Supporting Information

Efficient Syntheses of Phosphonylated Isochromenes by

Regioselective 6-Endo-dig Addition to Carbon-Carbon

Triple Bond Catalyzed by Pd(OAc)₂

Fei Wang^a, Zhiwei Miao,^{*,a,b} and Ruyu Chen^{*,a}

^a State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

^b Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China

Fax: +86-22-23502351; Tel: +86-22-23504783

E-mail: miaozhiwei@nankai.edu.cn

Table of Contents

General Comments	S2
General Procedure for the Synthesis of Dialkyl (2-(2-ethynyl)phenyl)(hydro	xyl)
methylphosphonate 6	S2
General Procedure for the Synthesis of Phosphonylated Isochromenes 7	S3–S10
General Procedure for the Synthesis of Phosphonylate Isobenzopyran 8	.S10–S11
Copies of ³¹ P NMR, ¹ H NMR and ¹³ C NMR the Compounds 6a and 7a-7j	.S12–S32

General Comments.

All reactions were carried out under an inert atmosphere and in heat-dried glassware. Anhydrous THF were obtained by distillation from sodium. Column chromatography was performed on silica gel (particle size 10-40 µm, Ocean Chemical Factory of Qingdao, China). ¹H, ¹³C and ³¹P NMR spectra were recorded on Brucker-400 (400 MHz for ¹H, 162 MHz for ¹³C, 121 MHz for ³¹P) and Brucker-300 (300 MHz for ¹H, 75 MHz for ¹³C, 100 MHz for ³¹P) spectrometers. Chemical shifts were reported in ppm downfield from internal Si(CH₃)₄ and external 85% H₃PO₄, respectively. Mass spectra were recorded on a LCQ advantage spectrometer with ESI resource. HR-MS were recorded on APEXII and ZAB-HS spectrometer.

General Procedure for the Synthesis of Dialkyl (2-(2-ethynyl)phenyl)(hydroxyl)methylphosphonate 6

o-Alkynyl benzaldehyde **5** (0.5 mmol) in THF (5 ml) was added dropwise to a stirred mixture of dialkyl phosphite **4** (1.0 mmol) and Et₃N (0.101 g, 1.0 mmol) in THF (5 ml) at room temperature. After 20h stirring at r.t. (TLC (silica gel) monitoring), the mixture was cooled and work-up with water (5 ml) below 0°C. The result mixture was then extracted by AcOEt and dried with anhydrous sodium sulfate. After concentrated the residue **6** was obtained (yield>95%) and used directly without further purification.

Dimethyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methylphosphonate (6a)

P(OCH₃)₂), 5.14 (s, 1H, OH), 5.78 (d, J_{P-H} = 11.2Hz, 1H, HCOH), 7.27-7.41 (m, 5H, Ph), 7.52-7.56 (m, 3H, Ph), 7.78-7.80 (d, 1H, Ph); ¹³C-NMR (75 MHz, CDCl₃): δ 53.70 (d, ² $J_{C,P}$ = 7.2 Hz, P(OCH₃)₂), 54.10 (d, ² $J_{C,P}$ = 7.1 Hz, P(OCH₃)₂), 68.59 (d, ¹ $J_{C,P}$ = 159.5 Hz, HCP(OCH₃)₂), 86.94 (s, CCPh), 94.45 (s, CCPh), 122.00, 122.10, 122.96, 127.58, 127.63, 127.98, 128.47, 128.57, 128.72, 131.53, 131.96, 138.49 (Ph); Ms-ESI: 339.35 ([M+Na]⁺).

General Procedure for the Synthesis of Phosphonylated Isochromenes 7

Dialkyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methyl phosphonate **6** (0.5 mmol) in THF (5 ml) was stirred at room temperature for half an hour. $Pd(OAc)_2$ (10 mol%, 0.011 g) was added to the mixture and the mixture was kept stirring for 5 h (TLC (silica gel) monitoring). The result mixture was filtered through silica column and concentrated. The residue was purified by flash CC (silica gel, AcOEt/petroleum ether (b.p. 60-90°C) 1:3) to afford the product 7.

Dimethyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7a)

Dimethyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methyl phosphonate **6a** (0.158 g, 0.5 mmol) in THF (5 ml), Pd(OAc)₂ (0.011 g, 10 mol%), five hours at room temperature.

