Supporting Information for:

Synthesis and DNA-Binding Affinity Studies of Novel

Aminosugar-Containing Compounds Designed as Functional

Mimics of Anthracycline Antibiotics

Wei Shi, ${ }^{\dagger}$ Robert S. Coleman, ${ }^{\star}$ and Todd L. Lowary ${ }^{\dagger *}$

${ }^{\dagger}$ Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2, Canada
and
${ }^{\ddagger}$ Department of Chemistry, The Ohio State University, 100 West $18^{\text {th }}$ Avenue, Columbus, OH 43210, USA

Email: tlowary@ualberta.ca

Table of Contents

Synthetic procedure for compounds $\mathbf{1 5 - 1 6 , ~ 1 8 - \mathbf { 2 7 , ~ 2 9 , ~ 3 0 , ~ 3 3 - 3 7 , ~ 4 0 , ~ a n d ~ 4 2 - 4 7 ~ }}$	$\mathrm{S} 4-\mathrm{S} 11$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$	S 20
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{1}$	S 21
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$	S 22
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{2}$	S 23
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$	S 24
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{3}$	S 25
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$	S 26
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4}$	S 27
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}$	S 28
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{5}$	S 29

${ }^{1} \mathrm{H}$ NMR spectrum of 6	S30
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of 6	S31
${ }^{1} \mathrm{H}$ NMR spectrum of 7	S32
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of 7	S33
${ }^{1} \mathrm{H}$ NMR spectrum of8	S34
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{8}$	S35
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}$	S36
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of 9	S37
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$	S38
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{1 0}$	S39
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}$	S40
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{1 1}$	S41
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$	S42
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{1 2}$	S43
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}$	S44
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{1 6}$	S45
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}$	S46
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{2 0}$	S47
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1}$	S48
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of 21	S49
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 4}$	S50
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{2 4}$	S51
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}$	S52
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{2 5}$	S53
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 6}$	S54
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of 26	S55
${ }^{1} \mathrm{H}$ NMR spectrum of 27	S56
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of 27	S57
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 9}$	S58
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{2 9}$	S59
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0}$	S60
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{3 0}$	S61
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3}$	S62
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{3 3}$	S63
${ }^{1} \mathrm{H}$ NMR spectrum of 34	S64

${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{3 4}$	S65
${ }^{1}$ H NMR spectrum of $\mathbf{3 5}$	S66
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{3 5}$	S67
${ }^{1} \mathrm{H}$ NMR spectrum of 36	S68
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{3 6}$	S69
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 7}$	S70
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{3 7}$	S71
${ }^{1}$ H NMR spectrum of 40a	S72
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 0 \alpha}$	S73
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 0 \beta}$	S74
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 0 \beta}$	S75
${ }^{1}$ H NMR spectrum of 42a	S76
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 2 \alpha}$	S77
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 2} \boldsymbol{\beta}$	S78
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 2 \beta}$	S79
${ }^{1} \mathrm{H}$ NMR spectrum of 43a	S80
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of 43a	S81
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 3 \beta}$	S82
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 3 \beta}$	S83
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 4 \alpha}$	S84
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 4 \alpha}$	S85
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 4 \beta}$	S86
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of 44 $\boldsymbol{\beta}$	S87
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 5}$	S88
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 5}$	S89
${ }^{1} \mathrm{H}$ NMR spectrum of 46	S90
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 6}$	S91
${ }^{1} \mathrm{H}$ NMR spectrum of 47	S92
${ }^{13} \mathrm{C}$ NMR spectrum (APT) of $\mathbf{4 7}$	S93
HPLC apparatus	S94
HPLC analysis of $\mathbf{1}$	S95
HPLC analysis of 5	S96
Sample figure from the FID assays of compound 1-4	S97

1-Tosyl-3-iodo-2-phenylindole (15)

To a solution of $\mathbf{1 9}(134 \mathrm{mg}, 0.385 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(160 \mathrm{mg}, 1.16 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(3.0$ $\mathrm{mL})$ was added $\mathrm{I}_{2}(0.3 \mathrm{~g}, 1.18 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for about 12 h , and then the solution was diluted with EtOAc, washed with a satd aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and then brine. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to yield the crude product, which was purified by column chromatography (4:1, hexanes-EtOAc) to afford $\mathbf{1 5}$ (178 mg , 98%) as a white amorphous solid: $\mathrm{R}_{f} 0.48$ ($4: 1$, hexanes-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 8.33 (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.31-7.55(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $145.0(\mathrm{Ar})$, 141.1 (Ar), 137.0 (Ar), 135.1 (Ar), 132.2 (Ar), 131.7 (2, Ar), 131.6 (Ar), 129.5 (2, Ar), 129.3 (Ar), 127.5 (2, Ar), 126.9 (2, Ar), 126.0 (Ar), 124.6 (Ar), 122.2 (Ar), 116.0 (Ar), 75.7 (Ar-I), $21.6\left(\mathrm{CH}_{3}\right)$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{INO}_{2} \mathrm{~S}: 472.9947$. Found: 472.9961. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{INO}_{2} \mathrm{~S}: \mathrm{C}, 53.29 ; \mathrm{H}, 3.41 ; \mathrm{N}, 2.96 ; \mathrm{S}, 6.77$. Found C, 53.38; H, 3.48; N, 3.05; S, 6.93.

3-Iodo-2-phenylindole (16)

To a solution of compound $\mathbf{1 5}(69 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (5.0 mL) was added a solution of tetra- n butylammonium fluoride in THF ($1.0 \mathrm{M}, 1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$) at room temperature, and the mixture was heated at reflux for 6 h . After cooling to room temperature, a satd aqueous NaHCO_{3} solution (30 mL) was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to leave a residue, which was purified by column chromatography on silica gel ($12: 1$ hexanes-EtOAc) to give the product $\mathbf{1 6}(40 \mathrm{mg}, 86 \%)$ as a brownish oil: $\mathrm{R}_{f} 0.55$ (4:1 hexanes-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 8.40 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.79 (d, $2 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}, \mathrm{Ar}), 7.49-7.58$ (m, 3H, Ar), 7.43-7.48 (m, 1H, Ar), 7.34-7.38 (m, 1H, Ar), 7.24-7.32 (m, 2H, $\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $138.0(\mathrm{Ar}), 136.4$ (Ar), 132.2 (Ar), 131.9 (Ar), 128.8 (2, Ar), 128.6 (Ar), 128.4 (2, Ar), 123.6 (Ar), 121.7 (Ar), 121.1 (Ar), 111.1 (Ar), 58.3 (Ar-I). HRMS (EI) calcd
for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{IN}: 318.9858$. Found: 318.9857. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{IN}: \mathrm{C}, 52.69 ; \mathrm{H}, 3.16 ; \mathrm{N}, 4.39$. Found C, 52.59; H, 3.44; N, 4.38.

o-(Phenylethynyl)aniline (18)

To a solution of $\mathrm{Et}_{3} \mathrm{~N}(0.42 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($35 \mathrm{mg}, 5 \mathrm{~mol} \%$), 2-iodoaniline $17(220 \mathrm{mg}, 1.00 \mathrm{mmol})$, and phenylacetylene ($133 \mathrm{mg}, 1.30 \mathrm{mmol}$) in THF (4 mL) was added CuI ($10 \mathrm{mg}, 5 \mathrm{~mol} \%$) under argon. The mixture was stirred at room temperature for 2 h , and then the reaction was quenched by the addition of a satd aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous solution was then extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to yield the crude product, which was purified by column chromatography (10:1, hexanes-EtOAc) to obtain pure 18 as a yellow amorphous solid ($185 \mathrm{mg}, 95 \%$): $\mathrm{R}_{f} 0.48$ (4:1, hexanes-EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 7.51-7.68(m, 2H, Ar), 7.30-7.40 (m, 4H, Ar), 7.12-7.18 (m, 1H, Ar), 6.70-6.78 (m, $2 \mathrm{H}, \mathrm{Ar}), 4.25$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 147.7 (Ar), 132.2 (Ar), 131.5 (2, Ar), 129.7 (Ar), 128.4 (2, Ar), 128.2 (Ar), 123.3 (Ar), 118.0 (Ar), 114.4 (Ar), 108.0 (Ar), 94.7 ($\equiv \mathrm{C}$), 85.9 ($\equiv \mathrm{C}$). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}$: 193.0891. Found: 193.0893.

