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right), 4.91(0.5 \mathrm{H}, \mathrm{d}, J 1.1)$, 4.88 ($0.5 \mathrm{H}, \mathrm{d}, J 1.3$) ($5-\mathrm{OH}$), 4.59-4.53 (1H, m, Ins 1-H), 4.45 (0.5 H , dd, $J 5.5,4.0$), 4.42 (0.5 H , dd, $J 5.2$, 4.2) (Ins 2-H), 100 4.34-4.12 [5H, m, $\left(2 \times \mathrm{POCH}_{2}\right)+$ Ins 6-H], $4.06(0.5 \mathrm{H}, \mathrm{t}, J$ 5.2), 4.04 ($0.5 \mathrm{H}, \mathrm{t}, J 5.2$) (Ins $3-\boldsymbol{H}), 3.78(1 \mathrm{H}, \mathrm{bt}, J 8.4$, Ins $4-$ $\boldsymbol{H})$, 3.76-3.69 ($1 \mathrm{H}, \mathrm{m}, ~$ ОСННМе $)$, $3.64-3.55 \quad[3 \mathrm{H}, \mathrm{m}$, ОСННМе $+\left(2 \times\right.$ ОСННСМе $\left.\left.{ }_{2}\right)\right]$, 3.42-3.29 [5H, m, $(2 \times$ NCHH) $+\left(2 \times \mathrm{OCH}_{\boldsymbol{H C M e}}^{2}\right.$ $)+$ Ins 5-H), 3.23-3.16 ($1 \mathrm{H}, \mathrm{m}$), 105 3.14-3.05 ($1 \mathrm{H}, \mathrm{m}$) ($2 \times \mathrm{NCHH}$), $3.00(1 \mathrm{H}, \mathrm{bs}, 4-\mathrm{OH}), 2.75$ $(1 \mathrm{H}, \mathrm{t}, J 6.5), 2.72-2.59(1 \mathrm{H}, \mathrm{m})\left(\mathrm{CH}_{2} \mathrm{CN}\right), 2.12-1.93(8 \mathrm{H}, \mathrm{m})$, $1.82-1.58(6 \mathrm{H}, \mathrm{m})\left(7 \times \mathrm{CH}_{2}\right), 1.38(1.5 \mathrm{H}, \mathrm{s}), 1.36(1.5 \mathrm{H}, \mathrm{s})$ (dioxan 2-Me), $1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.03(1.5 \mathrm{H}, \mathrm{s})$, $1.02(1.5 \mathrm{H}, \mathrm{s}), 0.83(1.5 \mathrm{H}, \mathrm{s}), 0.82(1.5 \mathrm{H}, \mathrm{s})\left(\mathrm{CMe}_{2}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}$ $110\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.45$ (0.5C), 149.32 (0.5 C) (Ar C), 128.99, 128.96 ($2 \times \mathrm{Ar} \mathrm{CH}$), 124.28 (0.5 C), 124.24 (0.5 C) (Ar C), 120.1 (acetal \boldsymbol{C}), 117.68, $117.62(2 \times \mathrm{Ar} \boldsymbol{C H}), 116.35$ (0.5C), 116.21 (0.5C) (CN), 100.2, $97.5(2 \times$ acetal $C), 77.3$, 75.81 (0.5 C), 75.76 (0.5 C), 74.37 (0.5 C), 74.30 (0.5 C), 73.69$11573.52(3 \mathrm{C}, \mathrm{m})(6 \times$ Ins $\boldsymbol{C H}), 70.3\left(\mathrm{OCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 64.68$ (0.5C, d, $J 4.9$), 64.52 ($0.5 \mathrm{C}, \mathrm{d}, J 5.3$), 61.86 ($0.5 \mathrm{C}, \mathrm{d}, J 4.9$),
61.75 ($0.5 \mathrm{C}, \mathrm{d}, J 5.0$), $\left(2 \times \mathrm{POCH}_{2}\right), 56.66$ (0.5 C), 56.62 (0.5C) ($\mathrm{OCH}_{2} \mathrm{Me}$), 46.64 (0.5 C), 46.60 (0.5 C), 46.42 (0.5 C), $46.29(0.5 \mathrm{C})\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 39.51(0.5 \mathrm{C}), 39.44(0.5 \mathrm{C}), 37.28$, $37.20(0.5 \mathrm{C}), 37.15(0.5 \mathrm{C}), 33.4,32.99$ (0.5 C), 32.92 (0.5 C) ${ }_{5}\left(5 \times \mathrm{CH}_{2}\right), 29.8\left(\mathrm{CMe}_{2}\right), 23.8,23.4\left(2 \times \mathrm{CH}_{2}\right), 22.9,22.32$ (0.5 C), 22.29 (0.5 C), 19.89 (0.5 C), 19.86 (0.5 C) ($3 \times \mathrm{Me}$), 19.48-19.38 (m, CH2CN), $14.9\left(\mathrm{OCH}_{2} \mathrm{Me}\right) \mathrm{ppm}$; $\boldsymbol{\delta}_{\mathrm{p}}(162 \mathrm{MHz}$, CDCl_{3}) -2.12 ppm; HRMS (ESI +) m / z (\%) found $[\mathrm{M}+\mathrm{H}]^{+}$ 773.3199 (100), $\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{ClN}_{2} \mathrm{O}_{12} \mathrm{P}$ requires 773.3181, $[\mathrm{M}+\mathrm{Na}]^{+}$ ${ }_{10} 795.3027$ (19), $[\mathrm{M}-\mathrm{OEt}]^{+} 727.2786$ (20).

