|                               |                          |          |       |                                                                | HRMS                 | $(MH)^{+ b}$ |
|-------------------------------|--------------------------|----------|-------|----------------------------------------------------------------|----------------------|--------------|
| Compound no.                  | $[\alpha]_{\rm D}^{\ a}$ | c (g/dL) | temp. | Formula                                                        | Calcd.               | Found        |
|                               |                          |          |       |                                                                |                      |              |
| 7                             | 12.02                    | 0.249    | 25.2  |                                                                | 722 2746             | 722 2740     |
| /<br>8                        | +2.02                    | 0.248    | 23.5  | $C_{36}H_{47}N_{11}O_5F$                                       | 732.3740             | 732.3740     |
| o<br>0                        | -41.15                   | 0.262    | 25.5  | $C_{36} \Pi_{47} N_{11} O_5 \Gamma$                            | 732.3740             | 732.3735     |
| 9                             | -1./1                    | 0.254    | 23.4  | $C_{36} \Pi_{47} N_{11} O_5 \Gamma$                            | 752.5740             | 838 4180     |
| 10                            | -34.71                   | 0.203    | 27.0  | $C_{43}\Pi_{53}N_{11}O_6\Gamma$                                | 030.4104<br>749.2450 | 748 3444     |
| 11                            | -01./1                   | 0.222    | 20.9  | $C_{36}\Pi_{47}N_{11}O_5CI$                                    | 748.5450             | 702 2020     |
| 12                            | -31.79                   | 0.139    | 20.8  | $C_{36}H_{47}N_{11}O_5Br$                                      | 792.2943             | 722.2333     |
| 13                            | -41.11                   | 0.090    | 26.9  | $C_{36}H_{47}N_{11}O_5F$                                       | 732.3740             | 732.3734     |
| 14<br>1 <i>50</i>             | -55.52                   | 0.213    | 20.9  | $C_{36}H_{47}N_{11}O_5F$                                       | 732.3740             | 752.5752     |
| 15                            | <0.0 <b>7</b>            | 0.161    | 24.2  | $C_{35}H_{46}N_{11}O_5$                                        | 700.3083             | 700.3091     |
| 10                            | -00.87                   | 0.161    | 24.3  | $C_{34}H_{46}N_{11}O_5S$                                       | 720.3404             | 720.3412     |
| 18                            | -33.97                   | 0.259    | 25.2  | $C_{36}H_{47}N_{11}O_5CI$                                      | 748.3450             | 740.3430     |
| 19                            | -35.16                   | 0.236    | 25.2  | $C_{36}H_{47}N_{11}O_5Br$                                      | 792.2945             | 792.2933     |
| 20                            | -58.02                   | 0.212    | 25.0  | $C_{36}H_{47}N_{12}O_7$                                        | 759.3691             | 759.3080     |
| 21                            | -52.24                   | 0.245    | 25.0  | $C_{36}H_{48}N_{11}O_6$                                        | 730.3789             | /30.3776     |
| 22                            | -53.27                   | 0.214    | 25.2  | $C_{36}H_{49}N_{12}O_5$                                        | 729.3949             | 729.3962     |
| 23                            | -12.59                   | 0.127    | 25.2  | $C_{36}H_{47}N_{11}O_5F$                                       | 732.3746             | 732.3726     |
| 24                            | -38.43                   | 0.281    | 25.1  | $C_{36}H_{47}N_{11}O_5F$                                       | 732.3746             | 732.3753     |
| 25                            | -138.89                  | 0.036    | 24.8  | $C_{40}H_{47}N_8O_6$                                           | 735.3619             | 735.3622     |
| <b>26</b> <sup><i>d</i></sup> | -66.66                   | 0.243    | 25.2  | $C_{38}H_{43}N_8O_6$                                           | 707.3306             | 707.3300     |
| $27^a$                        | -79.81                   | 0.327    | 25.4  | $C_{38}H_{43}N_8O_6$                                           | 707.3306             | 707.3313     |
| 28                            | -58.61                   | 0.301    | 25.4  | $C_{36}H_{43}N_{10}O_6$                                        | 711.3367             | 711.3364     |
| 29                            | -42.42                   | 0.198    | 25.4  | $C_{36}H_{43}N_{10}O_6$                                        | 711.3367             | 711.3359     |
| 30                            | -61.25                   | 0.214    | 27.0  | $C_{36}H_{43}N_{10}O_6$                                        | 711.3367             | 711.3378     |
| 31                            | -54.95                   | 0.134    | 26.3  | C <sub>36</sub> H <sub>43</sub> N <sub>9</sub> O <sub>6</sub>  | 692.2945             | 692.2941     |
| 32                            | -44.53                   | 0.119    | 25.1  | $C_{33}H_{46}N_{13}O_5$                                        | 704.3745             | 704.3750     |
| 33                            | -36.56                   | 0.134    | 24.0  | C <sub>33</sub> H <sub>46</sub> N <sub>13</sub> O <sub>5</sub> | 704.3745             | 704.3738     |
| 34                            | -47.18                   | 0.267    | 25.1  | $C_{34}H_{46}N_{11}O_5S$                                       | 720.3404             | 720.3417     |
| 35                            | -39.48                   | 0.157    | 24.7  | $C_{39}H_{49}N_{12}O_5$                                        | 765.3949             | 765.3964     |
| 36                            | -42.44                   | 0.278    | 25.5  | C <sub>37</sub> H <sub>50</sub> N <sub>11</sub> O <sub>5</sub> | 728.3996             | 728.4012     |
| $37^c$                        |                          |          |       | $C_{35}H_{46}N_{11}O_5$                                        | 700.3683             | 700.3676     |
| 38                            | -63.77                   | 0.196    | 26.6  | $C_{36}H_{42}N_{10}O_5F$                                       | 713.3324             | 713.3317     |
| 39                            | -45.02                   | 0.191    | 26.8  | $C_{36}H_{42}N_{10}O_5F$                                       | 713.3324             | 713.3320     |
| 40                            | -51.78                   | 0.224    | 26.9  | $C_{36}H_{37}N_9O_5F$                                          | 694.2902             | 694.2893     |
| 41                            | -69.54                   | 0.174    | 27.0  | $C_{36}H_{42}N_{10}O_5F$                                       | 713.3324             | 713.3336     |
| 42                            | -32.81                   | 0.259    | 27.0  | $C_{36}H_{42}N_{10}O_5F$                                       | 713.3324             | 713.3312     |
| 43                            | -65.57                   | 0.183    | 27.0  | $C_{36}H_{37}N_9O_5F$                                          | 694.2902             | 694.2907     |