N-[2-(Phenylethynyl)phenyl]-p-toluenesulfonamide (19)

Compound 18 ($78 \mathrm{mg}, 0.40 \mathrm{mmol}$) was dissolved in pyridine-THF ($0.22 \mathrm{~mL}: 1 \mathrm{~mL}$), and p toluenesulfonyl chloride ($115 \mathrm{mg}, 0.62 \mathrm{mmol}$) was added. The mixture was stirred for 24 h at room temperature. The reaction was then diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and filtered. After evaporation, the residue was purified by column chromatography ($8: 1$, hexanes-EtOAc) to obtain pure 19 as a white waxy solid ($134 \mathrm{mg}, 96 \%$): $\mathrm{R}_{f} 0.40$ ($6: 1$, hexanes-EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}\right) 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}), 7.46-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, 7.35-7.42 (m, 4H, Ar), 7.26-7.32 (m, 2H, Ar), 7.16 (d, 2H, $J=8.0 \mathrm{~Hz}, \mathrm{Ar}), 7.04-7.09(\mathrm{td}, 1 \mathrm{H}, J=7.6$, $1.0 \mathrm{~Hz}, \mathrm{Ar}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 144.0 (Ar), 137.6 (Ar), 136.1 (Ar), 132.0 (Ar), 131.6 (2, Ar), 129.6 (3, Ar), 129.1 (Ar), 128.6 (2, Ar), 127.3 (2, Ar), 124.7 (Ar), 122.0
(Ar), $120.5(\mathrm{Ar}), 114.7(\mathrm{Ar}), 96.2(\equiv \mathrm{C}), 83.8(\equiv \mathrm{C}), 21.5\left(\mathrm{CH}_{3}\right)$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$: 347.0980. Found: 347.0980.

2-Phenylbenzo[b]furan (20)

n-Butyllithium (1.6 M in hexane, $0.5 \mathrm{~mL}, 0.80 \mathrm{mmol}$) was added dropwise to a solution of 3-iodo-2phenylbenzo[b]furan $\mathbf{1 3}(33 \mathrm{mg}, 0.11 \mathrm{mmol})$ in THF $(3.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 5 min and a satd aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was then added. After stirring for another 1 min, the reaction mixture was extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to yield the crude product, which was purified by column chromatography (hexanes) to afford $20(17 \mathrm{mg}, 86 \%)$ as a white flaky solid: $\mathrm{R}_{f} 0.31$ (hexanes); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 7.87-7.92 (m, 2H, Ar), 7.59-7.62 (m, 1H, Ar), 7.53-7.57 (m, 1H, Ar), 7.44-7.50 (m, 2H, Ar), 7.35-7.40(m, 1H, Ar), 7.28-7.33(m, 1H, Ar), 7.23-7.28(m, 1H, Ar), 7.04 (br s, 1H, Ar); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 155.9 (Ar), 154.9 (Ar), 130.5 (Ar), 129.2 (Ar), 128.8 (2, Ar), 128.5 (Ar), 125.0 (2, Ar), 124.3 (Ar), 122.9 (Ar), 120.9 (Ar), 111.2 (Ar), 101.3 (Ar). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}: 194.0732$. Found: 194.0731. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 86.57 ; \mathrm{H}, 5.19$. Found C, 86.59; H, 5.33.

2-Phenylbenzo[b]thiophene (21)

This compound was synthesized as a white flaky solid from 14 in 85% yield by following the same procedure used for the synthesis of 21: $\mathrm{R}_{f} 0.39$ (hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}\right) 7.84-7.87$ (m, 1H, Ar), 7.78-7.81 (m, 1H, Ar), 7.72-7.76 (m, 2H, Ar), 7.56 (br s, 1H, Ar), 7.42-7.47 (m, 2H, Ar), $7.31-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 144.3 (Ar), 140.7 (Ar), 139.5 (Ar), 134.3 (Ar), 129.0 (2, Ar), 128.3 (Ar), 126.5 (2, Ar), 124.5 (Ar), 124.3 (Ar), 123.6 (Ar), 122.3 (Ar), 119.5 (Ar). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~S}: 210.0503$. Found: 210.0504. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~S}: \mathrm{C}, 79.96 ; \mathrm{H}, 4.79$; S, 15.25. Found C, 80.15; H, 4.91; S, 15.44.

1-Tosyl-2-phenylindole (22)

Compound 19 ($39 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in dichloroethane (7 mL), and copper(II) triflate (12 $\mathrm{mg}, 0.035 \mathrm{mmol}$) was added. The mixture was heated at reflux for 48 h . After evaporation, the residue was purified by column chromatography ($30: 1$, hexanes-EtOAc) to obtain pure 22 as a white waxy solid ($20 \mathrm{mg}, 52 \%$): $\mathrm{R}_{f} 0.21$ (20:1, hexanes-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 8.30-8.34 (m, 1 H , Ar), 7.48-7.54 (m, 2H, Ar), 7.40-7.46 (m, 4H, Ar), 7.36-7.39 (m, 1H, Ar), 7.25-7.30 (m, 3H, Ar), 7.04 $(\mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}), 6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $144.5(\mathrm{Ar})$, 142.1 (Ar), 138.3 (Ar), 134.7 (Ar), 132.4 (Ar), 130.5 (Ar), 131.6 (Ar), 130.3 (2, Ar), 129.2 (2, Ar), 128.6 (Ar), 127.5 (2, Ar), 126.8 (2, Ar), 124.8 (Ar), 124.3 (Ar), 120.7 (Ar), 116.7 (Ar), 113.6 (Ar), 21.6 $\left(\mathrm{CH}_{3}\right)$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}: 347.0980$. Found: 347.0981. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$: C, 72.60 ; H, 4.93; N, 4.03; S, 9.23. Found C, 72.58; H, 5.17; N, 3.76; S, 9.25.

2-Phenylindole (23)

This compound was synthesized as an amphorous off-white solid from 15 in 74% yield by following the same procedure used for the synthesis of 20: $\mathrm{R}_{f} 0.57$ ($4: 1$ hexanes-EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\delta_{\text {H }}\right) 8.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.65-7.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.44-7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.40-7.5243(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.33-$ 7.37 (m, 1H, Ar), 7.20-7.24 (m, 1H, Ar), 7.14-7.18 (m, 1H, Ar), $6.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \delta_{\mathrm{C}}\right) 137.9(\mathrm{Ar}), 136.9(\mathrm{Ar}), 132.4(\mathrm{Ar}), 129.3(\mathrm{Ar}), 129.0(2, \mathrm{Ar}), 127.7(\mathrm{Ar}), 125.2$ (2, Ar), 122.4 (Ar), 120.7 (Ar), 120.3 (Ar), 110.9 (Ar), 100.0 (Ar). HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}$: 193.0891. Found: 193.0892. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}$: C, 87.01; H, 5.74; N, 7.25. Found C, 87.27; H, 5.79; N, 7.33.

3-(2-Phenylbenzofuran-3-yl)-prop-2-yn-1-ol (24)

To a solution of piperidine (3 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{mg}, 5 \mathrm{~mol} \%), 13(21 \mathrm{mg}, 0.064 \mathrm{mmol})$, and propargyl alcohol ($5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added $\mathrm{CuI}(1 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The mixture was stirred at room temperature for 5 h . The reaction was then quenched by the addition of a satd aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution
and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under vacuum to yield the crude product, which was purified by column chromatography (6:1 hexanes-EtOAc) to afford $\mathbf{2 4}$ ($12 \mathrm{mg}, 73 \%$) as a brownish amorphous solid: R_{f} 0.29 ($4: 1$ hexanes-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) $8.24-8.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.66-7.69(\mathrm{~m}, 1 \mathrm{H}$, Ar), 7.46-7.52 (m, 3H, Ar), 7.38-7.43 (m, 1H, Ar), 7.28-7.36 (m, 2H, Ar), $4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.15$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $156.7(\mathrm{Ar}), 153.4(\mathrm{Ar}), 130.0(2, \mathrm{Ar}), 129.3$ (Ar), 128.7 (2, $\mathrm{Ar}), 126.0(2, \mathrm{Ar}), 125.4(\mathrm{Ar}), 123.4(\mathrm{Ar}), 120.2$ (Ar), 111.2 (Ar), 98.4 (Ar), $94.8(\equiv \mathrm{C}), 77.6$ ($\equiv \mathrm{C}$), 52.0 $\left(\mathrm{OCH}_{2}\right)$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}$: 248.0837. Found: 248.0838. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2}$: C , 82.24; H, 4.87. Found C, 82.05 ; H, 4.86.

3-(2-Phenylbenzothiophen-3-yl)-prop-2-yn-1-ol (25)

To a solution of piperidine (4 mL), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28 \mathrm{mg}, 5 \mathrm{~mol} \%), 14(254 \mathrm{mg}, 0.759 \mathrm{mmol})$, and propargyl alcohol ($64 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added $\mathrm{CuI}(15 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The mixture was stirred at room temperature for 12 h and the reaction was then quenched by the addition of a satd aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under vacuum to yield the crude product, which was purified by column chromatography ($6: 1$ hexanes-EtOAc) to afford 25 ($162 \mathrm{mg}, 81 \%$) as a off-white amorphous solid: $\mathrm{R}_{f} 0.56$ (2:1 hexanes-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 7.92-8.02 (m, 3H, Ar), 7.78-7.84 (m, 1H, Ar), 7.36-7.52 (m, 5H, Ar), $4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \delta_{\mathrm{C}}\right) 147.0(\mathrm{Ar}), 141.1(\mathrm{Ar}), 137.5(\mathrm{Ar}), 133.6(\mathrm{Ar}), 128.8(\mathrm{Ar}), 128.7(2, \mathrm{Ar}), 128.4$ (2, Ar), $125.3(\mathrm{Ar}), 125.0(\mathrm{Ar}), 123.2(\mathrm{Ar}), 122.0(\mathrm{Ar}), 112.8(\mathrm{Ar}) .92 .4(\equiv \mathrm{C}), 80.2(\equiv \mathrm{C}), 51.9\left(\mathrm{OCH}_{2}\right)$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{OS}: 264.0609$. Found: 264.0610. Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{OS}: \mathrm{C}, 77.24 ; \mathrm{H}, 4.58 ; \mathrm{S}$, 12.13. Found C, 77.15; H, 4.68; S, 12.17 .