1-O-[(But-3-ynyloxy)(2-cyanoethyloxy)phosphoryl]-2,3-

 O-cyclopentylidene-6-O-[1-(4-chlorophenyl)-4-ethoxy-piperidin-4-yll-myo-inositol, 19b. TFA-DCM (1:9 v/v, 4.4 ${ }_{15} \mathrm{~mL}, 3$ eq.) was added to a solution butynyl phosphate 18b ($1.15 \mathrm{~g}, 1.36 \mathrm{mmol}$) in pyrrole-DCM ($1: 9 \mathrm{v} / \mathrm{v}, 12.3 \mathrm{~mL}, 9 \mathrm{eq}$. After 50 s the reaction was quenched with sat. $\mathrm{NaHCO}_{3}(100$ $\mathrm{mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under 20 reduced pressure. The residual oil was fractionated by MPLC using a gradient of MeOH-EtOAc ($0: 1 \rightarrow 1: 9 \mathrm{v} / \mathrm{v}$) to afford the title compound as a colourless glass ($920 \mathrm{mg}, 80 \%$). TLC $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.40 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.22(2 \mathrm{H}, \mathrm{d}, J 8.7)$, $6.89(1 \mathrm{H}, \mathrm{d}, J 8.5), 6.87(1 \mathrm{H}, \mathrm{d}, J 8.5)\left(\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right), 4.97(1 \mathrm{H}$, 25 bd, $J 8.7$), $4.60(1 \mathrm{H}, \mathrm{td}, J 8.0,4.1), 4.47$ ($1 \mathrm{H}, \mathrm{t}, J 4.0$) ($3 \times \mathrm{Ins}$ $\boldsymbol{H}), 4.30-4.13\left[5 \mathrm{H}, \mathrm{m},\left(2 \times \mathrm{POCH}_{2}\right)+\mathrm{Ins} \boldsymbol{H}\right], 4.07(1 \mathrm{H}, \mathrm{dt} J$ 7.7, 5.1, Ins \boldsymbol{H}), 3.81-3.73 (2 H, OCHHMe $+\operatorname{Ins} \boldsymbol{H}$), 3.66-3.59 (1 H , quin, $J 7.0$, ОСНHMe), $3.34-3.31[3 \mathrm{H}, \mathrm{m},(2 \times \mathrm{NCHH})+$ $\mathrm{OH}], 3.23-3.19(1 \mathrm{H}, \mathrm{m}), 3.16-3.08(1 \mathrm{H}, \mathrm{m})(2 \times \mathrm{NCHH}), 2.89$ ${ }_{30}(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 2.77(1 \mathrm{H}, \mathrm{t}, J 6.4), 2.67(1 \mathrm{H}, \mathrm{td}, J 6.0,2.4)$, 2.61 (1H, td, $J 6.8,2.5), 2.55(1 \mathrm{H}, \mathrm{td}, J 6.7,2.5)\left(\mathrm{C} \mathrm{H}_{2} \mathrm{CN}+\right.$ $\mathrm{CH}_{2} \mathrm{CC}$), 2.14-1.95 (7H, m, $\left.3 \times \mathrm{CH}_{2}+\mathrm{CCH}\right), 1.84-1.60(6 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{CH}_{2}$), 1.32-1.25 ($3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \boldsymbol{M e}$) ppm; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}) 149.33 (0.5 C), 149.29 (0.5 C) (Ar C), $129.0(2 \times \mathrm{Ar}$ ${ }_{35} \boldsymbol{C H}$), 124.28 (0.5), 124.23 (0.5 C) (Ar \boldsymbol{C}), 120.1 (acetal \boldsymbol{C}) 117.6 ($2 \times \mathrm{Ar}$ CH), 116.35 (0.5 C), 116.23 (0.5 C) (CN), 100.2 (acetal \boldsymbol{C}), $79.18(0.5 \mathrm{C}), 79.10(0.5 \mathrm{C})$ (acetylene \boldsymbol{C}), 77.33 (0.5 C), $77.30(0.5 \mathrm{C}), 76.05(0.5 \mathrm{C}), 75.99(0.5 \mathrm{C}), 74.2,73.8$, 73.54-73.46 (2C, m) ($6 \times$ Ins $\boldsymbol{C H}$), 70.7 (acetylene $\mathbf{C H}$), 65.88 ${ }_{40}(0.5 \mathrm{C}, \mathrm{d}, J 5.7$), 65.73 ($0.5 \mathrm{C}, \mathrm{d}, J 5.7$), 62.10 (0.5 C , d, $J 4.8$), 61.97 ($0.5 \mathrm{C}, \mathrm{d}, J 4.8$) $\left(2 \times \mathrm{POCH}_{2}\right)$, $56.7\left(\mathrm{OCH}_{2} \mathrm{Me}\right)$, 46.6 , 46.39 (0.5 C), 46.29 (0.5 C) $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 37.19,37.06,33.4$, 32.96 (0.5 C), 32.91 (0.5 C), 23.8, 23.4 ($6 \times \mathrm{CH}_{2}$), 20.53-20.45 (m, CH $_{2} \mathrm{CCH}$), 19.49-19.42 (m, CH $_{2} \mathrm{CN}$), 14.9 (Me) ppm; δ_{p} ${ }_{45}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-2.65$ (0.5 P), -2.76 (0.5 P) ppm; LRMS (EI+) $m / z(\%)[\mathrm{M}+\mathrm{H}]^{+} 668.9$ (100), $[\mathrm{M}-\mathrm{OEt}]^{+} 610$ (10).
1-O-[3-(2,5,5-Trimethyl-1,3-dioxan-2-yl)ethyloxy](2-

 cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-4,5-O${ }_{50}$ bis[di(2-cyanoethyloxy)phosphoryl]-6-O-[1-(4-chlorophenyl)-4-ethoxypiperidin-4-yl]-myo-inositol, 20a. Masked 3 -oxobut-1-yl diol 19a ($300 \mathrm{mg}, 0.39 \mathrm{mmol}$) was evaporated from pyridine ($3 \times 4 \mathrm{~mL}$) and the residue redissolved in pyridine (0.8 mL) and MeCN (2.5 mL). To this ${ }_{55}$ was added N-methylimidazole ($0.37 \mathrm{~mL}, 4.7 \mathrm{mmol}, 12$ eq.), followed by crude (CneO) ${ }_{2} \mathrm{PCl}(\mathbf{1 1}, 521 \mathrm{mg}$, ca. $1.55 \mathrm{mmol}, 4$ eq.) in $\mathrm{MeCN}(1 \mathrm{~mL})$. After 30 min the reaction was quenched with 3 -hydroxypropionitrile ($0.32 \mathrm{~mL}, 4.7 \mathrm{mmol}, 12 \mathrm{eq}$.) andstirred for 15 min . The solvent was stripped off, the residue ${ }_{60}$ re-dissolved in MeCN $(3 \mathrm{~mL})$ and the solution cooled to $0{ }^{\circ} \mathrm{C}$. tert-Butyl hydroperoxide (5 M in hexane, $1.24 \mathrm{~mL}, 6.2 \mathrm{mmol}$) was added, the mixture allowed to warm to rt and it was stirred for 2.5 h . The solution was diluted with water until turbidity appeared and fractionated through a column of 65 silanised silica, eluting with a gradient of water-MeCN (1:0 $\rightarrow 0: 1 \mathrm{v} / \mathrm{v})$. The appropriate fractions were combined and the MeCN evaporated under reduced pressure. The resulting aqueous suspension was saturated with NaCl and extracted with $\mathrm{CHCl}_{3}(\times 3)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and 70 the solvent stripped off. The residual oil was fractionated by MPLC using a gradient of MeOH-DCM ($0: 1 \rightarrow 5: 95 \mathrm{v} / \mathrm{v}$) to afford the title compound as a colourless oil ($308 \mathrm{mg}, 70 \%$). TLC $R_{\mathrm{f}}(\mathrm{MeOH}-E t O A c, 8: 92 \mathrm{v} / \mathrm{v}) 0.58 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.20 (2H, d, $J 9.0$), 6.85 ($2 \mathrm{H}, \mathrm{d}, J 8.9$) ($\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}$), 4.91-4.82 $75(2 \mathrm{H}, \mathrm{m}), 4.64-4.58(2 \mathrm{H}, \mathrm{m}), 4.51(0.5 \mathrm{H}, \mathrm{dd}, J 4.2,2.3), 4.49$ (0.5 H , dd, $J 4.1,2.6$) $(5 \times$ Ins $\boldsymbol{H}), 4.43-4.27[13 \mathrm{H}, \mathrm{m}$, $(6 \times$ $\left.\mathrm{POCH}_{2}\right)+$ Ins $\left.\boldsymbol{H}\right], 3.62-3.50\left[4 \mathrm{H}, \mathrm{m}, \mathrm{OCH} \mathbf{H}_{2} \mathrm{Me}+(2 \times\right.$ ОСННСМе 2)], 3.40-3.31 [4H, m, $\left(2 \times \mathrm{OCHHCMe}_{2}\right)+(2 \times$ NCHH)], 3.16-3.03 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCHH}$), 2.90-2.74 (10H, $5 \times$ ${ }_{80} \mathrm{CH}_{2} \mathrm{CN}$), $2.15\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{POCH}_{2} \mathrm{CH}_{2}\right.$-dioxan), 2.11-1.82 ($6 \mathrm{H}, \mathrm{m}$), 1.80-1.66 ($6 \mathrm{H}, \mathrm{m}$) ($6 \times \mathrm{CH}_{2}$), $1.415(1.5 \mathrm{H}, \mathrm{s}), 1.412$ $(1.5 \mathrm{H}, \mathrm{s})$ (dioxan $2-\mathrm{Me}), 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.04$ $(1.5 \mathrm{H}, \mathrm{s}), 1.03(1.5 \mathrm{H}, \mathrm{s}), 0.849(1.5 \mathrm{H}, \mathrm{s}), 0.846(1.5 \mathrm{H}, \mathrm{s})$ $\left(\mathrm{CMe}_{2}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.2$ (Ar C), $129.0(2 \times$ $\left.{ }_{85} \mathrm{Ar} \boldsymbol{C H}\right), 124.4(\mathrm{Ar} \boldsymbol{C}), 120.8$ (acetal $\left.\boldsymbol{C}\right), 117.6(2 \times \mathrm{Ar} \boldsymbol{C H})$, 117.09-116.50 (m, $5 \times \mathrm{CN}$), 101.3, $97.5(2 \times$ acetal C), 81.6081.29 (2C, m), 74.58 (0.5 C), 74.50 (0.5 C), 72.47-72.27 (2C, m), 70.8 ($6 \times$ Ins $\boldsymbol{C H}$), $70.3\left(\mathrm{OCH}_{2} \mathrm{CMe}_{2} \boldsymbol{C H}_{2} \mathrm{O}\right.$), 65.08 (0.5 C , d, $J 6.5$), 64.93 ($0.5 \mathrm{C}, \mathrm{d}, J 4.8$), 63.21-63.14 (m), 62.82-62.72 ${ }_{90}(2 \mathrm{C}, \mathrm{m}), 62.5(\mathrm{~d}, J 5.0), 62.25-62.16(\mathrm{~m})\left(6 \times \mathrm{POCH}_{2}\right), 57.0$ $\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 46.9,46.6\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 39.46(0.5 \mathrm{C}, \mathrm{d}, J 6.0)$, 39.28 ($0.5 \mathrm{C}, \mathrm{d}, J 6.2$), 36.2, 35.83 (0.5C), 35.78 (0.5C), 33.4, $33.0\left(5 \times \mathrm{CH}_{2}\right), 29.9\left(\mathrm{CMe}_{2}\right), 24.0,23.2\left(2 \times \mathrm{CH}_{2}\right), 22.9$, 22.36 (0.5 C), 22.33 (0.5 C), 20.10 (0.5 C), 20.02 (0.5 C) ($3 \times$ ${ }_{95} \boldsymbol{M e}$), 19.67-19.51 (m, $5 \times$ CH $\left._{2} \mathrm{CN}\right)$, $15.1\left(\mathrm{OCH}_{2} \boldsymbol{M e}\right) \mathrm{ppm} ; \delta_{\mathrm{P}}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -2.66 (0.5 P), -2.83 (0.5 P), -3.48 (0.5 P), 3.60 (0.5 P), -3.71 (0.5 P), -3.75 (0.5 P) ppm; HRMS (ESI+) m / z (\%) found $[\mathrm{M}+\mathrm{H}]^{+} \quad 1145.3549$ (100), $\mathrm{C}_{48} \mathrm{H}_{69} \mathrm{ClN}_{6} \mathrm{O}_{18} \mathrm{P}_{3}$ requires 1145.3670, $[\mathrm{M}+\mathrm{Na}]^{+} 1167.3403$ (70), $[\mathrm{M}-\mathrm{OEt}]^{+}$ 1001099.3141 (4), $\left[\mathrm{M}-\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClNO}\right]^{+} 908.2648$ (12).