AcOEt/petroleum ether (1:3) to afford product **7a** (0.142 g, 90%), yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 16.57; ¹H-NMR (400 MHz, CDCl₃): δ 3.61 (d, J_{P-H} = 10.3 Hz, 3H, P(OCH₃)₂), 3.90 (d, J_{P-H} = 10.6 Hz, 3H, P(OCH₃)₂), 5.96 (d, J_{P-H} = 6.4 Hz, 1H, *H*CP(OCH₃)₂), 6.02 (s, 1H, *H*CCPh), 7.18-7.41 (m, 5H, *Ph*), 7.58-7.76 (m, 4H, *Ph*); ¹³C-NMR (162 MHz, CDCl₃): δ 54.07 (d, ² $J_{C,P}$ = 7.0 Hz, P(OCH₃)₂), 54.32 (d, ${}^{2}J_{C,P} = 7.0$ Hz, P(OCH₃)₂), 80.56 (d, ${}^{1}J_{C,P} = 166.2$ Hz, HCP(OCH₃)₂), 97.87 (d, ${}^{4}J_{C,P} = 4.7$ Hz, HCCPh), 119.97, 122.87, 125.81, 127.98, 128.45, 128.83, 129.10, 130.91, 134.82, 135.54 (*Ph*), 154.81 (s, OCPh); Ms-ESI: 317.09 ([M+H]⁺); HRMS calcd for C₁₇H₁₇O₄P: 339.0757 (M+Na)⁺, found: 339.0755

Diethyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7b)

Diethyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methyl phosphonate **6b** (0.172 g, 0.5 mmol) in THF (5 ml), Pd(OAc)₂ (0.011 g, 10 mol%), five hours at room temperature.

AcOEt/petroleum ether (1:3) to afford product **7b** (0.148 g, 86%), yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 14.54; ¹H-NMR (400 MHz, CDCl₃): δ 1.10 (t, $J_{\text{H-H}}$ = 7.0 Hz, 3H, P(OCH₂CH₃)₂), 1.37 (t, $J_{\text{H-H}}$ = 7.0 Hz, 3H, P(OCH₂CH₃)₂), 3.87-4.30 (m, 4H, P(OCH₂CH₃)₂), 5.92 (d, $J_{\text{P-H}}$ = 7.2 Hz, 1H, *H*CP(OCH₂CH₃)₂), 6.00 (d, $J_{\text{H-H}}$ = 1.9 Hz, 1H, *H*CCPh), 7.15-7.43 (m, 5H, *Ph*), 7.56-7.76 (m, 4H, *Ph*); ¹³C-NMR (162 MHz, CDCl₃): δ 15.20 (d, ³ $J_{\text{C,P}}$ = 5.4 Hz, P(OCH₂CH₃)₂), 15.45 (d, ³ $J_{\text{C,P}}$ = 5.6 Hz, P(OCH₂CH₃)₂), 62.57 (d, ² $J_{\text{C,P}}$ = 7.1 Hz, P(OCH₂CH₃)₂), 62.82 (d, ² $J_{\text{C,P}}$ = 7.1 Hz, P(OCH₂CH₃)₂), 79.79 (d, ¹ $J_{\text{C,P}}$ = 165.9 Hz, HCP(OCH₂CH₃)₂), 96.53 (d, ⁴ $J_{\text{C,P}}$ = 4.6 Hz, HCCPh), 118.85, 121.85, 124.66, 126.95, 127.36, 127.95, 128.03, 133.92, 134.71, 134.84 (*Ph*), 153.99 (s, OCPh); Ms-ESI: 345.13 ([M+H]⁺); HRMS calcd for C₁₉H₂₁O₄P: 367.1070 (M+Na)⁺, found: 367.1071

Di-(*n*)-propyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7c)