Table S1. Characterization data of novel synthetic compounds

<sup>a</sup>Optical rotations were measured in H<sub>2</sub>O with a Horiba high-sensitive polarimeter SEPA-200 (Kyoto, Japan).

<sup>b</sup>Exact mass (HRMS) spectra were recorded on a JEOLJMS-01SG -2 or JMS-HX/HX 110A mass spectrometer.

<sup>c</sup>Compounds **15** and **37** were prepared as racemic mixtures containing L/D-Phg since HPLC peaks of the corresponding diasteomers were proximate.

<sup>*d*</sup>The structures of compounds **26** and **27** were determined tentatively by yields of HPLC separation in the synthesis using Fmoc-L-Phg-OH.

Compd. 7  $H_2O/CH_3CN = 78 : 22$ 



Compd. 8  $H_2O/CH_3CN = 72:28$ 



Compd. 9  $H_2O/CH_3CN = 68:32$ 



Compd. 10  $H_2O/CH_3CN = 64 : 36$ 



Compd. 11  $H_2O/CH_3CN = 69 : 31$ 



Compd. 12  $H_2O/CH_3CN = 70:30$ 



Compd. 13  $H_2O/CH_3CN = 71 : 29$ 



Compd. 14  $H_2O/CH_3CN = 71 : 29$ 

|   | 5.87<br>min |  |
|---|-------------|--|
| [ |             |  |

Compd. 15  $H_2O/CH_3CN = 72 : 28$ 



Compd. 16 H<sub>2</sub>O/CH<sub>3</sub>CN = 76 : 24



Compd. 18  $H_2O/CH_3CN = 72:28$ 



Compd. 19  $H_2O/CH_3CN = 79 : 21$ 



Fig. S1. HPLC charts of purified samples of novel synthetic compounds 7-19.

HPLC solvents were H<sub>2</sub>O and CH<sub>3</sub>CN, both containing 0.1% (v/v) TFA. A Cosmosil 5C18-AR column (4.6 × 250 mm, Nacalai Tesque Inc., Kyoto, Japan) was eluted with an isocratic mode (shown above each HPLC profile) at a flow rate of 1 mL/min on a Shimadzu LC-10ADvp (Shimadzu corporation, Ltd., Kyoto, Japan).

Compd. 20  $H_2O/CH_3CN = 73 : 27$ 



Compd. 21 H<sub>2</sub>O/CH<sub>3</sub>CN = 78 : 22



Compd. 22  $H_2O/CH_3CN = 77 : 23$ 



Compd. 23 H<sub>2</sub>O/CH<sub>3</sub>CN = 74 : 26



Compd. 24  $H_2O/CH_3CN = 74 : 26$ 



Compd. 25  $H_2O/CH_3CN = 66:34$ 



Compd. 26 H<sub>2</sub>O/CH<sub>3</sub>CN = 72 : 28



Compd. 27 H<sub>2</sub>O/CH<sub>3</sub>CN = 72 : 28



Compd. 28  $H_2O/CH_3CN = 71 : 29$ 



Compd. 29  $H_2O/CH_3CN = 76:24$ 



Compd. 30  $H_2O/CH_3CN = 72:28$ 



Compd. 31  $H_2O/CH_3CN = 71 : 29$ 



Fig. S2. HPLC charts of purified samples of novel synthetic compounds 20-31.

HPLC solvents were  $H_2O$  and  $CH_3CN$ , both containing 0.1% (v/v) TFA. A Cosmosil 5C18-AR column (4.6 × 250 mm, Nacalai Tesque Inc., Kyoto, Japan) was eluted with an isocratic mode (shown above each HPLC profile) at a flow rate of 1 mL/min on a Shimadzu LC-10ADvp (Shimadzu corporation, Ltd., Kyoto, Japan).





Compd. 40 H<sub>2</sub>O/CH<sub>3</sub>CN = 71 : 29



HPLC solvents were  $H_2O$  and  $CH_3CN$ , both containing 0.1% (v/v) TFA. A Cosmosil 5C18-AR column (4.6 × 250 mm, Nacalai Tesque Inc., Kyoto, Japan) was eluted with an isocratic mode (shown above each HPLC profile) at a flow rate of 1 mL/min on a Shimadzu LC-10ADvp (Shimadzu corporation, Ltd., Kyoto, Japan).