3-(1-Tosyl-2-phenylindol-3-yl)-prop-2-yn-1-ol (26)

To a solution of piperidine $(0.75 \mathrm{~mL})$, $\operatorname{DMF}(0.25 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(11 \mathrm{mg}, 20 \mathrm{~mol} \%), 15(38 \mathrm{mg}$, $0.079 \mathrm{mmol})$, and propargyl alcohol ($7 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added $\mathrm{CuI}(2 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The mixture was stirred at $100^{\circ} \mathrm{C}$ in a microwave reactor for 2 h , the reaction was then quenched by the addition of a satd aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under vacuum to yield the crude product, which was purified by column chromatography ($3: 1$ hexanes-EtOAc) to afford $\mathbf{2 6}(17 \mathrm{mg}, 52 \%$) as a brownish oil: $\mathrm{R}_{f} 0.34$ (2:1 hexanes-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) $8.30-8.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.52-7.60(\mathrm{~m}$, 3H, Ar), 7.38-7.48 (m, 4H, Ar), 7.31-7.36 (m, 1H, Ar), 7.23-7.27 (m, 2H, Ar), 7.03-7.07 (m, 2H, Ar), $4.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $144.9(\mathrm{Ar}), 143.8(\mathrm{Ar}), 137.0$ (Ar), 134.6 (Ar), 131.1 (2, Ar), 130.7 (Ar), 130.5 (Ar), 129.4 (2, Ar), 129.2 (Ar), 127.4 (2, Ar), 126.8 (2, $\mathrm{Ar}), 125.8(\mathrm{Ar}), 124.7(\mathrm{Ar}), 120.0(\mathrm{Ar}), 116.5(\mathrm{Ar}), 107.3(\mathrm{Ar}), 92.6(\equiv \mathrm{C}), 77.6(\equiv \mathrm{C}), 51.7\left(\mathrm{OCH}_{2}\right), 21.5$ $\left(\mathrm{CH}_{3}\right)$. HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NS}: 401.1086$. Found: 401.1083. Purity: $>99 \%$.

3-(2-Phenylindol-3-yl)-prop-2-yn-1-ol (27)

This compound was synthesized as a brown oil from 26 in 45% yield by following the same procedure used for the synthesis of 16: $\mathrm{R}_{f} 0.30$ ($5: 1$ toluene-EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 8.43 (br s, $1 \mathrm{H}, \mathrm{NH}), 7.96-7.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.74-7.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.38-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, 7.24-7.28 (m, 1H, Ar), 7.20-7.23 (m, 1H, Ar), $4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 140.3 (Ar), 135.7 (Ar), 131.8 (Ar), 130.8 (Ar), 129.4 (2, Ar), 128.9 (Ar), 126.9 (2, Ar), 123.9 (Ar), $121.4(\mathrm{Ar}), 120.0(\mathrm{Ar}), 111.5(\mathrm{Ar}), 92.2(\mathrm{Ar}), 80.0(\equiv \mathrm{C}), 66.6(\equiv \mathrm{C}), 52.3\left(\mathrm{OCH}_{2}\right)$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}: 249.0997$. Found: 247.0998.

Compound $28(3.9 \mathrm{~g}, 15 \mathrm{mmol})$, crushed activated $4 \AA$ molecular sieves (500 mg) and propargyl alcohol ($1.7 \mathrm{~g}, 30 \mathrm{mmol}$) were suspended in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The mixture was stirred for $5-$ 10 min at room temperature and then cooled to $-10{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3.91 \mathrm{~mL}, 30.8 \mathrm{mmol})$ was added dropwise via syringe. After adding $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$. Once the starting material was fully consumed (within 0.5 h), the reaction mixture was quenched by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(3.33 \mathrm{~g})$, and then $\mathrm{H}_{2} \mathrm{O}(120 \mathrm{~mL})$, satd NaHCO_{3} solution $(120 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ were added. The organic layer was separated, washed with brine, and was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The crude product was purified by column chromatography ($15: 1 \rightarrow 8: 1$, hexanesEtOAc) to give pure $29(2.11 \mathrm{~g}, 55 \%)$ and $\mathbf{3 0}(0.172 \mathrm{~g}, 4.5 \%)$ as colorless oils. In addition, a mixture of the two β isomers ($\mathbf{3 1}$ and $\mathbf{3 2}$) and some $\mathbf{3 0}$ was collected as clear oil ($0.98 \mathrm{~g}, 25 \%$). ($\mathbf{2 9}$): $\mathrm{R}_{f} 0.32$ (8:1 hexanes-EtOAc); IR: v $3281(\equiv \mathrm{C}-\mathrm{H}), 2103(\mathrm{~N}=\mathrm{N}=\mathrm{N}), 1744(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}-189.0\left(c 4.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}\right) 5.02\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{1,2 \mathrm{a}}=3.4 \mathrm{~Hz}, \mathrm{H}-1\right), 4.66\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=J_{4,5}=9.8 \mathrm{~Hz}\right.$, H-4), $4.21\left(\mathrm{dd}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 3.86\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 3}=12.4 \mathrm{~Hz}, J_{3,4}=9.8 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=5.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.80\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.8\right.$ $\left.\mathrm{Hz}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-5\right), 2.44\left(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 2.18\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=13.3 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=5.0\right.$ $\left.\mathrm{Hz}, J_{1,2 \mathrm{e}}=1.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{e}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{3}\right), 1.75\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=13.3 \mathrm{~Hz}, J_{2 \mathrm{a}, 3}=12.4 \mathrm{~Hz}, J_{1,2 \mathrm{a}}=\right.$ $3.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 1.15\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $170.0(\mathrm{C}=\mathrm{O}), 95.1(\mathrm{C}-$ 1), $78.9(\underline{C} \equiv \mathrm{CH}), 75.3(\mathrm{C}-4), 74.6(\mathrm{C} \equiv \underline{\mathrm{CH}}), 66.4(\mathrm{C}-5), 57.5(\mathrm{C}-3), 54.3\left(\mathrm{OCH}_{2}\right), 34.9(\mathrm{C}-2), 20.8$ $\left(\mathrm{O}=\mathrm{CCH}_{3}\right), 17.3$ (C-6). HRMS (ESI) calcd for ($\mathrm{M}+\mathrm{Na}$) $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}$: 276.0955. Found: 276.0955. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 52.17; H, 5.97; N, 16.59. Found C, 52.40; H, 5.85; N, 16.50.
(30): $\mathrm{R}_{f} 0.44$ (4:1 hexanes:EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) $5.01\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2 \mathrm{a}}=4.0 \mathrm{~Hz}, J_{1,2 \mathrm{e}}=\right.$ $1.5 \mathrm{~Hz}, \mathrm{H}-1), 4.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5}=9.6 \mathrm{~Hz}, J_{3,4}=3.6 \mathrm{~Hz}, \mathrm{H}-4\right), 4.25\left(\mathrm{~d}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right)$, $4.20\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-5\right), 4.11\left(\mathrm{ddd}, 1 \mathrm{H}, J_{3,4}=J_{2 \mathrm{a}, 3}=J_{2 \mathrm{e}, 3}=3.6 \mathrm{~Hz}, \mathrm{H}-3\right), 2.42(\mathrm{t}$, $\left.1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 2.00-2.15\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{3}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-2 \mathrm{e}\right), 1.18\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-\right.$ 6); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $170.1(\mathrm{C}=\mathrm{O}), 93.8(\mathrm{C}-1), 79.1(\underline{\mathrm{C}} \equiv \mathrm{CH}), 74.5(\mathrm{C} \equiv \underline{\mathrm{CH}}), 73.9(\mathrm{C}-4)$,
62.2 (C-5), $55.7(\mathrm{C}-3), 54.5\left(\mathrm{OCH}_{2}\right), 32.8(\mathrm{C}-2), 20.7\left(\mathrm{O}=\mathrm{CCH}_{3}\right), 17.2(\mathrm{C}-6)$. HRMS (ESI) calcd for $(\mathrm{M}+\mathrm{Na}) \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}: 276.0955$. Found: 276.0953 .