(0.011 g, 10 mol%), five hours at room temperature. AcOEt/petroleum ether (1:3) to afford product **7c** (0.158 g, 85%), yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 14.46; ¹H-NMR (400 MHz, CDCl₃): δ 0.74 (t, $J_{\text{H-H}}$ = 7.4 Hz, 3H, P(OCH₂CH₂CH₃)₂), 0.98 (t, $J_{\text{H-H}}$ = 7.4 Hz, 3H, P(OCH₂CH₂CH₃)₂), 1.40-1.49 (m, 2H, P(OCH₂CH₂CH₃)₂), 1.71-1.79 (m, 2H, P(OCH₂CH₂CH₃)₂), 3.73-4.21 (m, 4H, P(OCH₂CH₂CH₃)₂), 5.93 (d, $J_{\text{P-H}}$ = 7.2 Hz, 1H, *H*CP(OCH₂CH₂CH₃)₂), 6.00 (d, $J_{\text{H-H}}$ = 1.5 Hz, 1H, *H*CCPh), 7.15-7.43 (m, 5H, *Ph*), 7.56-7.76 (m, 4H, *Ph*); ¹³C-NMR (162 MHz, CDCl₃): δ 9.73 (s, P(OCH₂CH₂CH₃)₂), 23.93 (d, ³ $J_{\text{C,P}}$ = 5.9 Hz, P(OCH₂CH₂CH₃)₂), 68.94 (d, ² $J_{\text{C,P}}$ = 7.3 Hz, P(OCH₂CH₂CH₃)₂), 69.23 (d, ² $J_{\text{C,P}}$ = 7.4 Hz, P(OCH₂CH₂CH₃)₂), 80.77 (d, ¹ $J_{\text{C,P}}$ = 165.8 Hz, HCP(OCH₂CH₂CH₃)₂), 97.54 (d, ⁴ $J_{\text{C,P}}$ = 4.6 Hz, HCCPh), 119.85, 122.89, 125.67, 127.98, 128.34, 128.94, 129.03, 134.96, 135.76, 135.93 (*Ph*), 155.05 (s, OCPh); Ms-ESI: 373.17 ([M+H]⁺); HRMS calcd for C₂₁H₂₅O₄P: 395.1383 (M+Na)⁺, found: 395.1390

Di-(*i*)-propyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7d)

Di-(*i*)-propyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methyl phosphonate **6d** (0.186 g, 0.5 mmol) in THF (5 ml), Pd(OAc)₂ (0.011 g, 10 mol%), five hours at room temperature. AcOEt/petroleum ether (1:3) to afford product **7d** (0.149 g, 80%),

yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 12.78; ¹H-NMR (400 MHz, CDCl₃): δ 0.94 (d, $J_{P-H} = 6.2$ Hz, 3H, P(OCH(CH₃)₂)₂), 1.22 (d, $J_{H-H} = 6.2$ Hz, 3H, P(OCH(CH₃)₂)₂), 1.36 (d, $J_{H-H} = 6.2$ Hz, 3H, P(OCH(CH₃)₂)₂), 1.42 (d, $J_{H-H} = 6.2$ Hz, 3H, P(OCH(CH₃)₂)₂), 4.47-4.54 (m, 1H, P(OCH(CH₃)₂)₂), 4.81-4.89 (m, 1H, P(OCH(CH₃)₂)₂), 5.88 (d, $J_{P-H} = 7.4$ Hz, 1H, $HCP(OCH(CH_3)_2)_2$), 6.00 (d, $J_{P-H} = 1.6$ Hz, 1H, HCCPh), 7.15-7.43 (m, 5H, Ph), 7.56-7.77 (m, 4H, Ph); ¹³C-NMR (162 MHz, CDCl₃): δ 23.96 (d, ³ $J_{C,P} = 4.2$ Hz, P(OCH(CH₃)₂)₂), 24.11 (d, ³ $J_{C,P} = 4.6$ Hz, P(OCH(CH₃)₂)₂), 72.30 (d, ² $J_{C,P} = 7.4$ Hz, P(OCH(CH₃)₂)₂), 72.71 (d, ² $J_{C,P} = 7.2$ Hz, P(OCH(CH₃)₂)₂), 81.12 (d, ¹ $J_{C,P} = 167.2$ Hz, HCP(OCH(CH₃)₂)₂), 97.28 (d, ⁴ $J_{C,P} = 4.5$ Hz, HCCPh), 119.78, 122.97, 125.57, 128.00, 128.30, 128.85, 128.96, 135.17, 135.89, 136.19 (*Ph*), 155.20 (s, OCPh); Ms-ESI: 373.08 ([M+H]⁺); HRMS calcd for C₂₁H₂₅O₄P: 373.1563 (M+H)⁺, found: 373.1565

Di-(*n*)-butyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7e)

Di-(*n*)-butyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methyl phosphonate **6e** (0.200 g, 0.5 mmol) in THF (5 ml), Pd(OAc)₂ (0.011 g, 10 mol%), 5 hours at room temperature. AcOEt/petroleum ether (1:3) to afford product **7e** (0.164 g,