1-O-[(But-3-ynyloxy)(2-cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-4,5-O-bis[di(2-cyanoethyloxy)-phosphoryl]-6-O-[1-(4-chlorophenyl)-4-ethoxypiperidin-4-
${ }_{105}$ yl]-myo-inositol, 20b. Butynyl diol 19b ($225 \mathrm{mg}, 0.34 \mathrm{mmol}$) was evaporated from pyridine ($3 \times 5 \mathrm{~mL}$) and the residue was re-dissolved in pyridine (0.5 mL) and MeCN (1.6 mL). To this was added N-methylimidazole ($0.32 \mathrm{~mL}, 4.0 \mathrm{mmol}, 12 \mathrm{eq}$.$) ,$ then crude (CneO) ${ }_{2} \mathrm{PCl}(\mathbf{1 1}, 452 \mathrm{mg}, ~ c a . ~ 1.35 \mathrm{mmol}, 4 \mathrm{eq}$.) in ${ }_{110} \mathrm{MeCN}(1 \mathrm{~mL})$. After 30 min the reaction was quenched with 3-hydroxypropionitrile ($0.27 \mathrm{~mL}, 4.0 \mathrm{mmol}, 12 \mathrm{eq}$.) and stirred for 15 min . The solvent was stripped off, the residue re-dissolved in MeCN (2 mL) and the solution cooled to $0^{\circ} \mathrm{C}$. tert-Butyl hydroperoxide (5 M in hexane, $1.08 \mathrm{~mL}, 5.38$ 115 mmol) was added, the mixture allowed to warm to rt and it was stirred for 2.5 h . The solution was diluted with water until
turbidity appeared and fractionated through a column of silanised silica, eluting with a gradient of water-MeCN (1:0 $\rightarrow 0: 1 \mathrm{v} / \mathrm{v})$. The appropriate fractions were combined and the MeCN evaporated under reduced pressure. The resulting ${ }_{5}$ aqueous suspension was saturated with NaCl and extracted with $\mathrm{CHCl}_{3}(\times 3)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent stripped off. The residual oil was fractionated by MPLC using a gradient of MeOH-DCM ($0: 1 \rightarrow 5: 95 \mathrm{v} / \mathrm{v}$) to afford the title compound as a colourless oil ($270 \mathrm{mg}, 77 \%$). ${ }_{10}$ TLC $R_{\mathrm{f}}(\mathrm{MeOH}-\mathrm{DCM}, 1: 9 \mathrm{v} / \mathrm{v}) 0.38 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.21(2 \mathrm{H}, \mathrm{d}, J 9.0), 6.86(2 \mathrm{H}, \mathrm{d}, J 8.9)\left(\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right), 4.97(1 \mathrm{H}$, bd, J 8.7), 4.96-4.86 ($2 \mathrm{H}, \mathrm{m}$), 4.64-4.60 ($2 \mathrm{H}, \mathrm{m}$), 4.54-4.50 $(1 \mathrm{H}, \mathrm{m})(5 \times$ Ins $\boldsymbol{H}), 4.45-4.31\left[11 \mathrm{H}, \mathrm{m},\left(5 \times \mathrm{POCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)\right.$ + Ins $\boldsymbol{H})$, 4.29-4.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{POCH}_{2} \mathrm{CH}_{2} \mathrm{CCH}$), 3.63-3.52 (2 H , $\left.15 \mathrm{~m}, \quad \mathrm{OCH}_{2} \mathrm{Me}\right)$, 3.41-3.32 (2H, m), 3.17-3.05 ($2 \mathrm{H}, \mathrm{m}$) $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.87-2.80\left(5 \times \mathrm{CH}_{2} \mathrm{CN}\right), 2.66(1 \mathrm{H}, \mathrm{td}, J 6.4,2.6)$, $2.65(1 \mathrm{H}, \mathrm{td}, J 6.8,2.6)\left(\mathrm{CH}_{2} \mathrm{CC}\right), 2.12(0.5 \mathrm{H}, \mathrm{t}, J 2.8), 2.11$ ($0.5 \mathrm{H}, \mathrm{t}, J 2.8$) (CCH), 2.07-2.00 (4H, m), 1.97-1.84 ($2 \mathrm{H}, \mathrm{m}$), $1.82-1.70(6 \mathrm{H}, \mathrm{m})\left(6 \times \mathrm{CH}_{2}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right)$
${ }_{20} \mathrm{ppm} ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.0(\mathrm{Ar} \boldsymbol{C}), 128.9(2 \times \mathrm{Ar} \boldsymbol{C H})$, $124.3(\operatorname{Ar} \boldsymbol{C}), 120.7$ (acetal \boldsymbol{C}), $117.5(2 \times \mathrm{Ar} \boldsymbol{C H}), 116.91-$ $116.25(\mathrm{~m}, 5 \times \boldsymbol{C N}), 101.3($ acetal $\boldsymbol{C}), 81.42-81.32(\mathrm{~m}, 2 \times$ Ins CH), 79.2 (0.5 C), 79.0 (0.5 C) (acetylene \boldsymbol{C}), 74.32 (0.5 C), 74.23 (0.5C), 72.39-72.27 (m), 72.10 (0.5C), 72.06 (0.5 C), ${ }_{25} 70.65,70.55$ [(4 \times Ins $\left.\boldsymbol{C H}\right)+$ acetylene $\left.\boldsymbol{C H}\right], 66.04-65.99(\mathrm{~m})$, 63.04-63.00 (m), 62.70-62.61 (2C, m), 62.37-62.27 (2C, m) (6 $\left.\times \mathrm{POCH}_{2}\right), 56.9\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 46.8,46.5\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 35.94$ (0.5C), 35.89 (0.5 C), 35.69 (0.5 C), 35.61 (0.5 C), 33.3, 32.8 , 23.8, $22.9\left(6 \times \mathrm{CH}_{2}\right), 20.47-20.34\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CCH}\right), 19.47-19.40$ $30\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2} \mathrm{CN}\right), 15.0\left(\right.$ Me) ppm; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-3.09$ (0.5P), -3.91 (1P), -3.54 (0.5P), -3.71 (1P) ppm; LRMS (ESI+) $\mathrm{m} / \mathrm{z}(\%)[\mathrm{M}+\mathrm{Na}]^{+} 1063.2$ (83), $[\mathrm{M}+\mathrm{H}]^{+} 1040.9$ (100).