2-Propargyl 3-azido-2,3,6-trideoxy- α-L-arabino-hexopyranoside (33)

Compound $29(1.52 \mathrm{~g}, 6.01 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(70 \mathrm{~mL})$. To this solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.36 \mathrm{~g}, 2.6 \mathrm{mmol})$, and then the reaction mixture was stirred for 12 h . The solvent was evaporated and the residue was suspended in water $(100 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the filtrate was concentrated and the resulting residue was purified by column chromatography ($4: 1$ hexanes-EtOAc) to acquire pure $\mathbf{3 3}$ as a colorless oil ($1.27 \mathrm{~g}, 99 \%$); $\mathrm{R}_{f} 0.44$ (4:1 hexanes-EtOAc); IR v $3425(\mathrm{O}-\mathrm{H}), 3293(\equiv \mathrm{C}-\mathrm{H}), 2104(\mathrm{~N}=\mathrm{N}=\mathrm{N}) \mathrm{cm}^{-1}$; $[\alpha]_{\mathrm{D}}^{23}-160.0\left(c 3.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) $5.02\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{1,2 \mathrm{a}}=3.4 \mathrm{~Hz}, \mathrm{H}-1\right), 4.22$ (dd, $1 \mathrm{H}, J=15.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}$), $4.17\left(\mathrm{dd}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right.$), $3.76\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 3}=12.3 \mathrm{~Hz}, J_{3,4}=9.5 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=5.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.69\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.5 \mathrm{~Hz}, J_{5,6}=6.2\right.$ $\mathrm{Hz}, \mathrm{H}-5), 3.14\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=J_{4,5}=9.5 \mathrm{~Hz}, \mathrm{H}-4\right), 2.44\left(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right.$), $2.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, OH), 2.19 (ddd, $1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=13.2 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=5.0 \mathrm{~Hz}, J_{1,2 \mathrm{e}}=1.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{e}$), 1.74 (ddd, $1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=13.2 \mathrm{~Hz}$, $\left.J_{2 \mathrm{a}, 3}=12.3 \mathrm{~Hz}, J_{1,2 \mathrm{a}}=3.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 1.29\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.2 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}\right)$ $95.1(\mathrm{C}-1), 79.0(\underline{\mathrm{C}} \equiv \mathrm{CH}), 75.8(\mathrm{C}-4), 74.6(\mathrm{C} \equiv \underline{\mathrm{CH}}), 68.2(\mathrm{C}-5), 60.2(\mathrm{C}-3), 54.2\left(\mathrm{OCH}_{2}\right), 34.7(\mathrm{C}-2)$, 17.6 (C-6). HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: 211.0957. Found: 211.0960. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 51.18; H, 6.20; N, 19.89. Found C, 51.22; H, 6.13; N, 19.77.

2-Propargyl 4-O-acetyl-3-azido-2,3,6-trideoxy- α-L-lyxo-hexopyranoside (34)

To a solution of compound $\mathbf{3 3}(128 \mathrm{mg}, 0.611 \mathrm{mmol})$ in $19: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ - pyridine $(16.8 \mathrm{~mL})$ at $-15{ }^{\circ} \mathrm{C}$ was added the solution of $\mathrm{Tf}_{2} \mathrm{O}$ (triflic anhydride) $(0.438 \mathrm{~mL}, 2.58 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.4 \mathrm{~mL})$. After stirring for 45 min while keeping the temperature below $-5^{\circ} \mathrm{C}$, TLC showed the starting material was gone and a new spot $\left(\mathrm{R}_{f} 0.61,4: 1\right.$ hexanes-EtOAc $)$ appeared. The reaction mixture was then extracted with icecold 1 M HCl aqueous solution and water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield an
orange liquid. The product was immediately dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and n - $\mathrm{Bu}_{4} \mathrm{NOAc}$ (366 $\mathrm{mg}, 1.22 \mathrm{mmol}$) was added. After stirring at $40^{\circ} \mathrm{C}$ for 40 min , the solvent was removed under vacuum. The residue was purified by column chromatography (4:1 hexanes-EtOAc) to yield pure 34 (132 mg , $86 \%)$ as a pale yellow oil. $\mathrm{R}_{f} 0.39$ (4:1 hexanes-EtOAc); IR $v 3279(\equiv \mathrm{C}-\mathrm{H}), 2104(\mathrm{~N}=\mathrm{N}=\mathrm{N}), 1744$ $(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}-161.4\left(c 4.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{H}}$) 5.16 (br s, 2H, H-1, H-4), $4.22\left(2 \mathrm{~d}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.02\left(\mathrm{br} \mathrm{q}, 1 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-5\right), 3.86\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 3}=12.8\right.$ $\left.\mathrm{Hz}, J_{2 \mathrm{e}, 3}=4.8 \mathrm{~Hz}, J_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3\right), 2.45\left(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{3}\right)$, $2.10\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=J_{2 \mathrm{a}, 3}=12.8 \mathrm{~Hz}, J_{1,2 \mathrm{a}}=3.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 1.56\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=12.8 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=4.8\right.$ $\mathrm{Hz}, \mathrm{H}-2 \mathrm{e}), 1.14\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $170.4(\mathrm{C}=\mathrm{O}), 95.8(\mathrm{C}-1)$, $79.0(\underline{\mathrm{C}} \equiv \mathrm{CH}), 74.6(\mathrm{C} \equiv \underline{\mathrm{CH}}), 70.0(\mathrm{C}-4), 65.6(\mathrm{C}-5), 54.5\left(\mathrm{OCH}_{2}\right), 54.4(\mathrm{C}-3), 29.2(\mathrm{C}-2), 20.7$ $\left(\mathrm{O}=\mathrm{CCH}_{3}\right), 16.6$ (C-6). HRMS (ESI) calcd for (M+Na) $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}$: 276.0955. Found: 276.0956. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 52.17; H, 5.97; N, 16.59. Found C, 52.53; H, 5.99; N, 16.93.

2-Propargyl 3-azido-2,3,6-trideoxy- α-L-lyxo-hexopyranoside (35)

Compound $34(81 \mathrm{mg}, 0.32 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(6 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(31 \mathrm{mg}, 0.23 \mathrm{mmol})$ added and then the reaction mixture was stirred for 24 h . The solvent was evaporated and the residue was purified by column chromatography ($3: 1$ hexanes-EtOAc) to acquire pure $\mathbf{3 5}$ as a pale yellow thin oil (64 mg, 94\%); $\mathrm{R}_{f} 0.26$ (3:1 hexanes-EtOAc); IR v $3462(\mathrm{O}-\mathrm{H}), 3294(\equiv \mathrm{C}-\mathrm{H}), 2100(\mathrm{~N}=\mathrm{N}=\mathrm{N}) \mathrm{cm}^{-1}$; $[\alpha]_{\mathrm{D}}^{23}-169.7\left(c 2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}\right) 5.10\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{1,2 \mathrm{a}}=3.8 \mathrm{~Hz}, \mathrm{H}-1\right), 4.19$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 3.92\left(\mathrm{br} \mathrm{q}, 1 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-5\right), 3.79\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 3}=13.0 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=5.0 \mathrm{~Hz}\right.$, $\left.J_{3,4}=2.8 \mathrm{~Hz}, \mathrm{H}-3\right), 3.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4), 2.44\left(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 2.09\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=\right.$ $\left.J_{2 \mathrm{a}, 3}=13.0 \mathrm{~Hz}, J_{1,2 \mathrm{a}}=3.8 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 2.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.93\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=13.0 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=5.0\right.$ $\mathrm{Hz}, \mathrm{H}-2 \mathrm{e}), 1.26\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $95.8(\mathrm{C}-1), 79.1$ ($\mathrm{C} \equiv \mathrm{CH}$), $74.5(\mathrm{C} \equiv \mathrm{CH}), 69.6(\mathrm{C}-4), 66.4(\mathrm{C}-5), 56.8(\mathrm{C}-3), 54.5\left(\mathrm{OCH}_{2}\right), 28.3(\mathrm{C}-2), 16.6(\mathrm{C}-6)$. HRMS (ESI) calcd for $(\mathrm{M}+\mathrm{Na}) \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$: 234.0849. Found: 234.0848. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 51.18; H , 6.20 ; N, 19.89. Found C, $50.75 ;$ H, 6.30; N, 19.19.