82%), yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 14.54; ¹H-NMR (400 MHz, CDCl₃): δ 0.77 (t, $J_{\text{H-H}}$ = 7.4 Hz, 3H, P(OCH₂CH₂CH₂CH₃)₂), 0.94 (t, $J_{\text{H-H}}$ = 7.4 Hz, 3H, P(OCH₂CH₂CH₂CH₂CH₃)₂), 3.77-4.25 (m, 4H, P(OCH₂CH₂CH₂CH₃)₂), 5.92 (d, $J_{\text{P-H}}$ = 7.1 Hz, 1H, HCP(OCH₂CH₂CH₂CH₂CH₃)₂), 6.00 (s, 1H, HCCPh), 7.15-7.42 (m, 5H, Ph), 7.56-7.76 (m, 4H, Ph); ¹³C-NMR (162 MHz, CDCl₃): δ 13.44 (s, P(OCH₂CH₂CH₂CH₃)₂), 13.60 (s, P(OCH₂CH₂CH₂CH₃)₂), 18.41 (s, P(OCH₂CH₂CH₂CH₃)₂), 18.68 (s, P(OCH₂CH₂CH₂CH₃)₂), 32.32 (d, ³ $J_{\text{C,P}}$ = 5.6 Hz, P(OCH₂CH₂CH₂CH₃)₂), 32.55 (d, ³ $J_{\text{C,P}}$ = 5.8 Hz, P(OCH₂CH₂CH₂CH₃CH₃)₂),

AcOEt/petroleum ether (1:3) to afford product **7g** (0.145 g, 81%), yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 14.57; ¹H-NMR (400 MHz, CDCl₃): δ 1.06 (t, $J_{\text{H-H}}$ = 7.0 Hz, 3H,

P(OCH₂CH₃)₂), 1.21 (t, $J_{H-H} = 7.1$ Hz, 3H, P(OCH₂CH₃)₂), 2.30 (s, 3H, PhCH₃), 4.05-4.10 (m, 4H, P(OCH₂CH₃)₂), 5.88 (d, $J_{P-H} = 6.9$ Hz, 1H, $HCP(OCH_2CH_3)_2$), 5.94 (s, 1H, HCCPh), 7.10-7.37 (m, 4H, Ph); 7.50-7.62 (m, 4H, Ph); ¹³C-NMR (75 MHz, CDCl₃): δ 16.16 (d, ³ $J_{C,P} = 5.5$ Hz, P(OCH₂CH₃)₂), 16.41 (d, ³ $J_{C,P} = 5.5$ Hz, P(OCH₂CH₃)₂), 21.17 (s, CH₃Ph), 63.61 (d, ² $J_{C,P} = 6.9$ Hz, P(OCH₂CH₃)₂), 63.86 (d, ² $J_{C,P} = 7.2$ Hz, P(OCH₂CH₃)₂), 80.64 (d, ¹ $J_{C,P} = 166.0$ Hz, HCP(OCH₂CH₃)₂), 97.54 (d, ⁴ $J_{C,P} = 4.7$ Hz, HCCPh), 119.70, 122.80, 125.18, 127.90, 128.80, 128.92, 129.05, 135.03, 135.33, 135.62 (*Ph*), 154.29 (s, OCPh); Ms-ESI: 359.30 ([M+H]⁺); HRMS calcd for C₂₀H₂₃O₄P: 381.1226 (M+Na)⁺, found: 381.1231

Dimethyl 3-(4-fluorophenyl)-1*H*-isochromen-1-ylphosphonate (7h)