1-O-(But-3-ynyloxyphosphoryl)-myo-inositol 4,5-O${ }_{35}$ bisphosphate, 21. The fully protected butynyl InsP_{3} 20b (180 $\mathrm{mg}, 0.17 \mathrm{mmol})$ was evaporated from $\mathrm{MeCN}(3 \times 2 \mathrm{~mL})$ and re-dissolved in MeCN (1.5 mL). TmsCl ($0.44 \mathrm{~mL}, 3.5 \mathrm{mmol}$, 20 eq.) was added followed by Barton's base ($0.50 \mathrm{~mL}, 4.3$ mmol, 25 eq .). The reaction was stirred at rt for 16 h , then the 40 solvent was evaporated under reduced pressure and the residue was evaporated from $\mathrm{MeCN}(3 \times 5 \mathrm{~mL})$. The resulting mixture was triturated with $\mathrm{Et}_{2} \mathrm{O}$ under argon. The filtrate was evaporated to dryness and taken up in 1 M methanolic ammonia (3 mL). The solution was evaporated under reduced ${ }_{45}$ pressure and the residue was dissolved in 80% acetic acid (10 mL). After 5 h , the solvent was stripped off under reduced pressure and the residue re-evaporated from EtOH (3×10 mL). The solids were triturated with DCM and then with MeCN to give the title compound as an amorphous colourless
${ }_{50}$ solid ($69 \mathrm{mg}, 85 \%$). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.13(1 \mathrm{H}, \mathrm{t}, J 1.3$, Ins 2-H), $4.11(1 \mathrm{H}, \mathrm{q}, J 9.3$, Ins $\boldsymbol{H}), 3.91-3.79[4 \mathrm{H}, \mathrm{m},(2 \times$ Ins $\left.\boldsymbol{H})+\mathrm{POCH}_{2}\right], 3.72(1 \mathrm{H}, \mathrm{t}, J 9.6$, Ins $\boldsymbol{H}), 3.55(1 \mathrm{H}, \mathrm{dd}, J 9.8$, 2.6, Ins 1-H), 2.40 (2 H , td, $J 6.3,2.6, \mathrm{CH}_{2} \mathrm{CC}$), $2.26(1 \mathrm{H}, \mathrm{t}, J$ 2.6, CCH) ppm; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 82.0$ (acetylene \boldsymbol{C}),
5578.2 (b), 76.7 (b), 75.6 (d, $J 5.2$), 70.9 (d, $J 4.3$), 70.62 (2C), 70.43 [(6×Ins $\boldsymbol{C H})+$ acetylene $\boldsymbol{C H}$], $63.8\left(\mathrm{~d}, J 5.0, \mathrm{POCH}_{2}\right)$, 20.1 (d, $\left.J 7.8, \mathrm{CH}_{2} \mathrm{CCH}\right) \mathrm{ppm} ; \delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-3.06$ (2P), -3.27 ppm; HRMS (ESI-) m/z (\%) found $[\mathrm{M}-\mathrm{H}]^{-}$
470.9870 (100), $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{15} \mathrm{P}_{3}$ requires 470.9859, $[\mathrm{M}+\mathrm{Na}-2 \mathrm{H}]^{-}$ 60492.9682 (78), $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{PO}_{3}\right]^{-} 391.0207$ (58).

