Electronic Supplementary Information for Iron(III) Chloride-Catalysed Direct Nucleophilic &-Substitution of Morita-Baylis-Hillman Alcohols with Alcohols, Arenes, 1,3-Dicarbonyl Compounds, and Thiols

Xiaoxiang Zhang, Weidong Rao, Sally, and Philip Wai Hong Chan*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore 637616, Singapore

E-mail: <u>waihong@ntu.edu.sg</u>

Figure S1. ¹H and ¹³C NMR Spectra of 2-((6-Oxocyclohex-1-enyl)(phenyl)methyl)-1,

3-diphenylpropane-1,3-dione (**3a**)

Figure S2. ¹H and ¹³C NMR Spectra of 3-((6-Oxocyclohex-1-enyl)(phenyl)methyl) pentane-2,4-dione (**3b**)

Figure S3. ¹H and ¹³C NMR Spectra of 2-((6-Oxocyclohex-1-enyl)(phenyl)methyl)-1

-phenylbutane-1,3-dione (3c)

Figure S4. ¹H and ¹³C NMR Spectra of Ethyl 2-benzoyl-3-(6-oxocyclohex-1-enyl)-3-

phenylpropanoate (**3d'**) (major diastereomer)

Figure S5. ¹H and ¹³C NMR Spectra of Ethyl 2-benzoyl-3-(6-oxocyclohex-1-enyl)-3phenylpropanoate (**3d''**) (minor diastereomer)

Figure S6. ¹H and ¹³C NMR Spectra of 2-((4-Nitrophenyl)(6-oxocyclohex-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (**3e**)

Figure S7. ¹H and ¹³C NMR Spectra of 2-((4-Fluorophenyl)(6-oxocyclohex-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (**3f**)

Figure S8. ¹H and ¹³C NMR Spectra of 2-((4-Chlorophenyl)(6-oxocyclohex-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (**3g**)

Figure S9. ¹H and ¹³C NMR Spectra of 2-((4-Bromophenyl)(6-oxocyclohex-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (**3h**)

Figure S10. ¹H and ¹³C NMR Spectra of 2-((6-Oxocyclohex-1-enyl)(*p*-tolyl) methyl)-1,3-diphenylpropane-1,3-dione (**3i**)

Figure 11. ¹H and ¹³C NMR Spectra of 2-((4-Ethoxyphenyl)(6-oxocyclohex-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (**3j**)

Figure S12. ¹H and ¹³C NMR Spectra of 2-((2-Chlorophenyl)(6-oxocyclohex-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (**3**l)

Figure S13. ¹H and ¹³C NMR Spectra of 2-((4-Chlorophenyl)(5-oxocyclopent-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (**3m**)

Figure S14. ¹H and ¹³C NMR Spectra of 2-((4-Chlorophenyl)(4-oxo-4Hchromen-3-yl)methyl)-1,3-diphenylpropane-1,3-dione (**3n**)

Figure S15. ¹H and ¹³C NMR Spectra of 2-((4-hydroxy-3-methylphenyl)(phenyl)

methyl)cyclohex-2-enone (**30**)

Figure S16. ¹H and ¹³C NMR Spectra of 2-({4-Hydroxy-3,5-dimethylphenyl}(phenyl)

methyl)cyclohex-2-enone (**3p**)

Figure S17. ¹H and ¹³C NMR Spectra of 2-(Ethoxy(phenyl)methyl)cyclohex-2-enone

Figure S18. ¹H and ¹³C NMR Spectra of 2-(Benzyloxy(phenyl)methyl)cyclohex-2enone (**3r**)

Figure 19. ¹H and ¹³C NMR Spectra of 2-((But-3-enyloxy)(phenyl)methyl)cyclohex - 2-enone (**3s**)

Figure S20. ¹H and ¹³C NMR Spectra of 2-(Ethylthio(phenyl) methyl)cyclohex-2enone (3t)

Figure S21. ¹H and ¹³C NMR Spectra of 2-((4-Chlorophenylthio)(phenyl)methyl) cyclohex-2-enone (**3u**)

Figure S22. ¹H and ¹³C NMR Spectra of 2-(Phenyl(*p*-tolylthio)methyl)cyclohex-2enone (**3v**)

Figure S23. HPLC Spectrum of Racemic 1a^{S1,S2}

Chiralcel OJ-H Column, *n*-hexane/i-PrOH = 90/10, flow rate 1 mL/min, λ = 254 nm.

Figure S24. HPLC Spectrum of Chiral 1a^{S1,S2}

Chiralcel OJ-H column, *n*-hexane/i-PrOH = 90/10, flow rate 1 mL/min, $\lambda = 254$ nm.

Figure S25. HPLC Spectrum of Racemic 3a obtained from Racemic 1a

Chiralcel AD-H column, *n*-hexane/i-PrOH = 80/20, flow rate 1 mL/min, λ = 254 nm.

Figure S26. HPLC Spectrum of Racemic 3a obtained from Chiral 1a

Chiralcel AD-H column, *n*-hexane/i-PrOH = 80/20, flow rate 1 mL/min, λ = 254 nm.

References

S1 S. Sohtome, A. Tanatani and K. Nagasawa Tetrahedron Lett., 2004, 45, 5589.

S2 T. M. Nolan and E. S. Scott J. Am. Chem. Soc. 2003, 125, 12094.