Dimethyl (2-(2-(4-fluorophenyl)ethynyl)phenyl)(hydroxyl)methyl phosphonate 6h

liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 16.83; ¹H-NMR (400 MHz, CDCl₃): δ 3.62 (d, J_{P-H} = 10.4 Hz, 3H, P(OCH₃)₂), 3.89 (d, J_{P-H} = 10.4 Hz, 3H, P(OCH₃)₂), 5.94 (d, J_{P-H} = 7.0 Hz, 1H, *H*CP(OCH₃)₂), 5.98 (d, J_{P-H} = 1.9 Hz, 1H, *H*CCPh), 7.02-7.06 (m, 2H, *Ph*), 7.38-7.44 (m, 2H, *Ph*), 7.56-7.60 (m, 2H, *Ph*), 7.69-7.73 (m, 2H, *Ph*); ¹³C-NMR (162 MHz, CDCl₃): δ 52.99 (d, ² $J_{C,P}$ = 7.0 Hz, P(OCH₃)₂), 53.28 (d, ² $J_{C,P}$ = 7.1 Hz, 67.18 (d, ${}^{2}J_{C,P} = 7.3$ Hz, P(OCH₂CH₂CH₂CH₃)₂), 67.50 (d, ${}^{2}J_{C,P} = 7.4$ Hz, P(OCH₂CH₂CH₂CH₃)₂), 80.72 (d, ${}^{1}J_{C,P} = 165.7$ Hz, HCP(OCH₂CH₂CH₂CH₂CH₃)₂), 97.54 (d, ${}^{4}J_{C,P} = 4.6$ Hz, HCCPh), 119.84, 122.89, 125.66, 127.99, 128.34, 128.94, 129.03, 134.96, 135.76, 135.92 (*Ph*), 155.04 (s, OCPh); Ms-ESI: 401.21 ([M+H]⁺); HRMS calcd for C₂₃H₂₉O₄P: 423.1696 (M+Na)⁺, found: 423.1688

Dimethyl 3-p-tolyl-1H-isochromen-1-ylphosphonate (7f)

Dimethyl (2-(2-*p*-tolylethynyl)phenyl)(hydroxyl)methyl phosphonate **6f** (0.165 g, 0.5 mmol) in THF (5 ml), $Pd(OAc)_2$ (0.011 g, 10 mol%), 5 hours at room temperature.

AcOEt/petroleum ether (1:3) to afford product **7f** (0.140 g, 85%), yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 16.74; ¹H-NMR (400 MHz, CDCl₃): δ 2.34 (s, 3H, PhCH₃), 3.60 (d, $J_{P-H} = 10.4$ Hz, 3H, P(OCH₃)₂), 3.89 (d, $J_{P-H} = 10.6$ Hz, 3H, P(OCH₃)₂), 5.94 (d, $J_{P-H} = 6.9$ Hz, 1H, *H*CP(OCH₃)₂), 5.99 (s, 1H, *H*CCPh), 7.15-7.42 (m, 4H, *Ph*), 7.55-7.65 (m, 4H, *Ph*); ¹³C-NMR (75 MHz, CDCl₃): δ 21.21 (s, *C*H₃Ph), 54.06 (d, ² $J_{C,P} = 7.1$ Hz, P(OCH₃)₂), 54.29 (d, ² $J_{C,P} = 7.3$ Hz, P(OCH₃)₂), 80.45 (d, ¹ $J_{C,P} = 166.1$ Hz, HCP(OCH₃)₂), 97.87 (d, ⁴ $J_{C,P} = 4.5$ Hz, HCCPh), 119.80, 122.84, 125.21, 127.92, 128.90, 129.03, 129.16, 134.94, 135.38, 135.52 (*Ph*), 154.13 (s, OCPh); Ms-ESI: 331.26 ([M+H]⁺); HRMS calcd for C₁₈H₁₉O₄P: 353.0953 (M+Na)⁺, found: 353.0922

Diethyl 3-p-tolyl-1H-isochromen-1-ylphosphonate (7g)

Diethyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methyl phosphonate **6g** (0.179 g, 0.5 mmol) in THF (5 ml), Pd(OAc)₂ (0.011 g, 10 mol%), 5 hours at room temperature.

P(OCH₃)₂), 79.46 (d, ${}^{1}J_{C,P}$ = 166.4 Hz, HCP(OCH₃)₂), 95.75 (d, ${}^{4}J_{C,P}$ = 4.6 Hz, HCCPh), 114.28, 118.85, 121.86, 128.10, 128.13, 128.41, 130.73, 133.64, 134.40 (*Ph*), 153.32 (s, OCPh), 158.69, 161.14, 170.12 (*Ph*); Ms-ESI: 357.32 ([M+Na]⁺); HRMS calcd for C₁₇H₁₆FO₄P: 357.0662 (M+Na)⁺, found: 357.0664

Diethyl 3-(4-fluorophenyl)-1H-isochromen-1-ylphosphonate (7i)

Diethyl (2-(2-(4-fluorophenyl)ethynyl)phenyl)(hydroxyl)methyl phosphonate 6i

(0.181 g, 0.5 mmol) in THF (5 ml), Pd(OAc)₂ (0.011 g, 10 mol%), 5 hours at room temperature. AcOEt/petroleum ether (1:3) to afford product **7i** (0.148 g, 82%), yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 14.62; ¹H-NMR (400 MHz,

CDCl₃): δ 1.35 (dt, $J_{P-H} = 1.4$ Hz, $J_{H-H} = 7.1$ Hz, 6H, P(OCH₂CH₃)₂), 4.08-4.16 (m, 4H, P(OCH₂CH₃)₂), 5.90 (d, $J_{P-H} = 7.1$ Hz, 1H, *H*CP(OCH₂CH₃)₂), 5.95 (d, $J_{P-H} = 1.6$ Hz, 1H, *H*CCPh), 6.90-7.03 (m, 2H, *Ph*), 7.35-7.42 (m, 2H, *Ph*), 7.54-7.58 (m, 2H, *Ph*), 7.67-7.72 (m, 2H, *Ph*); ¹³C-NMR (162 MHz, CDCl₃): δ 15.22 (d, ³ $J_{C,P} = 5.8$ Hz, P(OCH₂CH₃)₂), 15.45 (d, ³ $J_{C,P} = 5.6$ Hz, P(OCH₂CH₃)₂), 62.52 (d, ² $J_{C,P} = 7.0$ Hz, P(OCH₂CH₃)₂), 62.81 (d, ² $J_{C,P} = 7.1$ Hz, P(OCH₂CH₃)₂), 79.74 (d, ¹ $J_{C,P} = 166.4$ Hz, HCP(OCH₂CH₃)₂), 95.44 (d, ⁴ $J_{C,P} = 4.7$ Hz, HCCPh), 114.20, 118.77, 121.87, 127.99, 128.07, 128.39, 130.88, 133.78, 134.74 (*Ph*), 153.53 (s, OCPh), 158.64, 161.08, 170.13 (*Ph*); Ms-ESI: 363.32 ([M+H]⁺); HRMS calcd for C₁₉H₂₀FO₄P: 385.0975 (M+Na)⁺, found: 385.0974

Dimethyl 3-butyl-1*H*-isochromen-1-ylphosphonate (7j)

Dimethyl (2-(hex-1-ynyl)phenyl)(hydroxyl)methyl phosphonate **6j** (0.148 g, 0.5 mmol) in THF (5 ml), Pd(OAc)₂ (0.011 g, 10 mol%), 5 hours at room temperature.

AcOEt/petroleum ether (1:3) to afford product **7j** (0.093g, 63%), yellow liquid; ³¹P-NMR (121 MHz, CDCl₃): δ 19.89; ¹H-NMR (400 MHz, CDCl₃): δ 0.85 (t, *J*_{H-H} = 7.3 Hz, 3H, CH₂CH₂CH₂CH₃), 1.27-1.36 (m, 2H, CH₂CH₂CH₂CH₃), 1.45-1.53 (m, 2H, CH₂CH₂CH₂CH₃), 2.12 (t, *J*_{H-H} = 7.4 Hz, 2H, CH₂CH₂CH₂CH₃), 3.53 (d, *J*_{P-H} = 10.4 Hz, 3H, P(OCH₃)₂), 3.66 (d, *J*_{P-H} = 10.6 Hz, 3H, P(OCH₃)₂), 5.48 (s, 1H, *H*CCCH₂CH₂CH₂CH₃), 5.54 (d, *J*_{P-H} = 11.7 Hz, 1H, *H*CP(OCH₃)₂), 6.80-7.13 (m, 4H, *Ph*); ¹³C-NMR (162 MHz, CDCl₃): δ 12.86 (s, CH₂CH₂CH₂CH₃), 21.25 (s, CH₂CH₂CH₂CH₃), 27.63 (s, CH₂CH₂CH₂CH₃), 32.24 (s, CH₂CH₂CH₂CH₃), 52.17 (d, ²*J*_{C,P} = 7.0 Hz, HCP(OCH₃)₂), 52.79 (d, ²*J*_{C,P} = 6.8 Hz, HCP(OCH₃)₂), 73.06 (d, ¹*J*_{C,P} = 160.1 Hz, HCP(OCH₃)₂), 99.01 (s, HCCCH₂CH₂CH₂CH₃), 121.77, 122.14, 124.73, 125.19, 127.94, 130.12 (*Ph*), 155.52 (s, OCCH₂CH₂CH₂CH₃); Ms-ESI: 297.18 ([M+H]⁺); HRMS calcd for C₁₅H₂₁O₄P: 319.1070 (M+Na)⁺, found: 319.1079

General Procedure for the Synthesis of Phosphonylate Isobenzopyran 8

Dimethyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methylphosphonate **6a** (0.158 g, 0.5 mmol) in THF (5 ml) was stirred at room temperature for half an hour. DBU (1 mmol,

0.153 g) was added to the mixture and the mixture was kept stirring for 5h (TLC (silica gel) monitoring). The result mixture was work-up with water (5 ml) below 0°C. Then the mixture was extracted by AcOEt and dried with anhydrous sodium sulfate. After concentrated the residue was purified by CC (silica gel, AcOEt/petroleum ether (b.p. 60-90°C) 1:3) to afford the product **8**.

Dimethyl 3-benzylisobenzofuran-1-ylphosphonate (8)

Dimethyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methyl phosphonate **6a** (0.158 g, 0.5 mmol) in THF (5 ml), DBU (0.153 g, 1.0 mmol) 5 hours at room temperature. AcOEt/petroleum ether (1:3) to afford product **8** (0.149 g, 94%), yellow liquid;

³¹P-NMR (100 MHz, CDCl₃): δ 1.35; ¹H-NMR (300 MHz, CDCl₃): δ 3.67 (d, J_{P-H} = 11.1 Hz, 6H, P(OCH₃)₂), 5.25 (d, J_{P-H} = 7.1 Hz, 2H, CH₂Ph), 7.22-7.31 (m, 5H, *Ph*), 7.43-7.50 (m, 4H, *Ph*); ¹³C-NMR (75 MHz, CDCl₃): δ 54.35 (d, ² $J_{C,P}$ = 5.9 Hz, P(OCH₃)₂), 67.55 (d, ⁵ $J_{C,P}$ = 5.0 Hz, CH₂Ph), 90.39 (d, ¹ $J_{C,P}$ = 629.9 Hz, OCP(OCH₃)₂), 122.57 (d, ⁴ $J_{C,P}$ = 50.6 Hz, OCCH₂Ph), 128.12, 128.42, 128.61, 131.64, 132.23, 137.28, 137.38 (*Ph*); Ms-ESI: 339.36 ([M+Na]⁺); HRMS calcd for C₁₇H₁₇O₄P: 317.0937 (M+H)⁺, found: 317.0938

Dimethyl (2-(2-phenylethynyl)phenyl)(hydroxyl)methylphosphonate (6a)

³¹P-NMR (100 MHz, CDCl₃)

¹³C-NMR (75 MHz, CDCl₃)

Dimethyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7a)

³¹P-NMR (121 MHz, CDCl₃)

¹³C-NMR (162 MHz, CDCl₃)

Diethyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7b)

³¹P-NMR (121 MHz, CDCl₃)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

¹³C-NMR (162 MHz, CDCl₃)

Di-(*n*)-propyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7c)

³¹P-NMR (121 MHz, CDCl₃)

¹H-NMR (400 MHz, CDCl₃)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

Di-(*i*)-propyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7d)

³¹P-NMR (121 MHz, CDCl₃)

Di-(*n*)-butyl 3-phenyl-1*H*-isochromen-1-ylphosphonate (7e)

³¹P-NMR (121 MHz, CDCl₃)

¹H-NMR (400 MHz, CDCl₃)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

Dimethyl 3-p-tolyl-1H-isochromen-1-ylphosphonate (7f)

³¹P-NMR (121 MHz, CDCl₃)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

Diethyl 3-p-tolyl-1H-isochromen-1-ylphosphonate (7g)

³¹P-NMR (121 MHz, CDCl₃)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

Dimethyl 3-(4-fluorophenyl)-1*H*-isochromen-1-ylphosphonate (7h)

³¹P-NMR (121 MHz, CDCl₃)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

Diethyl 3-(4-fluorophenyl)-1*H*-isochromen-1-ylphosphonate (7i)

³¹P-NMR (121 MHz, CDCl₃)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

¹³C-NMR (162 MHz, CDCl₃)

Dimethyl 3-butyl-1*H*-isochromen-1-ylphosphonate (7j)

³¹P-NMR (121 MHz, CDCl₃):

¹³C-NMR (162 MHz, CDCl₃):