1-O-[(But-3-ynyloxy)(2-cyanoethyloxy)phosphoryl]-2,3-O-cyclopentylidene-4,5-O-bis[di(2-cyanoethyloxy)-phosphorothioyl]-6-O-[1-(4-chlorophenyl)-4-ethoxy${ }_{65}$ piperidin-4-yl]-myo-inositol, 22. Butynyl diol 20b (241 mg , 0.36 mmol) was evaporated from pyridine ($3 \times 3 \mathrm{~mL}$) and the residue was re-dissolved in pyridine (0.5 mL) and MeCN (1.6 mL). To this was added N-methylimidazole ($0.35 \mathrm{~mL}, 4.3$ mmol, 12 eq.), then crude (CneO$)_{2} \mathrm{PCl}(11,484 \mathrm{mg}, c a .1 .4$ $70 \mathrm{mmol}, 4$ eq.) in $\mathrm{MeCN}(1 \mathrm{~mL})$. After 30 min the reaction was quenched with 3-hydroxypropionitrile ($0.29 \mathrm{~mL}, 4.3 \mathrm{mmol}, 12$ eq.) and stirred for 15 min . The solvent was stripped off and the residue was re-dissolved in THF (5 mL). Dibenzoyl tetrasulfide ($732 \mathrm{mg}, 2.16 \mathrm{mmol}, 2 \mathrm{eq}$.) was added and the 75 mixture was stirred for 1 h . The solution was diluted with water until turbidity appeared and fractionated through a column of silanised silica, eluting with a gradient of waterMeCN (1:0 $\rightarrow 0: 1 \mathrm{v} / \mathrm{v}$). The appropriate fractions were combined and the MeCN evaporated under reduced pressure. ${ }_{80}$ The resulting aqueous suspension was saturated with NaCl and extracted with $\mathrm{CHCl}_{3}(\times 3)$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent stripped off. The residual oil was fractionated by MPLC using a gradient of MeOH-DCM (0:1 $\rightarrow 2: 98 \mathrm{v} / \mathrm{v}$) to afford the title compound as a colourless oil ${ }_{85}$ ($213 \mathrm{mg}, 55 \%$). TLC R_{f} (EtOAc-hexane, $8: 2 \mathrm{v} / \mathrm{v}$) 0.45 ; δ_{H} $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.20(2 \mathrm{H}, \mathrm{d}, J 8.9), 6.86(2 \mathrm{H}, \mathrm{d}, J 8.9)(\mathrm{N}-$ $\left.\mathrm{C}_{6} \boldsymbol{H}_{4} \mathrm{Cl}\right), 5.09-5.01(1 \mathrm{H}, \mathrm{m}), 4.95-4.88(1 \mathrm{H}, \mathrm{m}), 4.76(0.5 \mathrm{H}, \mathrm{d}$, $J 7.3$), 4.74 ($0.5 \mathrm{H}, \mathrm{d}, J 7.3$), 4.59 ($1 \mathrm{H}, \mathrm{t}, J 4.2$), $4.55-4.51(1 \mathrm{H}$, m) $(5 \times$ Ins $\boldsymbol{H}), 4.45-4.21\left[13 \mathrm{H}, \mathrm{m},\left(6 \times \mathrm{POCH}_{2}\right)+\right.$ Ins $\left.\boldsymbol{H}\right]$, ${ }_{90} 3.63-3.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $3.40-3.31(2 \mathrm{H}, \mathrm{m}), 3.15-3.03$ $(2 \mathrm{H}, \mathrm{m})\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.85-2.77\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2} \mathrm{CN}\right), 2.69-$ $2.62(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CC}), 2.10(0.5 \mathrm{H}, \mathrm{t}, J 2.6), 2.06(0.5 \mathrm{H}, \mathrm{t}, J$ 2.6) (CCH), 2.05-1.98 ($4 \mathrm{H}, \mathrm{m}$), 1.96-1.88 ($2 \mathrm{H}, \mathrm{m}$), 1.86-1.64 $(6 \mathrm{H}, \mathrm{m})\left(6 \times \mathrm{CH}_{2}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \boldsymbol{M e}\right) \mathrm{ppm} ; \delta_{\mathrm{C}}(100$ $\left.