2-Propargyl 3-amino-2,3,6-trideoxy- α-L-lyxo-hexopyranoside (36)

To a solution of compound $\mathbf{3 5}(458 \mathrm{mg}, 2.17 \mathrm{mmol})$ in THF (50 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added PPh_{3} $(1.14 \mathrm{~g}, 4.35 \mathrm{mmol})$, and the reaction was heated at reflux for 10 h . After cooling and concentration of the solution, the residue was purified by column chromatography on Iatrobeads $\left(\mathrm{EtOAc} \rightarrow \mathrm{CH}_{3} \mathrm{OH}\right)$ to yield pure 36 ($356 \mathrm{mg}, 89 \%$) as a white waxy solid: $\mathrm{R}_{f} 0.55\left(100: 1 \mathrm{CH}_{3} \mathrm{OH}-\mathrm{HOAc}\right)$; IR v 3287.4 ($\equiv \mathrm{C}-$ $\mathrm{H}, \mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}-191.8\left(c 1.9, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{H}}\right) 5.00\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{1,2 \mathrm{a}}=3.4\right.$ $\mathrm{Hz}, \mathrm{H}-1), 4.18\left(\mathrm{~d}, 2 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 3.87\left(\mathrm{br} \mathrm{q}, 1 \mathrm{H}, J_{5,6}=6.6 \mathrm{~Hz}, \mathrm{H}-5\right), 3.42\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{3,4}\right.$ $=2.5 \mathrm{~Hz}, \mathrm{H}-4), 3.07\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 3}=12.7 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=5.0 \mathrm{~Hz}, J_{3,4}=2.5 \mathrm{~Hz}, \mathrm{H}-3\right), 2.79(\mathrm{t}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 1.67\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=J_{2 \mathrm{a}, 3}=12.7 \mathrm{~Hz}, J_{1,2 \mathrm{a}}=3.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 1.74\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=12.7\right.$ $\left.\mathrm{Hz}, J_{2 \mathrm{e}, 3}=5.0 \mathrm{~Hz}, J_{1,2 \mathrm{e}}=1.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{e}\right), 1.19\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.6 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, $\left.\delta_{\mathrm{C}}\right) 96.8(\mathrm{C}-1), 80.5(\mathrm{C} \equiv \mathrm{CH}), 79.3(\mathrm{C}-4), 75.4(\mathrm{C} \equiv \mathrm{CH}), 69.9(\mathrm{C}-5), 54.8\left(\mathrm{OCH}_{2}\right), 50.3(\mathrm{C}-3), 38.2(\mathrm{C}-2)$, 18.1 (C-6). HRMS (ESI) calcd for $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{3}$: 186.1125. Found: 186.1123. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}, 58.36 ; \mathrm{H}, 8.16 ; \mathrm{N}, 7.56$. Found C, $58.18 ; \mathrm{H}, 8.08 ; \mathrm{N}, 7.67$.

2-Propargyl 3-amino-2,3,6-trideoxy- α-L-arabino-hexopyranoside (37)

To a solution of $\mathbf{3 3}(1.27 \mathrm{~g}, 6.01 \mathrm{mmol})$ in THF $(80 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(3.17 \mathrm{~g}, 12.1$ mmol), and the reaction mixture was heated at reflux for 10 h . After concentration of the solution, the residue was purified by column chromatography on Iatrobeads (EtOAc $\rightarrow \mathrm{CH}_{3} \mathrm{OH}$) to yield pure $\mathbf{3 7}$ $(1.08 \mathrm{~g}, 97 \%)$ as a white amorphous solid: $\mathrm{R}_{f} 0.34\left(\mathrm{CH}_{3} \mathrm{OH}\right)$; IR $v 3341.0(\mathrm{~N}-\mathrm{H}), 3296.7(\equiv \mathrm{C}-\mathrm{H})$, $3090.3(\mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}-175.8$ (c 0.80, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{H}}$) $4.96(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, $\left.J_{1,2 \mathrm{a}}=3.4 \mathrm{~Hz}, \mathrm{H}-1\right), 4.18\left(\mathrm{~d}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 3.58\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.3 \mathrm{~Hz}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-\right.$ 5), $2.94\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 3}=12.1 \mathrm{~Hz}, J_{3,4}=9.3 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=4.6 \mathrm{~Hz}, \mathrm{H}-3\right), 2.82\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=J_{4,5}=9.3 \mathrm{~Hz}\right.$, $\mathrm{H}-4), 2.79\left(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 1.98\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=13.4 \mathrm{~Hz}, J_{2 \mathrm{e}, 3}=4.6 \mathrm{~Hz}, J_{1,2 \mathrm{e}}=1.3 \mathrm{~Hz}\right.$, $\mathrm{H}-2 \mathrm{e}), 1.56\left(\mathrm{ddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=13.4 \mathrm{~Hz}, J_{2 \mathrm{a}, 3}=12.1 \mathrm{~Hz}, J_{1,2 \mathrm{a}}=3.4 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 1.21\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.3 \mathrm{~Hz}\right.$, $\mathrm{H}-6) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{C}}\right) 96.8(\mathrm{C}-1), 80.5(\underline{\mathrm{C}} \equiv \mathrm{CH}), 79.3(\mathrm{C}-4), 75.4(\mathrm{C} \equiv \underline{\mathrm{CH}}), 69.9(\mathrm{C}-5)$,
$54.8\left(\mathrm{OCH}_{2}\right), 50.3(\mathrm{C}-3), 38.2(\mathrm{C}-2), 18.1(\mathrm{C}-6)$. HRMS (ESI) calcd for $(\mathrm{M}+\mathrm{H}) \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{3}: 186.1125$. Found: 186.1124. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, 58.36; H, 8.16; N, 7.56. Found C, 58.19; H, 8.13; N, 7.77.

Methyl 4-O-acetyl-2,3,6-trideoxy- α-L-erythro-hexopyranoside (40 α) and Methyl 4-O-acetyl-2,3,6-trideoxy- β-L-erythro-hexopyranoside (40ß)

A solution of the mixture of $\mathbf{3 9 \alpha}$ and $\mathbf{3 9 \beta}(282 \mathrm{mg}, 1.52 \mathrm{mmol})$ in EtOAc $(40 \mathrm{~mL})$ was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(8 \mathrm{mg}, 2.7 \%$ mass ratio) at room temperature and normal pressure. Once the starting material was fully consumed (about 3.5 h), the reaction mixture was filtered through a Celite pad and concentrated. The crude product was purified by column chromatography (8:1, hexanesEtOAc) to acquire pure $\mathbf{4 0} \boldsymbol{\alpha}$ as a colorless oil and pure $\mathbf{4 0 \beta}$ as a white amorphous solid (256 mg for $\mathbf{4 0} \boldsymbol{\alpha}$ and 40β together, $90 \%, \alpha: \beta=4.6: 1$). $(40 \alpha): \mathrm{R}_{f} 0.64\left(6: 1\right.$ hexanes-EtOAc); IR: $v 1738(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}$ -192.4 (c 4.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 4.63 (br s, $1 \mathrm{H}, \mathrm{H}-1$), 4.44-4.52 (m, $1 \mathrm{H}, \mathrm{H}-4$), $3.77\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.7 \mathrm{~Hz}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-5\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{3}\right), 1.86-1.94$ (m, 1H, H-3e), 1.70-1.84 (m, 3H, H-2a, H-2e, H-3a), 1.15 (d, $\left.3 \mathrm{H}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}\right) 170.2(\mathrm{C}=\mathrm{O}), 97.3(\mathrm{C}-1), 73.5(\mathrm{C}-4), 66.3(\mathrm{C}-5), 54.5\left(\mathrm{OCH}_{3}\right), 29.0(\mathrm{C}-2), 24.0(\mathrm{C}-3)$, $21.1\left(\mathrm{O}=\mathrm{CCH}_{3}\right)$, $17.8(\mathrm{C}-6)$. HRMS (ESI) calcd for $(\mathrm{M}+\mathrm{Na}) \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}$: 211.0941. Found: 211.0941. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 57.43 ; \mathrm{H}, 8.57$. Found C, $57.08 ; \mathrm{H}, 8.74$.
(40ß): $\mathrm{R}_{f} 0.60$ (6:1 hexanes-EtOAc); IR: $v 1731(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}+17.0\left(c \quad 1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) $4.42\left(\mathrm{ddd}, 1 \mathrm{H}, J_{3 \mathrm{a}, 4}=10.4 \mathrm{~Hz}, J_{4,5}=9.1 \mathrm{~Hz}, J_{3 \mathrm{e}, 4}=4.1 \mathrm{~Hz}, \mathrm{H}-4\right), 4.36(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{1,2 \mathrm{a}}=9.0 \mathrm{~Hz}, J_{1,2 \mathrm{e}}=2.2 \mathrm{~Hz}, \mathrm{H}-1\right), 3.48\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.1 \mathrm{~Hz}, J_{5,6}=6.2 \mathrm{~Hz}, \mathrm{H}-5\right), 3.45(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.13\left(\mathrm{dddd}, 1 \mathrm{H}, J_{3 \mathrm{a}, 3 \mathrm{e}}=13.0 \mathrm{~Hz}, J_{2 \mathrm{e}, 3 \mathrm{e}}=J_{3 \mathrm{e}, 4}=J_{2 \mathrm{a}, 3 \mathrm{e}}=4.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{e}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{3}\right)$, $1.86\left(\right.$ dddd, $\left.1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=13.0 \mathrm{~Hz}, J_{2 \mathrm{e}, 3 \mathrm{e}}=J_{2 \mathrm{e}, 3 \mathrm{a}}=4.1 \mathrm{~Hz}, J_{1,2 \mathrm{e}}=2.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{e}\right), 1.59\left(\mathrm{dddd}, 1 \mathrm{H}, J_{2 \mathrm{a}, 2 \mathrm{e}}=\right.$ $\left.J_{2 \mathrm{a}, 3 \mathrm{a}}=13.0 \mathrm{~Hz}, J_{1,2 \mathrm{a}}=9.0 \mathrm{~Hz}, J_{2 \mathrm{a}, 3 \mathrm{e}}=4.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}\right), 1.45\left(\mathrm{dddd}, 1 \mathrm{H}, J_{3 \mathrm{a}, 3 \mathrm{e}}=J_{2 \mathrm{a}, 3 \mathrm{a}}=13.0 \mathrm{~Hz}, J_{3 \mathrm{a}, 4}=10.4\right.$ $\left.\mathrm{Hz}, J_{2 \mathrm{e}, 3 \mathrm{a}}=4.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right), 1.20\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.2 \mathrm{~Hz}, \mathrm{H}-6\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 170.2 $(\mathrm{C}=\mathrm{O}), 102.4(\mathrm{C}-1), 73.1(\mathrm{C}-5), 72.9(\mathrm{C}-4), 56.2\left(\mathrm{OCH}_{3}\right), 29.9(\mathrm{C}-2), 27.1(\mathrm{C}-3), 21.1\left(\mathrm{O}=\mathrm{CCH}_{3}\right), 18.1$
(C-6). HRMS (ESI) calcd for (M+Na) $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}$: 211.0941. Found: 209.0942. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 57.43 ; \mathrm{H}, 8.57$. Found C, 57.47; H, 8.55.