{ }_{95} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 149.1(\mathrm{Ar} \boldsymbol{C}), 129.0(2 \times \mathrm{Ar} \boldsymbol{C H}), 124.4(\mathrm{Ar} \boldsymbol{C})$, 120.9 (acetal C), 117.7 ($2 \times \mathrm{Ar} \boldsymbol{C H}$), 117.05-116.40 (m, $5 \times$ CN), 101.3 (acetal C), 82.17-81.73 (m, $2 \times$ Ins CH), 79.6 (0.5C), 79.1 (0.5 C) (acetylene C), 74.32 (0.5 C), 74.23 (0.5 C), 72.43-72.33 (2C, m), 70.71, 70.52 [($4 \times$ Ins $C H$) + acetylene $\left.{ }_{100} C H\right], 66.2$ (d, $J 4.8$), 63.49-63.39 (m), 63.09-62.77 (3C, m), 62.54-62.41 (m) $\left(6 \times \mathrm{POCH}_{2}\right)$, $57.1\left(\mathrm{OCH}_{2} \mathrm{Me}\right), 47.0,46.7$ $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 36.2,35.84(0.5 \mathrm{C}), 35.76(0.5 \mathrm{C}), 33.73,33.05$, 23.91, $23.09\left(6 \times \mathrm{CH}_{2}\right)$, 20.68-20.49 (m, $\left.\mathrm{CH}_{2} \mathrm{CCH}\right)$, 19.77$19.33\left(\mathrm{~m}, 5 \times \mathrm{CH}_{2} \mathrm{CN}\right), 15.3(\mathrm{Me}) \mathrm{ppm} ; \delta_{\mathrm{p}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 10567.02 (0.5P), 66.90 (0.5P), 66.78 (0.5P), 66.51 (0.5P), -3.56 (0.5P), -3.80 (0.5P) ppm; HRMS (ESI+) m/z (\%) found $\left[\begin{array}{lll}\mathrm{M}+\mathrm{H}]^{+} & 1073.2245 & (100), \\ \mathrm{C}_{43} \mathrm{H}_{57} \mathrm{ClN}_{6} \mathrm{O}_{14} \mathrm{P}_{3} \mathrm{~S}_{2} \quad \text { requires }\end{array}\right.$ 1073.2276.
${ }^{110}$
1-O-(But-3-ynyloxyphosphoryl)-myo-inositol 4,5-Obisphosphorothioate, 23. The fully protected butynyl InsP(PS) $)_{2} 22$ (198 mg, 0.18 mmol) was evaporated from MeCN $(3 \times 2 \mathrm{~mL})$ and re-dissolved in MeCN (1.6 mL). TmsCl ($0.46 \mathrm{~mL}, 3.7 \mathrm{mmol}, 20$ eq.) was added followed by Barton's 115 base ($0.54 \mathrm{~mL}, 4.6 \mathrm{mmol}, 25 \mathrm{eq}$.). The reaction was stirred at rt for 16 h , then the solvent was evaporated under reduced
pressure. The residue was evaporated from $\mathrm{MeCN}(3 \times 6 \mathrm{~mL})$ and triturated with $\mathrm{Et}_{2} \mathrm{O}$ under argon. The filtrate was evaporated to dryness and taken up in 1 M methanolic ammonia (3 mL). The solution was evaporated under reduced ${ }_{5}$ pressure and the residue was dissolved in 80% acetic acid (10 mL). After 3 h , the solvent was stripped off under reduced pressure and the residue re-evaporated from EtOH (3×10 mL). The solids were triturated with DCM and then with MeCN to give the title compound as an off-white amorphous ${ }_{10}$ solid ($74 \mathrm{mg}, 82 \%$). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.45(1 \mathrm{H}, \mathrm{q}, J$ 10.1, Ins $\boldsymbol{H}), 4.23(1 \mathrm{H}, \mathrm{t}, J 2.6$, Ins $2-\boldsymbol{H}), 4.19(1 \mathrm{H}, \mathrm{q}, J 10.3$, Ins $\boldsymbol{H})$, 3.99-3.90 ($3 \mathrm{H}, \mathrm{m}$, Ins $\boldsymbol{H}+\mathrm{POCH}_{2}$), $3.86(1 \mathrm{H}, \mathrm{t}, J 9.6$,

Ins \boldsymbol{H}), $3.67(1 \mathrm{H}, \mathrm{dd}, J 9.8,2.6$, Ins 1-H), $2.49(2 \mathrm{H}, \mathrm{td}, J 6.3$, 2.5, $\mathrm{CH}_{2} \mathrm{CC}$), $2.35(1 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{CCH}) \mathrm{ppm} ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, ${ }_{15} \mathrm{CDCl}_{3}$) 82.0 (acetylene \boldsymbol{C}), 78.5 (b), 76.7 (b), 75.6 (d, $J 6.0$), 71.1 (d, $J 3.9$), 70.75, 70.66, 70.54 [(6×Ins $\mathbf{C H})+$ acetylene CH], 63.9 (d, $J 5.1, \mathrm{POCH}_{2}$), 20.1 (d, $\left.J 8.3, \mathrm{CH}_{2} \mathrm{CCH}\right) \mathrm{ppm}$; $\delta_{\mathrm{P}}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 49.93$ (2P), -0.62 (1P) ppm; HRMS (ESI-) m / z (\%) found $[M-H]^{-} 502.9414$ (45), $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{15} \mathrm{P}_{3} \mathrm{~S}_{2}$ 20 requires 502.9402, $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{PO}_{2} \mathrm{~S}\right]^{-} 407.0009$ (100), $[\mathrm{M}+\mathrm{Na}-$ $\mathrm{H}_{2} \mathrm{PO}_{2} \mathrm{~S}^{-} 428.9803$ (38), $[\mathrm{M}+\mathrm{Na}-2 \mathrm{H}]^{-} 524.9225$ (31), $[\mathrm{M}+2 \mathrm{Na}-3 \mathrm{H}]^{-} 546.9033$ (22).

$2, \operatorname{Ins}(1,4,5) \mathrm{P}_{3}$

${ }^{1} \mathrm{H}$-NMR

 ($\mathrm{D}_{2} \mathrm{O}$)${ }^{13}$ C-NMR
($\mathrm{D}_{2} \mathrm{O}$)

$2 \times \mathrm{CH}=\mathrm{CH}$

${ }^{1} \mathrm{H}$-NMR, expansion

$\delta_{\text {H }} 3.7$ - 5.5 ppm

 ${ }^{31}$ P-NMR $\stackrel{\left(d_{4}-\mathrm{AcOH}_{-}\right.}{\mathrm{D}_{2} \mathrm{O}-\mathrm{CDCl}_{3}}$ 4:2:1)

Glyc 2-CH

${ }^{1} \mathbf{H}-\mathrm{NMR}$
(d_{4}-AcOH-
$\mathrm{D}_{2} \mathrm{O}-\mathrm{CDCl}_{3}$
4:2:1)

20

30
${ }^{13} \mathrm{C}$-NMR, expansion
$\delta_{\mathrm{C}} 63-83 \mathrm{ppm}$