Methyl 2,3,6-trideoxy- α-L-erythro-hexopyranoside (42 α) and Methyl 2,3,6-trideoxy- β-L-erythrohexopyranoside (42 β)

A mixture of compounds $\mathbf{4 0 \alpha}$ and $\mathbf{4 0 \beta}(1.85 \mathrm{~g}, 9.84 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL})$. To the above solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.54 \mathrm{~g}, 3.9 \mathrm{mmol})$, and then the reaction was stirred for 12 h . The solvent was evaporated and the residue was purified by column chromatography ($2: 1$, hexanes-EtOAc) to acquire pure $\mathbf{4 2 \alpha}(0.73 \mathrm{~g})$ and $\mathbf{4 2 \beta}(0.09 \mathrm{~g})$, and their mixture $(0.49 \mathrm{~g})$ as a colorless oil respectively $(1.31 \mathrm{~g}, 91 \%, \alpha: \beta=5.1: 1) .(42 \alpha): \mathrm{R}_{f} 0.22\left(2: 1\right.$ hexanes-EtOAc); IR: $v 3434(\mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}-168.6(c$ 1.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}\right) 4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1), 3.54\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.2 \mathrm{~Hz}, J_{5,6}=6.2\right.$ $\mathrm{Hz}, \mathrm{H}-5), 3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.30-3.36(m, 1H, H-4), 1.94 (br s, $1 \mathrm{H}, \mathrm{OH}$), $1.65-1.85$ (m, 4H, H-2a, H$2 \mathrm{e}, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-3 \mathrm{e}$), $1.24\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.2 \mathrm{~Hz}, \mathrm{H}-6\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 97.3 (C-1), 72.0 (C4), 69.3 (C-5), $54.4\left(\mathrm{OCH}_{3}\right), 29.5$ (C-2), 27.6 (C-3), 17.9 (C-6). HRMS (ESI) calcd for (M+Na) $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}: 169.0835$. Found: 169.0834. Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 57.51; H, 9.65. Found C, 57.64; H, 9.77.
(42ß): $\mathrm{R}_{f} 0.17$ (2-1 hexanes:EtOAc); IR: $v 3411(\mathrm{O}-\mathrm{H}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}+47.0\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}\right) 4.36\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2 \mathrm{a}}=9.2 \mathrm{~Hz}, J_{1,2 \mathrm{e}}=2.0 \mathrm{~Hz}, \mathrm{H}-1\right), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.25-3.32 (m, 2H, H-4, H-5), 2.03-2.08 (m, 1H, H-3e), 1.86-1.91 (m, 1H, H-2e), 1.53-1.66 (m, 2H, H$2 \mathrm{a}, \mathrm{OH}), 1.43-1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 1.32\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=5.9 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 102.5 (C-1), 75.7 (C-5), $71.6(\mathrm{C}-4), 56.3\left(\mathrm{OCH}_{3}\right), 31.0(\mathrm{C}-2 / \mathrm{C}-3), 30.5(\mathrm{C}-3 / \mathrm{C}-2), 18.0(\mathrm{C}-6)$. HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3}$: 146.0943. Found: 146.0940. Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 57.51; H, 9.65. Found C, 58.02; H, 9.76.

Compounds $\mathbf{4 2} \boldsymbol{\alpha}$ and $\mathbf{4 2 \beta}(378 \mathrm{mg}, 2.59 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.08 \mathrm{~mL}$, 7.77 mmol) was added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and then mesyl chloride ($0.40 \mathrm{~mL}, 5.2 \mathrm{mmol}$) was added dropwise. After stirring for 2 h , the reaction mixture was washed with $1 \mathrm{~N} \mathrm{HCl}, 1 \mathrm{~N} \mathrm{NaOH}$ and brine sequentially. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated and the acquired yellow oil was dissolved in DMF (7 mL). To this solution was added NaN_{3} ($933 \mathrm{mg}, 14.4 \mathrm{mmol}$) and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h before cooling and extraction with $\mathrm{Et}_{2} \mathrm{O}$. The ether solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated. The resulting residue was purified by column chromatography (20:1, hexanes-EtOAc) to acquire pure $\mathbf{4 3} \boldsymbol{\alpha}$ (230 mg) and $\mathbf{4 3 \beta}$ (22 mg), and their mixture (83 mg) as colorless oils respectively ($335 \mathrm{mg}, 76 \%$). ($\mathbf{4 3 \alpha}$): $\mathrm{R}_{f} 0.24$ (20:1 hexanes-EtOAc); IR: v $2098 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{N}=\mathrm{N}) ;[\alpha]_{\mathrm{D}}^{23}-71.9\left(c 3.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, \delta_{\mathrm{H}}\right) 4.68\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{12 \mathrm{a} \text { or 2e }}=2.7 \mathrm{~Hz}, \mathrm{H}-1\right), 3.95\left(\mathrm{dq}, 1 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, J_{4,5}=1.7 \mathrm{~Hz}, \mathrm{H}-5\right), 3.42$ (br s, 1H, H-4), 3.32 (s, 3H, OCH 3), 2.06-2.14 (m, 1H, H-3e), 1.84-1.95 (m, 2H, H-3a, H-2e), 1.51$1.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 1.20\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $97.9(\mathrm{C}-1), 65.0$ (C-5), $59.9(\mathrm{C}-4), 54.6\left(\mathrm{OCH}_{3}\right), 24.0(\mathrm{C}-2), 23.0(\mathrm{C}-3), 17.9(\mathrm{C}-6)$. HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: 171.1008. Found: 171.0993. Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 49.11; H, 7.65; N, 24.54. Found C, 49.33; H, 8.00; N, 24.69.
(43ß): $\mathrm{R}_{f} 0.13$ (20:1 hexanes-EtOAc); IR: $v 2096 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{N}=\mathrm{N}) ;[\alpha]_{\mathrm{D}}^{23}+164.1\left(c 1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) $4.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 3.66\left(\mathrm{dq}, 1 \mathrm{H}, J_{5,6}=6.4 \mathrm{~Hz}, J_{4,5}=1.7 \mathrm{~Hz}, \mathrm{H}-5\right), 3.48$ (s, 3H, OCH 3), 3.36-3.40 (m, 1H, H-4), 2.11-2.17 (m, 1H, H-3e), 1.77-1.85 (m, 1H, H-3a), 1.65-1.75 (m, 2H, H-2a, H-2e), $1.30\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.4 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 102.6 (C-1), 72.7 (C-5), $59.0(\mathrm{C}-4), 55.9\left(\mathrm{OCH}_{3}\right), 26.8(\mathrm{C}-3), 25.8(\mathrm{C}-2), 17.9$ (C-6). HRMS (ESI) calcd for (M+Na) $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}: 194.0900$. Found: 194.0901.

2-Propargyl 4-azido-2,3,4,6-trideoxy- α-L-threo-hexopyranoside (44 α) and 2-Propargyl 4-azido-2,3,4,6-trideoxy- β-L-threo-hexopyranoside (44 β)

To a flask were added the mixture of $\mathbf{4 3} \boldsymbol{\alpha}$ and $\mathbf{4 3 \beta}$ ($200 \mathrm{mg}, 1.17 \mathrm{mmol}$), crushed activated $4 \AA$ molecular sieves (100 mg), propargyl alcohol ($0.41 \mathrm{~mL}, 7.0 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was stirred for 10 min at room temperatu, cooled to $-40^{\circ} \mathrm{C}$, and then $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.37 \mathrm{~mL}, 2.9 \mathrm{mmol})$ was added dropwise via syringe. After adding the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, the reaction mixture was warmed to $-10{ }^{\circ} \mathrm{C}$. Once the starting material was fully consumed (about 4 h), the reaction mixture was quenched by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(150 \mathrm{mg})$. Next, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, satd aqueous NaHCO_{3} solution $(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ were added. The organic layer was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product was purified by column chromatography ($30: 1$, hexanes-EtOAc) to acquire pure 44α and 44β both as colorless oils ($203 \mathrm{mg}, 89 \%, \alpha: \beta=3.5: 1$). ($\mathbf{4 4 \alpha}$): $\mathrm{R}_{f} 0.32$ (20:1 hexanes-EtOAc); IR: v $3297(\equiv \mathrm{C}-\mathrm{H}), 2100(\mathrm{~N}=\mathrm{N}=\mathrm{N}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}-109.0\left(c 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}\right) 4.60\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J_{1,2 \mathrm{a} \text { or } 2 \mathrm{e}}=3.5 \mathrm{~Hz}, \mathrm{H}-1\right), 4.22(\mathrm{dd}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.17\left(\mathrm{dd}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.00\left(\mathrm{dq}, 1 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, J_{4,5}=1.7\right.$ $\mathrm{Hz}, \mathrm{H}-5), 3.45$ (br s, $1 \mathrm{H}, \mathrm{H}-4$), $2.41\left(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right.$), 2.10-2.18 (m, 1H, H-3e), 1.87$2.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-2 \mathrm{e}), 1.58-1.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 1.20\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.5 \mathrm{~Hz}, \mathrm{H}-6\right) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}\right) 95.9(\mathrm{C}-1), 79.5(\underline{\mathrm{C}} \equiv \mathrm{CH}), 74.6(\mathrm{C} \equiv \underline{\mathrm{C}}), 65.6(\mathrm{C}-5), 59.8(\mathrm{C}-4), 54.2\left(\mathrm{OCH}_{2}\right), 23.8(\mathrm{C}-$ 2), 22.9 (C-3), 17.8 (C-6). HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ (loss of $-\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}$): 140.0824. Found: 140.0828. Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 55.37; H, 6.71; $\mathrm{N}, 21.52$. Found C, 55.85; H, 7.02; $\mathrm{N}, 21.74$.
(44ß): $\mathrm{R}_{f} 0.22\left(20: 1\right.$ hexanes-EtOAc); IR: $v 3297(\equiv \mathrm{C}-\mathrm{H}), 2098(\mathrm{~N}=\mathrm{N}=\mathrm{N}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}+208.6(c$ $0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) $4.66\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2 \mathrm{a}}=8.8 \mathrm{~Hz}, J_{1,2 \mathrm{e}}=3.1 \mathrm{~Hz}, \mathrm{H}-1\right.$), 4.38 (dd, $\left.1 \mathrm{H}, J=15.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.34\left(\mathrm{dd}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right.$), $3.68\left(\mathrm{dq}, 1 \mathrm{H}, J_{5,6}=6.3 \mathrm{~Hz}, J_{4,5}=1.7 \mathrm{~Hz}, \mathrm{H}-5\right), 3.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4), 2.40(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 2.13-2.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}), 1.68-1.88(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-2 \mathrm{e}, \mathrm{H}-3 \mathrm{a}), 1.29\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.3\right.$ $\mathrm{Hz}, \mathrm{H}-6)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) 99.1 (C-1), 79.3 ($\mathrm{C} \equiv \mathrm{CH}$), 74.3 ($\mathrm{C} \equiv \mathrm{CH}$), 72.9 (C-5), 59.0 (C4), $54.6\left(\mathrm{OCH}_{2}\right), 26.8(\mathrm{C}-3), 25.7(\mathrm{C}-2), 17.8(\mathrm{C}-6) . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $(\mathrm{M}+\mathrm{Na}) \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}$: 218.0900. Found: 218.0901.

2-Propargyl 4-amino-2,3,4,6-trideoxy- α-L-threo-hexopyranoside (45)

To a solution of compound $\mathbf{4 4} \boldsymbol{\alpha}(423 \mathrm{mg}, 2.17 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.39 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(0.85 \mathrm{~g}, 3.3 \mathrm{mmol})$, and the reaction was stirred for 10 h under reflux. After cooling and evaporation, the residue was purified by column chromatography $\left(\mathrm{EtOAc} \rightarrow \mathrm{CH}_{3} \mathrm{OH}\right)$ to yield pure $\mathbf{4 5}$ ($313 \mathrm{mg}, 85 \%$) as a foamy white solid: $\mathrm{R}_{f} 0.39\left(5: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}\right)$; IR: v $3392(\mathrm{~N}-\mathrm{H}), 3295(\equiv \mathrm{C}-\mathrm{H})$, $3257(\mathrm{~N}-\mathrm{H}), 2118(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}-156.1\left(c 3.5, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{H}}\right) 4.60(\mathrm{br}$ d, $\left.1 \mathrm{H}, J_{1,2 \mathrm{a} \text { or } 2 \mathrm{e}}=3.6 \mathrm{~Hz}, \mathrm{H}-1\right), 4.20\left(\mathrm{~d}, 2 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.00\left(\mathrm{dq}, 1 \mathrm{H}, J_{5,6}=6.7 \mathrm{~Hz}, J_{4,5}=\right.$ $1.5 \mathrm{~Hz}, \mathrm{H}-5), 2.80\left(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right.$), 2.71 (br s, $1 \mathrm{H}, \mathrm{H}-4$), $2.00-2.09$ (m, $1 \mathrm{H}, \mathrm{H}-3 \mathrm{e}$), $1.88-1.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{e}), 1.58-1.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 1.45-1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 1.10\left(\mathrm{~d}, 3 \mathrm{H}, J_{5,6}=6.7 \mathrm{~Hz}\right.$, $\mathrm{H}-6)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta_{\mathrm{C}}$) 97.1 (C-1), 80.7 ($\underline{\mathrm{C}} \equiv \mathrm{CH}$), 75.4 ($\mathrm{C} \equiv \underline{\mathrm{CH}}$), 67.6 (C-5), 54.8 $\left(\mathrm{OCH}_{2}\right), 49.2$ (C-4), 26.7 (C-3), 24.1 (C-2), 17.7 (C-6). HRMS (ESI) calcd for (M+H) $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{2}$: 170.1176. Found: 170.1177. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 63.88; H, 8.93; N, 8.28. Found C, 63.99; H, 9.01; N, 7.90.

3-(2-Phenyl-benzo[b]furan-3-yl)-prop-2-ynyl

Compound 24 ($97.9 \mathrm{mg}, 0.39 \mathrm{mmol}$), compound $40(110.3 \mathrm{mg}, 0.59 \mathrm{mmol})$, and crushed activated $4 \AA$ molecular sieves (30 mg) were suspended in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was stirred for $5-$ 10 min at room temperature and then cooled to $-10{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(102 \mu \mathrm{~L}, 0.8 \mathrm{mmol})$ was added dropwise via syringe. After adding $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$. Once the starting material was fully consumed, the reaction mixture was quenched by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.1 g), and then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, satd NaHCO_{3} solution $(5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added. The organic layer was separated, washed with brine, and was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The crude product was purified by column chromatography (10:1, hexanes-EtOAc) giving pure 46 as a yellow paste ($77.3 \mathrm{mg}, 49 \%$). (46): $\mathrm{R}_{f} 0.46$ (4:1 hexanes-EtOAc); IR: v $2222(\mathrm{C} \equiv \mathrm{C}), 1737(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}-$ $108.0\left(c 5.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 8.26-8.30(m,2H, Ar), 7.66-7.70(m, 1H, Ar),
7.47-7.53 (m, 3H, Ar), 7.39-7.43 (m, 1H, Ar), 7.28-7.36 (m, 2H, Ar), 5.13 (br s, 1H, H-1), 4.64 (s, 2H, $\left.\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 4.52-4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.93\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.6 \mathrm{~Hz}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-5\right), 2.06(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{O}=\mathrm{CCH}_{3}$), 1.83-2.01 (m, 4H, H-2a, H-2e, H-3a, H-3e), 1.20 (d, $3 \mathrm{H}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}\right) 170.2(\mathrm{C}=\mathrm{O}), 156.8(\mathrm{Ar}), 153.4(\mathrm{Ar}), 129.9(9)(\mathrm{Ar}), 129.9(6)(\mathrm{Ar}), 129.2(\mathrm{Ar}), 128.6$ (2, Ar), 126.0 (2, Ar), 125.3 (Ar), 123.4 (Ar), 120.3 (Ar), 111.2 (Ar), 98.5 (Ar), $95.0(\mathrm{C}-1), 92.6$ ($\equiv \mathrm{C}$), $77.8(\equiv \mathrm{C}), 73.4(\mathrm{C}-4), 67.1(\mathrm{C}-5), 55.0\left(\mathrm{OCH}_{2}\right), 29.0(\mathrm{C}-2), 24.1(\mathrm{C}-3), 21.2\left(\mathrm{O}=\mathrm{CCH}_{3}\right), 17.9(\mathrm{C}-6)$. HRMS (ESI) calcd for (M+Na) $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}: 427.1516$. Found: 427.1517. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{5}$: C , 74.24; H, 5.98. Found C, 74.50; H, 6.33.

3-(2-Phenyl-benzo[b]thiophen-3-yl)-prop-2-ynyl 4-O-acetyl-2,3,6-trideoxy- α -L-erythrohexopyranoside (47)

Compound 47 was synthesized from 25 ($124.2 \mathrm{mg}, 0.47 \mathrm{mmol}$) and $\mathbf{4 0}(133.2 \mathrm{mg}, 0.71 \mathrm{mmol})$ in 43% yield by following the same procedure used for the synthesis of 46. (47): white needle-like solid after recrystallization from hexanes- $\mathrm{Et}_{2} \mathrm{O}$ (2:1), m.p.: $89-91^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.36$ (6:1 hexanes-EtOAc); IR: $v 2216$ $(\mathrm{C} \equiv \mathrm{C}), 1736(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}-120.2\left(c\right.$ 1.4, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{H}}$) 7.96-8.00 (m, 2H, Ar), 7.92-7.96 (m, 1H, Ar), 7.79-7.82 (m, 1H, Ar), 7.36-7.50 (m, 5H, Ar), 5.08 (br s, 1H, H-1), $4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 4.50-4.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.89\left(\mathrm{dq}, 1 \mathrm{H}, J_{4,5}=9.7 \mathrm{~Hz}, J_{5,6}=6.3 \mathrm{~Hz}, \mathrm{H}-5\right), 2.06$ (s, 3H, O= CCH_{3}), 1.80-2.00 (m, 4H, H-2a, H-2e, H-3a, H-3e), 1.17 (d, 3H, J5,6 $=6.3 \mathrm{~Hz}, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{C}}$) $170.2(\mathrm{C}=\mathrm{O}), 146.9$ (Ar), 141.1 (Ar), 137.5 (Ar), 133.7 (Ar), 128.8 (Ar), 128.7 (2, Ar), 128.4 (2, Ar), 125.2 (Ar), 124.9 (Ar), 123.3 (Ar), 122.0 (Ar), 112.9 (Ar), 94.8 (C-1), 90.2 $(\equiv \mathrm{C}), 80.4(\equiv \mathrm{C}), 73.4(\mathrm{C}-4), 67.0(\mathrm{C}-5), 54.8\left(\mathrm{OCH}_{2}\right), 29.0(\mathrm{C}-2), 24.0(\mathrm{C}-3), 21.2\left(\mathrm{O}=\mathrm{CCH}_{3}\right), 17.8(\mathrm{C}-$ 6). HRMS (ESI) calcd for $(\mathrm{M}+\mathrm{Na}) \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SNa}: 443.1288$. Found: 443.1289. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 71.40 ; \mathrm{H}, 5.75 ; \mathrm{S}, 7.63$. Found C, 71.34; H, 5.80; S, 7.41.

$80.00 \cdot 66^{\circ} 0$
1414 Y 41
29012.03

[^0]21

-156.73
-153.41
-153.41
129.96

$\left[\begin{array}{r}129.96 \\ -129.29 \\ -128.68\end{array}\right.$ $=-128.68$ -126.00
$\urcorner-125.35$
-123.42
-120.22
-111.11
-98.40
-94.83

00て Oで
$08 T$
$\stackrel{\text { ® }}{\circ}$

荡

0гт
00τ
$\stackrel{\infty}{\circ}$
\circ
$\stackrel{\circ}{\circ}-8$
$\stackrel{\circ}{\circ}$
سad
ưđ

[^1]

urad	0	$0 Z$	0才	09	08	00I	OZL	0もし	09I	08L	007	Oてて	0もて

00 OZて 0ぁて
$08 \tau \quad 007$
$097 \quad 08 \tau$

0ヵて

120

ω

100
©

응
－
20
20 $=$
$=$
$=$
$=$
$=$
$=$
$=$ \exists
\exists
－
ưd
いいいいい

77.311
76.993
76.676
-73.453
-66.313
-54.479
-29.027
-24.027
-24.027
-21.138
-17.818

-97.920
77.312
-77.056
76.801
-64.982
-59.924
-54.627

-95.863
79.544
77.296
-77.041
-76.786
$\checkmark_{74.094}$
-65.625
-59.817
-54.240
23.760
${ }^{-} 22.859$
-17.844

-99.059
79.318
$+\quad \begin{array}{r}77.298 \\ 77.043 \\ 76.788 \\ 74.322 \\ 72.881\end{array}$
-58.964
-54.560

HPLC Analysis of test compounds
HPLC: VARIAN ProStar Model 701
Column: VARIAN Polaris 5 C8-A $250 \times 4.6 \mathrm{~mm}$ Detector: ELSD

Gradient of HPLC eluents

	0 min	2 min	5 min	20 min	21 min	25 min
25 mM NH 4						
OAc Buffer, $\mathrm{pH}=5.3$ $(\%)$	60	60	40	40	60	60
$\mathrm{CH}_{3} \mathrm{CN}(\%)$	40	40	60	60	40	40


```
Print Date: Mon Dec 03 13:55:04 2007 Page 1 of 1
Title
Run File : c:\users\wei shi\desktop\001.run
Method File : C:\star\Methods\Wei\Mannose.mth
Sample ID : Manual Sample
Injection Date: 2007/12/3 13:00 Calculation Date: 2007/12/3 13:25
Operator : Wei Detector Type: ProStar/Dynamax (2 Volts)
Workstation: Bus Address : 24
Instrument : Instrument #1 Sample Rate : 5.00 Hz
Channel : 1 = INTGR 1 Run Time : 24.987 min
** LC Workstation Version 6.30 ** 02868-26DO-AE7-0234 **
Run Mode : Analysis
Peak Measurement: Peak Area
Calculation Type: Percent
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\text { No. }
\end{gathered}
\] & \begin{tabular}{l}
Peak \\
Name
\end{tabular} & \begin{tabular}{l}
Result \\
()
\end{tabular} & \begin{tabular}{l}
Ret. \\
Time \\
(min)
\end{tabular} & Time Offset (min) & \[
\begin{gathered}
\text { Area } \\
\text { (counts) }
\end{gathered}
\] & \begin{tabular}{l}
Sep. \\
Code
\end{tabular} & \[
\begin{gathered}
\text { Width } \\
1 / 2 \\
(\text { sec })
\end{gathered}
\] & Status Codes \\
\hline 1 & & 0.9944 & 3.070 & 0.000 & 168790 & BB & 12.5 & \\
\hline 2 & & 0.0383 & 12.741 & 0.000 & 6497 & BB & 2.8 & \\
\hline 3 & & 98.9673 & -4.387 & 4. 0000 & -6748884 & EF & 27.7 & \\
\hline & ls: & 100.0000 & & 0.000 & 16974171 & & & \\
\hline
\end{tabular}
```

Gradient of HPLC eluents

	0 min	2 min	5 min	20 min	21 min	25 min
$25 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ Buffer, $\mathrm{pH}=5.3$ $(\%)$	60	60	40	40	60	60
$\mathrm{CH}_{3} \mathrm{CN}(\%)$	40	40	60	60	40	40


```
Print Date: Fri Dec 07 19:38:41 2007
    Page 1 of 1
Title :
Run File : c:\users\wei shi\desktop\hplc1-42-6.run
Method File : C:\star\Methods\Wei\Mannose.mth
Sample ID : Manual Sample
Injection Date: 2007/12/5 19:35 Calculation Date: 2007/12/5 20:00
Operator : Wei
Workstation: Bus Address: 24
Instrument : Instrument #1 Sample Rate : 5.00 Hz
Channel : 1 = INTGR 1 Run Time : 24.987 min
** LC Workstation Version 6.30 ** 02868-26D0-AE7-0234 **
Run Mode : Analysis
Peak Measurement: Peak Area
Calculation Type: Percent
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Peak No. & \begin{tabular}{l}
Peak \\
Name
\end{tabular} & \begin{tabular}{l}
Result \\
()
\end{tabular} & Ret. Time (min) & \begin{tabular}{l}
Time \\
Offset \\
(min)
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
\text { (counts) }
\end{gathered}
\] & sep. Code & \[
\begin{gathered}
\text { Width } \\
1 / 2 \\
(\text { sec })
\end{gathered}
\] & Status Codes \\
\hline 1 & & 0.0665 & 1.077 & 0.000 & 8350 & BB & 3.0 & \\
\hline 2 & & 0.0680 & 7.451 & 0.000 & 8547 & BB & 7.7 & \\
\hline 3 & & 0.0633 & 8.938 & 0.000 & 7951 & BB & 0.0 & \\
\hline 4 & & 0.0611 & 11.417 & 0.000 & 7680 & BB & 3.5 & \\
\hline 5 & & 99. 60.70 & 15.899 & 0.0.00 & 125-3063 & EE & 34.1- & \\
\hline 6 & & 0.0673 & 21.091 & 0.000 & 8448 & BB & 4.3 & \\
\hline 7 & & 0.0669 & 22.411 & 0.000 & 8399 & BB & 9.2 & \\
\hline & ls: & 100.0001 & & 0.000 & 12562438 & & & \\
\hline
\end{tabular}
```

Sample figure from the FID assays of compound $\mathbf{1 - 4}$

[^0]:
 sw-04-133
 500 MHz 1 D
 date: Apr

[^1]:

