Supporting Information for:

Synthesis and DNA-Binding Affinity Studies of Novel Aminosugar-Containing Compounds Designed as Functional Mimics of Anthracycline Antibiotics

Wei Shi,[†] Robert S. Coleman,[‡] and Todd L. Lowary[†], *

[†]Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of

Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2, Canada

and

[‡]Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210,

USA

Email: tlowary@ualberta.ca

Table of Contents

Synthetic procedure for compounds 15–16, 18–27, 29, 30, 33–37, 40, and 42–47	S4 - S11
¹ H NMR spectrum of 1	S20
¹³ C NMR spectrum (APT) of 1	S21
¹ H NMR spectrum of 2	S22
13 C NMR spectrum (APT) of 2	S23
¹ H NMR spectrum of 3	S24
¹³ C NMR spectrum (APT) of 3	S25
¹ H NMR spectrum of 4	S26
¹³ C NMR spectrum (APT) of 4	S27
¹ H NMR spectrum of 5	S28
¹³ C NMR spectrum (APT) of 5	S29

¹ H NMR spectrum of 6	S30
¹³ C NMR spectrum (APT) of 6	S31
¹ H NMR spectrum of 7	S32
¹³ C NMR spectrum (APT) of 7	S33
¹ H NMR spectrum of 8	S34
¹³ C NMR spectrum (APT) of 8	S35
¹ H NMR spectrum of 9	S36
¹³ C NMR spectrum (APT) of 9	S37
¹ H NMR spectrum of 10	S38
¹³ C NMR spectrum (APT) of 10	S39
¹ H NMR spectrum of 11	S40
¹³ C NMR spectrum (APT) of 11	S41
¹ H NMR spectrum of 12	S42
¹³ C NMR spectrum (APT) of 12	S43
¹ H NMR spectrum of 16	S44
¹³ C NMR spectrum (APT) of 16	S45
¹ H NMR spectrum of 20	S46
¹³ C NMR spectrum (APT) of 20	S47
¹ H NMR spectrum of 21	S48
¹³ C NMR spectrum (APT) of 21	S49
¹ H NMR spectrum of 24	S50
¹³ C NMR spectrum (APT) of 24	S51
¹ H NMR spectrum of 25	S52
¹³ C NMR spectrum (APT) of 25	S53
¹ H NMR spectrum of 26	S54
¹³ C NMR spectrum (APT) of 26	S55
¹ H NMR spectrum of 2 7	S56
¹³ C NMR spectrum (APT) of 27	S57
¹ H NMR spectrum of 29	S58
¹³ C NMR spectrum (APT) of 29	S59
¹ H NMR spectrum of 30	S60
¹³ C NMR spectrum (APT) of 30	S61
¹ H NMR spectrum of 33	S62
¹³ C NMR spectrum (APT) of 33	S63
¹ H NMR spectrum of 34	S64

¹³ C NMR spectrum (APT) of 34	S65
¹ H NMR spectrum of 35	S66
¹³ C NMR spectrum (APT) of 35	S67
¹ H NMR spectrum of 36	S68
¹³ C NMR spectrum (APT) of 36	S69
¹ H NMR spectrum of 37	S70
¹³ C NMR spectrum (APT) of 37	S71
¹ H NMR spectrum of 40α	S72
¹³ C NMR spectrum (APT) of 40α	S73
¹ H NMR spectrum of 40β	S74
13 C NMR spectrum (APT) of 40 β	S75
¹ H NMR spectrum of 42α	S76
¹³ C NMR spectrum (APT) of 42α	S77
¹ H NMR spectrum of 42β	S78
¹³ C NMR spectrum (APT) of 42β	S79
¹ H NMR spectrum of 43α	S80
¹³ C NMR spectrum (APT) of 43α	S81
¹ H NMR spectrum of 43β	S82
¹³ C NMR spectrum (APT) of 43β	S83
¹ H NMR spectrum of 44α	S84
13 C NMR spectrum (APT) of 44 α	S85
¹ H NMR spectrum of 44β	S86
¹³ C NMR spectrum (APT) of 44β	S87
¹ H NMR spectrum of 45	S88
¹³ C NMR spectrum (APT) of 45	S89
¹ H NMR spectrum of 46	S90
¹³ C NMR spectrum (APT) of 46	S91
¹ H NMR spectrum of 47	S92
¹³ C NMR spectrum (APT) of 47	S93
HPLC apparatus	S94
HPLC analysis of 1	S95
HPLC analysis of 5	S96
Sample figure from the FID assays of compound $1 - 4$	S97

1-Tosyl-3-iodo-2-phenylindole (15)

To a solution of **19** (134 mg, 0.385 mmol) and K₂CO₃ (160 mg, 1.16 mmol) in anhydrous MeCN (3.0 mL) was added I₂ (0.3 g, 1.18 mmol). The reaction mixture was stirred at room temperature for about 12 h, and then the solution was diluted with EtOAc, washed with a satd aqueous solution of Na₂S₂O₃ and then brine. The organic solution was dried (Na₂SO₄), filtered, and concentrated to yield the crude product, which was purified by column chromatography (4:1, hexanes–EtOAc) to afford **15** (178 mg, 98%) as a white amorphous solid: R_f 0.48 (4:1, hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.33 (d, 1H, *J* = 8.0 Hz, Ar), 7.31–7.55 (m, 10H, Ar), 7.10 (d, 2H, *J* = 8.6 Hz, Ar), 2.33 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, δ_C) 145.0 (Ar), 141.1 (Ar), 137.0 (Ar), 135.1 (Ar), 132.2 (Ar), 131.7 (2, Ar), 131.6 (Ar), 129.5 (2, Ar), 129.3 (Ar), 127.5 (2, Ar), 126.9 (2, Ar), 126.0 (Ar), 124.6 (Ar), 122.2 (Ar), 116.0 (Ar), 75.7 (Ar-I), 21.6 (CH₃). HRMS (EI) calcd for C₂₁H₁₆INO₂S: 472.9947. Found: 472.9961. Anal. calcd for C₂₁H₁₆INO₂S: C, 53.29; H, 3.41; N, 2.96; S, 6.77. Found C, 53.38; H, 3.48; N, 3.05; S, 6.93.

3-Iodo-2-phenylindole (16)

To a solution of compound **15** (69 mg, 0.15 mmol) in THF (5.0 mL) was added a solution of tetra-*n*butylammonium fluoride in THF (1.0 M, 1.0 mL, 1.0 mmol) at room temperature, and the mixture was heated at reflux for 6 h. After cooling to room temperature, a satd aqueous NaHCO₃ solution (30 mL) was added, and the mixture was extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated to leave a residue, which was purified by column chromatography on silica gel (12:1 hexanes–EtOAc) to give the product **16** (40 mg, 86%) as a brownish oil: R_f 0.55 (4:1 hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 8.40 (br s, 1H, NH), 7.79 (d, 2H, *J* = 7.5 Hz, Ar), 7.49–7.58 (m, 3H, Ar), 7.43–7.48 (m, 1H, Ar), 7.34–7.38 (m, 1H, Ar), 7.24–7.32 (m, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 138.0 (Ar), 136.4 (Ar), 132.2 (Ar), 131.9 (Ar), 128.8 (2, Ar), 128.6 (Ar), 128.4 (2, Ar), 123.6 (Ar), 121.7 (Ar), 121.1 (Ar), 111.1 (Ar), 58.3 (Ar-I). HRMS (EI) calcd for C₁₄H₁₀IN: 318.9858. Found: 318.9857. Anal. calcd for C₁₄H₁₀IN: C, 52.69; H, 3.16; N, 4.39. Found C, 52.59; H, 3.44; N, 4.38.

o-(Phenylethynyl)aniline (18)

To a solution of Et₃N (0.42 mL), PdCl₂(PPh₃)₂ (35 mg, 5 mol%), 2-iodoaniline **17** (220 mg, 1.00 mmol), and phenylacetylene (133 mg, 1.30 mmol) in THF (4 mL) was added CuI (10 mg, 5 mol%) under argon. The mixture was stirred at room temperature for 2 h, and then the reaction was quenched by the addition of a satd aqueous solution of NH₄Cl (5 mL). The aqueous solution was then extracted with Et₂O and the combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated to yield the crude product, which was purified by column chromatography (10:1, hexanes–EtOAc) to obtain pure **18** as a yellow amorphous solid (185 mg, 95%): R_f 0.48 (4:1, hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 7.51–7.68 (m, 2H, Ar), 7.30–7.40 (m, 4H, Ar), 7.12–7.18 (m, 1H, Ar), 6.70–6.78 (m, 2H, Ar), 4.25 (br s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃, δ_{C}) 147.7 (Ar), 132.2 (Ar), 131.5 (2, Ar), 129.7 (Ar), 128.4 (2, Ar), 128.2 (Ar), 123.3 (Ar), 118.0 (Ar), 114.4 (Ar), 108.0 (Ar), 94.7 (=C), 85.9 (=C). HRMS (EI) calcd for C₁₄H₁₁N: 193.0891. Found: 193.0893.

N-[2-(Phenylethynyl)phenyl]-*p*-toluenesulfonamide (19)

Compound **18** (78 mg, 0.40 mmol) was dissolved in pyridine–THF (0.22 mL:1 mL), and *p*-toluenesulfonyl chloride (115 mg, 0.62 mmol) was added. The mixture was stirred for 24 h at room temperature. The reaction was then diluted with water, extracted with CH₂Cl₂, dried (Na₂SO₄), and filtered. After evaporation, the residue was purified by column chromatography (8:1, hexanes–EtOAc) to obtain pure **19** as a white waxy solid (134 mg, 96%): R_f 0.40 (6:1, hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.69 (d, 2H, *J* = 8.3 Hz, Ar), 7.64 (d, 1H, *J* = 8.3 Hz, Ar), 7.46–7.51 (m, 2H, Ar), 7.35–7.42 (m, 4H, Ar), 7.26–7.32 (m, 2H, Ar), 7.16 (d, 2H, *J* = 8.0 Hz, Ar), 7.04–7.09 (td, 1H, *J* = 7.6, 1.0 Hz, Ar), 2.33 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, δ_C) 144.0 (Ar), 137.6 (Ar), 136.1 (Ar), 132.0 (Ar), 131.6 (2, Ar), 129.6 (3, Ar), 129.1 (Ar), 128.6 (2, Ar), 127.3 (2, Ar), 124.7 (Ar), 122.0

(Ar), 120.5 (Ar), 114.7 (Ar), 96.2 (≡C), 83.8 (≡C), 21.5 (CH₃). HRMS (EI) calcd for C₂₁H₁₇NO₂S: 347.0980. Found: 347.0980.

2-Phenylbenzo[b]furan (20)

n-Butyllithium (1.6 M in hexane, 0.5 mL, 0.80 mmol) was added dropwise to a solution of 3-iodo-2phenylbenzo[*b*]furan **13** (33 mg, 0.11 mmol) in THF (3.0 mL) at -78 °C. The mixture was stirred at -78 °C for 5 min and a satd aqueous solution of NH₄Cl (2 mL) was then added. After stirring for another 1 min, the reaction mixture was extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated to yield the crude product, which was purified by column chromatography (hexanes) to afford **20** (17 mg, 86%) as a white flaky solid: R_f 0.31 (hexanes); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.87–7.92 (m, 2H, Ar), 7.59–7.62 (m, 1H, Ar), 7.53–7.57 (m, 1H, Ar), 7.44–7.50 (m, 2H, Ar), 7.35–7.40 (m, 1H, Ar), 7.28–7.33 (m, 1H, Ar), 7.23–7.28 (m, 1H, Ar), 7.04 (br s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 155.9 (Ar), 154.9 (Ar), 130.5 (Ar), 129.2 (Ar), 128.8 (2, Ar), 128.5 (Ar), 125.0 (2, Ar), 124.3 (Ar), 122.9 (Ar), 120.9 (Ar), 111.2 (Ar), 101.3 (Ar). HRMS (EI) calcd for C₁₄H₁₀O: 194.0732. Found: 194.0731. Anal. calcd for C₁₄H₁₀O: C, 86.57; H, 5.19. Found C, 86.59; H, 5.33.

2-Phenylbenzo[*b*]thiophene (21)

This compound was synthesized as a white flaky solid from **14** in 85% yield by following the same procedure used for the synthesis of **21**: $R_f 0.39$ (hexanes); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.84–7.87 (m, 1H, Ar), 7.78–7.81 (m, 1H, Ar), 7.72–7.76 (m, 2H, Ar), 7.56 (br s, 1H, Ar), 7.42–7.47 (m, 2H, Ar), 7.31–7.39 (m, 3H, Ar); ¹³C NMR (100 MHz, CDCl₃, δ_C) 144.3 (Ar), 140.7 (Ar), 139.5 (Ar), 134.3 (Ar), 129.0 (2, Ar), 128.3 (Ar), 126.5 (2, Ar), 124.5 (Ar), 124.3 (Ar), 123.6 (Ar), 122.3 (Ar), 119.5 (Ar). HRMS (EI) calcd for C₁₄H₁₀S: 210.0503. Found: 210.0504. Anal. calcd for C₁₄H₁₀S: C, 79.96; H, 4.79; S, 15.25. Found C, 80.15; H, 4.91; S, 15.44.

1-Tosyl-2-phenylindole (22)

Compound **19** (39 mg, 0.11 mmol) was dissolved in dichloroethane (7 mL), and copper(II) triflate (12 mg, 0.035 mmol) was added. The mixture was heated at reflux for 48 h. After evaporation, the residue was purified by column chromatography (30:1, hexanes–EtOAc) to obtain pure **22** as a white waxy solid (20 mg, 52%): R_f 0.21 (20:1, hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.30–8.34 (m, 1H, Ar), 7.48–7.54 (m, 2H, Ar), 7.40–7.46 (m, 4H, Ar), 7.36–7.39 (m, 1H, Ar), 7.25–7.30 (m, 3H, Ar), 7.04 (d, 2H, *J* = 8.6 Hz, Ar), 6.55 (s, 1H, Ar), 2.33 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, δ_C) 144.5 (Ar), 142.1 (Ar), 138.3 (Ar), 134.7 (Ar), 132.4 (Ar), 130.5 (Ar), 131.6 (Ar), 130.3 (2, Ar), 129.2 (2, Ar), 128.6 (Ar), 127.5 (2, Ar), 126.8 (2, Ar), 124.8 (Ar), 124.3 (Ar), 120.7 (Ar), 116.7 (Ar), 113.6 (Ar), 21.6 (CH₃). HRMS (EI) calcd for C₂₁H₁₇NO₂S: 347.0980. Found: 347.0981. Anal. calcd for C₂₁H₁₇NO₂S: C, 72.60; H, 4.93; N, 4.03; S, 9.23. Found C, 72.58; H, 5.17; N, 3.76; S, 9.25.

2-Phenylindole (23)

This compound was synthesized as an amphorous off-white solid from **15** in 74% yield by following the same procedure used for the synthesis of **20**: $R_f 0.57$ (4:1 hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.32 (br s, 1H, NH), 7.65–7.70 (m, 3H, Ar), 7.44–7.49 (m, 2H, Ar), 7.40–7.5243 (m, 1H, Ar), 7.33–7.37 (m, 1H, Ar), 7.20–7.24 (m, 1H, Ar), 7.14–7.18 (m, 1H, Ar), 6.85 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃, δ_C) 137.9 (Ar), 136.9 (Ar), 132.4 (Ar), 129.3 (Ar), 129.0 (2, Ar), 127.7 (Ar), 125.2 (2, Ar), 122.4 (Ar), 120.7 (Ar), 120.3 (Ar), 110.9 (Ar), 100.0 (Ar). HRMS (EI) calcd for C₁₄H₁₁N: 193.0891. Found: 193.0892. Anal. calcd for C₁₄H₁₁N: C, 87.01; H, 5.74; N, 7.25. Found C, 87.27; H, 5.79; N, 7.33.

3-(2-Phenylbenzofuran-3-yl)-prop-2-yn-1-ol (24)

To a solution of piperidine (3 mL), $PdCl_2(PPh_3)_2$ (2 mg, 5 mol%), **13** (21 mg, 0.064 mmol), and propargyl alcohol (5 mg, 0.1 mmol) was added CuI (1 mg, 10 mol%). The mixture was stirred at room temperature for 5 h. The reaction was then quenched by the addition of a satd aqueous NH₄Cl solution

and the resulting solution was extracted with Et₂O. The organic fractions were dried (Na₂SO₄), filtered, and concentrated under vacuum to yield the crude product, which was purified by column chromatography (6:1 hexanes–EtOAc) to afford **24** (12 mg, 73%) as a brownish amorphous solid: R_f 0.29 (4:1 hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.24–8.28 (m, 2H, Ar), 7.66–7.69 (m, 1H, Ar), 7.46–7.52 (m, 3H, Ar), 7.38–7.43 (m, 1H, Ar), 7.28–7.36 (m, 2H, Ar), 4.70 (s, 2H, OCH₂), 2.15 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃, δ_C) 156.7 (Ar), 153.4 (Ar), 130.0 (2, Ar), 129.3 (Ar), 128.7 (2, Ar), 126.0 (2, Ar), 125.4 (Ar), 123.4 (Ar), 120.2 (Ar), 111.2 (Ar), 98.4 (Ar), 94.8 (≡C), 77.6 (≡C), 52.0 (OCH₂). HRMS (EI) calcd for C₁₇H₁₂O₂: 248.0837. Found: 248.0838. Anal. calcd for C₁₇H₁₂O₂: C, 82.24; H, 4.87. Found C, 82.05; H, 4.86.

3-(2-Phenylbenzothiophen-3-yl)-prop-2-yn-1-ol (25)

To a solution of piperidine (4 mL), PdCl₂(PPh₃)₂ (28 mg, 5 mol%), **14** (254 mg, 0.759 mmol), and propargyl alcohol (64 mg, 1.1 mmol) was added CuI (15 mg, 10 mol%). The mixture was stirred at room temperature for 12 h and the reaction was then quenched by the addition of a satd aqueous NH₄Cl solution, and the resulting solution was extracted with Et₂O. The organic fractions were dried (Na₂SO₄), filtered, and concentrated under vacuum to yield the crude product, which was purified by column chromatography (6:1 hexanes–EtOAc) to afford **25** (162 mg, 81%) as a off-white amorphous solid: R_f 0.56 (2:1 hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 7.92–8.02 (m, 3H, Ar), 7.78–7.84 (m, 1H, Ar), 7.36–7.52 (m, 5H, Ar), 4.62 (s, 2H, OCH₂), 1.82 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 147.0 (Ar), 141.1 (Ar), 137.5 (Ar), 133.6 (Ar), 128.8 (Ar), 128.7 (2, Ar), 128.4 (2, Ar), 125.3 (Ar), 125.0 (Ar), 123.2 (Ar), 122.0 (Ar), 112.8 (Ar). 92.4 (=C), 80.2 (=C), 51.9 (OCH₂). HRMS (EI) calcd for C₁₇H₁₂OS: 264.0609. Found: 264.0610. Anal. calcd for C₁₇H₁₂OS: C, 77.24; H, 4.58; S, 12.13. Found C, 77.15; H, 4.68; S, 12.17.

3-(1-Tosyl-2-phenylindol-3-yl)-prop-2-yn-1-ol (26)

To a solution of piperidine (0.75 mL), DMF (0.25 mL), PdCl₂(PPh₃)₂ (11 mg, 20 mol%), **15** (38 mg, 0.079 mmol), and propargyl alcohol (7 mg, 0.1 mmol) was added CuI (2 mg, 10 mol%). The mixture was stirred at 100 °C in a microwave reactor for 2 h, the reaction was then quenched by the addition of a satd aqueous NH₄Cl solution, and the resulting solution was extracted with Et₂O. The organic fractions were dried (Na₂SO₄), filtered, and concentrated under vacuum to yield the crude product, which was purified by column chromatography (3:1 hexanes–EtOAc) to afford **26** (17 mg, 52%) as a brownish oil: R_f 0.34 (2:1 hexanes–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 8.30–8.33 (m, 1H, Ar), 7.52–7.60 (m, 3H, Ar), 7.38–7.48 (m, 4H, Ar), 7.31–7.36 (m, 1H, Ar), 7.23–7.27 (m, 2H, Ar), 7.03–7.07 (m, 2H, Ar), 4.40 (s, 2H, OCH₂), 2.32 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, δ_{C}) 144.9 (Ar), 143.8 (Ar), 137.0 (Ar), 134.6 (Ar), 131.1 (2, Ar), 130.7 (Ar), 130.5 (Ar), 129.4 (2, Ar), 129.2 (Ar), 127.4 (2, Ar), 126.8 (2, Ar), 125.8 (Ar), 124.7 (Ar), 120.0 (Ar), 116.5 (Ar), 107.3 (Ar), 92.6 (=C), 77.6 (=C), 51.7 (OCH₂), 21.5 (CH₃). HRMS (EI) calcd for C₂₄H₁₉O₃NS: 401.1086. Found: 401.1083. Purity: > 99%.

3-(2-Phenylindol-3-yl)-prop-2-yn-1-ol (27)

This compound was synthesized as a brown oil from **26** in 45% yield by following the same procedure used for the synthesis of **16**: $R_f 0.30$ (5:1 toluene–EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_H) 8.43 (br s, 1H, NH), 7.96–7.98 (m, 2H, Ar), 7.74–7.76 (m, 1H, Ar), 7.48–7.52 (m, 2H, Ar), 7.38–7.42 (m, 2H, Ar), 7.24–7.28 (m, 1H, Ar), 7.20–7.23 (m, 1H, Ar), 4.62 (s, 2H, OCH₂); ¹³C NMR (100 MHz, CDCl₃, δ_C) 140.3 (Ar), 135.7 (Ar), 131.8 (Ar), 130.8 (Ar), 129.4 (2, Ar), 128.9 (Ar), 126.9 (2, Ar), 123.9 (Ar), 121.4 (Ar), 120.0 (Ar), 111.5 (Ar), 92.2 (Ar), 80.0 (=C), 66.6 (=C), 52.3 (OCH₂). HRMS (EI) calcd for $C_{17}H_{13}NO$: 249.0997. Found: 247.0998.

2-Propargyl 4-*O*-acetyl-3-azido-2,3,6-trideoxy-α-L-*arabino*-hexopyranoside (29) and 2-Propargyl 4-*O*-acetyl-3-azido-2,3,6-trideoxy-α-L-*ribo*-hexopyranoside (30)

Compound **28** (3.9g, 15 mmol), crushed activated 4Å molecular sieves (500 mg) and propargyl alcohol (1.7 g, 30 mmol) were suspended in anhydrous CH₂Cl₂ (60 mL). The mixture was stirred for 5-10 min at room temperature and then cooled to -10 °C. BF₃•Et₂O (3.91 mL, 30.8 mmol) was added dropwise via syringe. After adding BF₃•Et₂O, the reaction mixture was warmed to 0 °C. Once the starting material was fully consumed (within 0.5 h), the reaction mixture was guenched by the addition of K₂CO₃ (3.33 g), and then H₂O (120 mL), satd NaHCO₃ solution (120 mL) and CH₂Cl₂ (250 mL) were added. The organic layer was separated, washed with brine, and was dried (Na₂SO₄), filtered and concentrated. The crude product was purified by column chromatography (15:1 \rightarrow 8:1, hexanes-EtOAc) to give pure 29 (2.11 g, 55%) and 30 (0.172 g, 4.5%) as colorless oils. In addition, a mixture of the two β isomers (**31** and **32**) and some **30** was collected as clear oil (0.98 g, 25%). (**29**): R_f 0.32 (8:1 hexanes-EtOAc); IR: v 3281 (=C-H), 2103 (N=N=N), 1744 (C=O) cm⁻¹; $[\alpha]_D^{23}$ -189.0 (c 4.9, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, $\delta_{\rm H}$) 5.02 (br d, 1H, $J_{1,2a}$ = 3.4 Hz, H-1), 4.66 (dd, 1H, $J_{3,4}$ = $J_{4,5}$ = 9.8 Hz, H-4), 4.21 (dd, 1H, J = 15.7 Hz, J = 2.4 Hz, OCH₂C=CH), 4.16 (dd, 1H, J = 15.7 Hz, J = 2.4 Hz, $OCH_2C \equiv CH$), 3.86 (ddd, 1H, $J_{2a,3} = 12.4$ Hz, $J_{3,4} = 9.8$ Hz, $J_{2e,3} = 5.0$ Hz, H-3), 3.80 (dq, 1H, $J_{4,5} = 9.8$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 2.44 (t, 1H, J = 2.4 Hz, OCH₂C=C<u>H</u>), 2.18 (ddd, 1H, $J_{2a,2e} = 13.3$ Hz, $J_{2e,3} = 5.0$ Hz, $J_{1,2e} = 1.1$ Hz, H-2e), 2.11 (s, 3H, O=CCH₃), 1.75 (ddd, 1H, $J_{2a,2e} = 13.3$ Hz, $J_{2a,3} = 12.4$ Hz, $J_{1,2a} = 12.$ 3.4 Hz, H-2a), 1.15 (d, 3H, $J_{5.6} = 6.3$ Hz, H-6); ¹³C NMR (100 MHz, CDCl₃, $\delta_{\rm C}$) 170.0 (C=O), 95.1 (C-1), 78.9 (C=CH), 75.3 (C-4), 74.6 (C=CH), 66.4 (C-5), 57.5 (C-3), 54.3 (OCH₂), 34.9 (C-2), 20.8 (O=CCH₃), 17.3 (C-6). HRMS (ESI) calcd for (M+Na) C₁₁H₁₅N₃O₄Na: 276.0955. Found: 276.0955. Anal. calcd for C₁₁H₁₅N₃O₄: C, 52.17; H, 5.97; N, 16.59. Found C, 52.40; H, 5.85; N, 16.50.

(**30**): $R_f 0.44$ (4:1 hexanes:EtOAc); ¹H NMR (400 MHz, CDCl₃, δ_H) 5.01 (dd, 1H, $J_{1,2a} = 4.0$ Hz, $J_{1,2e} = 1.5$ Hz, H-1), 4.67 (dd, 1H, $J_{4,5} = 9.6$ Hz, $J_{3,4} = 3.6$ Hz, H-4), 4.25 (d, 2H, J = 2.4 Hz, OCH₂C=CH), 4.20 (dq, 1H, $J_{4,5} = 9.6$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 4.11 (ddd, 1H, $J_{3,4} = J_{2a,3} = J_{2e,3} = 3.6$ Hz, H-3), 2.42 (t, 1H, J = 2.4 Hz, OCH₂C=CH), 2.00–2.15 (m, 5H, O=CCH₃, H-2a, H-2e), 1.18 (d, 3H, $J_{5,6} = 6.3$ Hz, H-6); ¹³C NMR (100 MHz, CDCl₃, δ_C) 170.1 (C=O), 93.8 (C-1), 79.1 (C=CH), 74.5 (C=CH), 73.9 (C-4),

62.2 (C-5), 55.7 (C-3), 54.5 (OCH₂), 32.8 (C-2), 20.7 (O=C<u>C</u>H₃), 17.2 (C-6). HRMS (ESI) calcd for (M+Na) C₁₁H₁₅N₃O₄Na: 276.0955. Found: 276.0953.

2-Propargyl 3-azido-2,3,6-trideoxy-α-L-arabino-hexopyranoside (33)

Compound **29** (1.52 g, 6.01 mmol) was dissolved in CH₃OH (70 mL). To this solution was added K₂CO₃ (0.36 g, 2.6 mmol), and then the reaction mixture was stirred for 12 h. The solvent was evaporated and the residue was suspended in water (100 mL), extracted with CH₂Cl₂, washed with brine, and dried over Na₂SO₄. After filtration, the filtrate was concentrated and the resulting residue was purified by column chromatography (4:1 hexanes–EtOAc) to acquire pure **33** as a colorless oil (1.27 g, 99%); R_f 0.44 (4:1 hexanes–EtOAc); IR v 3425 (O–H), 3293 (≡C–H), 2104 (N=N=N) cm⁻¹; $[\alpha]_D^{23}$ –160.0 (*c* 3.6, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 5.02 (br d, 1H, $J_{1,2a}$ = 3.4 Hz, H-1), 4.22 (dd, 1H, J = 15.7 Hz, J = 2.4 Hz, OC<u>H₂C</u>=CH), 4.17 (dd, 1H, J = 15.7 Hz, J = 2.4 Hz, OC<u>H₂C</u>=CH), 3.76 (ddd, 1H, $J_{2a,3} = 12.3$ Hz, $J_{3,4} = 9.5$ Hz, $J_{2e,3} = 5.0$ Hz, H-3), 3.69 (dq, 1H, $J_{4,5} = 9.5$ Hz, $J_{5,6} = 6.2$ Hz, H-5), 3.14 (dd, 1H, $J_{3,4} = J_{4,5} = 9.5$ Hz, H-4), 2.44 (t, 1H, J = 2.4 Hz, OCH₂C≡C<u>H</u>), 2.41 (br s, 1H, OH), 2.19 (ddd, 1H, $J_{2a,2e} = 13.2$ Hz, $J_{2e,3} = 5.0$ Hz, $J_{1,2e} = 1.2$ Hz, OCH₂C≡C<u>H</u>), 2.41 (br s, 1H, OH), 2.19 (ddd, 1H, $J_{2a,2e} = 13.2$ Hz, $J_{2e,3} = 5.0$ Hz, $J_{1,2e} = 1.2$ Hz, OCH₂C≡C<u>H</u>), 3.4 Hz, H-2a), 1.29 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6); ¹³C NMR (100 MHz, CDCl₃, δ_C) 95.1 (C-1), 79.0 (C≡CH), 75.8 (C-4), 74.6 (C≡<u>C</u>H), 68.2 (C-5), 60.2 (C-3), 54.2 (OCH₂), 34.7 (C-2), 17.6 (C-6). HRMS (EI) calcd for C₉H₁₃N₃O₃: 211.0957. Found: 211.0960. Anal. calcd for C₉H₁₃N₃O₃: C, 51.18; H, 6.20; N, 19.89. Found C, 51.22; H, 6.13; N, 19.77.

2-Propargyl 4-O-acetyl-3-azido-2,3,6-trideoxy-α-L-lyxo-hexopyranoside (34)

To a solution of compound **33** (128 mg, 0.611 mmol) in 19:1 CH₂Cl₂–pyridine (16.8 mL) at -15 °C was added the solution of Tf₂O (triflic anhydride) (0.438 mL, 2.58 mmol) in CH₂Cl₂ (3.4 mL). After stirring for 45 min while keeping the temperature below -5 °C, TLC showed the starting material was gone and a new spot (R_f 0.61, 4:1 hexanes–EtOAc) appeared. The reaction mixture was then extracted with ice-cold 1M HCl aqueous solution and water, dried with Na₂SO₄, filtered, and concentrated to yield an

orange liquid. The product was immediately dissolved in dry CH₃CN (10 mL) and *n*-Bu₄NOAc (366 mg, 1.22 mmol) was added. After stirring at 40 °C for 40 min, the solvent was removed under vacuum. The residue was purified by column chromatography (4:1 hexanes–EtOAc) to yield pure **34** (132 mg, 86%) as a pale yellow oil. R_f 0.39 (4:1 hexanes–EtOAc); IR *v* 3279 (\equiv C–H), 2104 (N=N=N), 1744 (C=O) cm⁻¹; [α]_D²³–161.4 (*c* 4.4, CH₂Cl₂); ¹H NMR (500 MHz, CD₃OD, δ _H) 5.16 (br s, 2H, H-1, H-4), 4.22 (2 d, 2H, *J* = 2.4 Hz, OC<u>H</u>₂C=CH), 4.02 (br q, 1H, *J*_{5,6} = 6.5 Hz, H-5), 3.86 (ddd, 1H, *J*_{2a,3} = 12.8 Hz, *J*_{2e,3} = 4.8 Hz, *J*_{3,4} = 3.0 Hz, H-3), 2.45 (t, 1H, *J* = 2.4 Hz, OCH₂C=C<u>H</u>), 2.18 (s, 3H, O=CCH₃), 2.10 (ddd, 1H, *J*_{2a,2e} = *J*_{2a,3} = 12.8 Hz, *J*_{1,2a} = 3.3 Hz, H-2a), 1.56 (br dd, 1H, *J*_{2a,2e} = 12.8 Hz, *J*_{2e,3} = 4.8 Hz, H-2e), 1.14 (d, 3H, *J*_{5,6} = 6.5 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃, δ _C) 170.4 (C=O), 95.8 (C-1), 79.0 (C=CH), 74.6 (C=CH), 70.0 (C-4), 65.6 (C-5), 54.5 (OCH₂), 54.4 (C-3), 29.2 (C-2), 20.7 (O=CCH₃), 16.6 (C-6). HRMS (ESI) calcd for (M+Na) C₁₁H₁₅N₃O₄Na: 276.0955. Found: 276.0956. Anal. calcd for C₁₁H₁₅N₃O₄: C, 52.17; H, 5.97; N, 16.59. Found C, 52.53; H, 5.99; N, 16.93.

2-Propargyl 3-azido-2,3,6-trideoxy-α-L-lyxo-hexopyranoside (35)

Compound **34** (81 mg, 0.32 mmol) was dissolved in CH₃OH (6 mL), K₂CO₃ (31 mg, 0.23 mmol) added and then the reaction mixture was stirred for 24 h. The solvent was evaporated and the residue was purified by column chromatography (3:1 hexanes–EtOAc) to acquire pure **35** as a pale yellow thin oil (64 mg, 94%); R_f 0.26 (3:1 hexanes–EtOAc); IR v 3462 (O–H), 3294 (=C–H), 2100 (N=N=N) cm⁻¹; $[\alpha]_D^{23}$ –169.7 (*c* 2.3, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 5.10 (br d, 1H, $J_{1,2a}$ = 3.8 Hz, H-1), 4.19 (s, 2H, OC<u>H</u>₂C=CH), 3.92 (br q, 1H, $J_{5,6}$ = 6.5 Hz, H-5), 3.79 (ddd, 1H, $J_{2a,3}$ = 13.0 Hz, $J_{2e,3}$ = 5.0 Hz, $J_{3,4}$ = 2.8 Hz, H-3), 3.68 (br s, 1H, H-4), 2.44 (t, 1H, J = 2.4 Hz, OCH₂C=C<u>H</u>), 2.09 (ddd, 1H, $J_{2a,2e}$ = $J_{2a,3}$ = 13.0 Hz, $J_{1,2a}$ = 3.8 Hz, H-2a), 2.01 (br s, 1H, OH), 1.93 (br dd, 1H, $J_{2a,2e}$ = 13.0 Hz, $J_{2e,3}$ = 5.0 Hz, H-2e), 1.26 (d, 3H, $J_{5,6}$ = 6.5 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 95.8 (C-1), 79.1 (<u>C</u>=CH), 74.5 (C=<u>C</u>H), 69.6 (C-4), 66.4 (C-5), 56.8 (C-3), 54.5 (OCH₂), 28.3 (C-2), 16.6 (C-6). HRMS (ESI) calcd for (M+Na) C₉H₁₃N₃O₃Na: 234.0849. Found: 234.0848. Anal. calcd for C₉H₁₃N₃O₃: C, 51.18; H, 6.20; N, 19.89. Found C, 50.75; H, 6.30; N, 19.19.

2-Propargyl 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranoside (36)

To a solution of compound **35** (458 mg, 2.17 mmol) in THF (50 mL) and H₂O (2 mL) was added PPh₃ (1.14 g, 4.35 mmol), and the reaction was heated at reflux for 10 h. After cooling and concentration of the solution, the residue was purified by column chromatography on Iatrobeads (EtOAc \rightarrow CH₃OH) to yield pure **36** (356 mg, 89%) as a white waxy solid: R_f 0.55 (100:1 CH₃OH–HOAc); IR v 3287.4 (\equiv C– H, O–H) cm⁻¹; [α]_D²³–191.8 (*c* 1.9, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ_{H}) 5.00 (br d, 1H, $J_{1,2a}$ = 3.4 Hz, H-1), 4.18 (d, 2H, J = 2.5 Hz, OC<u>H₂C</u>=CH), 3.87 (br q, 1H, $J_{5,6}$ = 6.6 Hz, H-5), 3.42 (br d, 1H, $J_{3,4}$ = 2.5 Hz, H-4), 3.07 (ddd, 1H, $J_{2a,3}$ = 12.7 Hz, $J_{2e,3}$ = 5.0 Hz, $J_{3,4}$ = 2.5 Hz, H-3), 2.79 (t, 1H, J = 2.5 Hz, OCH₂C=C<u>H</u>), 1.67 (ddd, 1H, $J_{2a,2e}$ = $J_{2a,3}$ = 12.7 Hz, $J_{1,2a}$ = 3.4 Hz, H-2a), 1.74 (ddd, 1H, $J_{2a,2e}$ = 12.7 Hz, $J_{2e,3}$ = 5.0 Hz, $J_{1,2e}$ = 1.1 Hz, H-2e), 1.19 (d, 3H, $J_{5,6}$ = 6.6 Hz, H-6); ¹³C NMR (100 MHz, CD₃OD, δ_{C}) 96.8 (C-1), 80.5 (<u>C</u>=CH), 79.3 (C-4), 75.4 (C=<u>C</u>H), 69.9 (C-5), 54.8 (OCH₂), 50.3 (C-3), 38.2 (C-2), 18.1 (C-6). HRMS (ESI) calcd for (M+H) C₉H₁₆NO₃: 186.1125. Found: 186.1123. Anal. calcd for C₉H₁₅NO₃: C, 58.36; H, 8.16; N, 7.56. Found C, 58.18; H, 8.08; N, 7.67.

2-Propargyl 3-amino-2,3,6-trideoxy-α-L-arabino-hexopyranoside (37)

To a solution of **33** (1.27 g, 6.01 mmol) in THF (80 mL) and H₂O (14 mL) was added PPh₃ (3.17 g, 12.1 mmol), and the reaction mixture was heated at reflux for 10 h. After concentration of the solution, the residue was purified by column chromatography on Iatrobeads (EtOAc \rightarrow CH₃OH) to yield pure **37** (1.08 g, 97%) as a white amorphous solid: R_f 0.34 (CH₃OH); IR v 3341.0 (N–H), 3296.7 (≡C–H), 3090.3 (O–H) cm⁻¹; $[\alpha]_D^{23}$ –175.8 (*c* 0.80, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ_H) 4.96 (br d, 1H, $J_{1,2a} = 3.4$ Hz, H-1), 4.18 (d, 2H, J = 2.4 Hz, OCH₂C≡CH), 3.58 (dq, 1H, $J_{4,5} = 9.3$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 2.94 (ddd, 1H, $J_{2a,3} = 12.1$ Hz, $J_{3,4} = 9.3$ Hz, $J_{2e,3} = 4.6$ Hz, H-3), 2.82 (dd, 1H, $J_{3,4} = J_{4,5} = 9.3$ Hz, H-4), 2.79 (t, 1H, J = 2.4 Hz, OCH₂C≡CH), 1.98 (ddd, 1H, $J_{2a,2e} = 13.4$ Hz, $J_{1,2e} = 1.3$ Hz, H-2e), 1.56 (ddd, 1H, $J_{2a,2e} = 13.4$ Hz, $J_{2a,3} = 12.1$ Hz, $J_{2a,3} = 12.1$ Hz, $J_{2a,3} = 12.1$ Hz, $J_{2a,3} = 12.1$ Hz, $J_{2a,3} = 6.3$ Hz, H-2e), 1.56 (ddd, 1H, $J_{2a,2e} = 13.4$ Hz, $J_{1,2a} = 3.4$ Hz, H-2a), 1.21 (d, 3H, $J_{5,6} = 6.3$ Hz, H-6); ¹³C NMR (100 MHz, CD₃OD, δ_C) 96.8 (C-1), 80.5 (C≡CH), 79.3 (C-4), 75.4 (C≡CH), 69.9 (C-5),

54.8 (OCH₂), 50.3 (C-3), 38.2 (C-2), 18.1 (C-6). HRMS (ESI) calcd for (M+H) C₉H₁₆NO₃: 186.1125. Found: 186.1124. Anal. calcd for C₉H₁₅NO₃: C, 58.36; H, 8.16; N, 7.56. Found C, 58.19; H, 8.13; N, 7.77.

Methyl 4-*O*-acetyl-2,3,6-trideoxy-α-L-*erythro*-hexopyranoside (40α) and Methyl 4-*O*-acetyl-2,3,6-trideoxy-β-L-*erythro*-hexopyranoside (40β)

A solution of the mixture of **39***a* and **39***β* (282 mg, 1.52 mmol) in EtOAc (40 mL) was hydrogenated in the presence of 10% Pd/C (8 mg, 2.7% mass ratio) at room temperature and normal pressure. Once the starting material was fully consumed (about 3.5 h), the reaction mixture was filtered through a Celite pad and concentrated. The crude product was purified by column chromatography (8:1, hexanes– EtOAc) to acquire pure **40***a* as a colorless oil and pure **40***β* as a white amorphous solid (256 mg for **40***a* and **40***β* together, 90%, α : β = 4.6:1). (**40***α*): R_{*f*} 0.64 (6:1 hexanes–EtOAc); IR: *v* 1738 (C=O) cm⁻¹; [α]²³_D -192.4 (*c* 4.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_{H}) 4.63 (br s, 1H, H-1), 4.44–4.52 (m, 1H, H-4), 3.77 (dq, 1H, *J*_{4,5} = 9.7 Hz, *J*_{5,6} = 6.3 Hz, H-5), 3.37 (s, 3H, OCH₃), 2.05 (s, 3H, O=CCH₃), 1.86–1.94 (m, 1H, H-3e), 1.70–1.84 (m, 3H, H-2a, H-2e, H-3a), 1.15 (d, 3H, *J*_{5,6} = 6.3 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃, δ_{C}) 170.2 (C=O), 97.3 (C-1), 73.5 (C-4), 66.3 (C-5), 54.5 (OCH₃), 29.0 (C-2), 24.0 (C-3), 21.1 (O=C<u>C</u>H₃), 17.8 (C-6). HRMS (ESI) calcd for (M+Na) C₉H₁₆O₄Na: 211.0941. Found: 211.0941. Anal. calcd for C₉H₁₆O₄: C, 57.43; H, 8.57. Found C, 57.08; H, 8.74.

(**40β**): R_f 0.60 (6:1 hexanes–EtOAc); IR: v 1731 (C=O) cm⁻¹; $[\alpha]_D^{23}$ +17.0 (*c* 1.4, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_H) 4.42 (ddd, 1H, $J_{3a,4} = 10.4$ Hz, $J_{4,5} = 9.1$ Hz, $J_{3e,4} = 4.1$ Hz, H-4), 4.36 (dd, 1H, $J_{1,2a} = 9.0$ Hz, $J_{1,2e} = 2.2$ Hz, H-1), 3.48 (dq, 1H, $J_{4,5} = 9.1$ Hz, $J_{5,6} = 6.2$ Hz, H-5), 3.45 (s, 3H, OCH₃), 2.13 (dddd, 1H, $J_{3a,3e} = 13.0$ Hz, $J_{2e,3e} = J_{3e,4} = J_{2a,3e} = 4.1$ Hz, H-3e), 2.02 (s, 3H, O=CCH₃), 1.86 (dddd, 1H, $J_{2a,2e} = 13.0$ Hz, $J_{2e,3e} = J_{2e,3a} = 4.1$ Hz, $J_{1,2e} = 2.2$ Hz, H-2e), 1.59 (dddd, 1H, $J_{2a,2e} = J_{2a,3a} = 13.0$ Hz, $J_{2a,3e} = 4.1$ Hz, H-2a), 1.45 (dddd, 1H, $J_{3a,3e} = J_{2a,3a} = 13.0$ Hz, $J_{3a,4} = 10.4$ Hz, $H_{2a,3a} = 4.1$ Hz, H-3a), 1.20 (d, 3H, $J_{5,6} = 6.2$ Hz, H-6); ¹³C NMR (100 MHz, CDCl₃, δ_C) 170.2 (C=O), 102.4 (C-1), 73.1 (C-5), 72.9 (C-4), 56.2 (OCH₃), 29.9 (C-2), 27.1 (C-3), 21.1 (O=C<u>C</u>H₃), 18.1

(C-6). HRMS (ESI) calcd for (M+Na) C₉H₁₆O₄Na: 211.0941. Found: 209.0942. Anal. calcd for C₉H₁₆O₄: C, 57.43; H, 8.57. Found C, 57.47; H, 8.55.

Methyl 2,3,6-trideoxy- α -L-*erythro*-hexopyranoside (42 α) and Methyl 2,3,6-trideoxy- β -L-*erythro*-hexopyranoside (42 β)

A mixture of compounds **40a** and **40β** (1.85 g, 9.84 mmol) was dissolved in CH₃OH (100 mL). To the above solution was added K₂CO₃ (0.54 g, 3.9 mmol), and then the reaction was stirred for 12 h. The solvent was evaporated and the residue was purified by column chromatography (2:1, hexanes–EtOAc) to acquire pure **42a** (0.73 g) and **42β** (0.09 g), and their mixture (0.49 g) as a colorless oil respectively (1.31 g, 91%, α : β = 5.1:1). (**42a**): R_f 0.22 (2:1 hexanes–EtOAc); IR: *v* 3434 (O–H) cm⁻¹; [α]_D²³ –168.6 (*c* 1.7, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_{H}) 4.60 (br s, 1H, H-1), 3.54 (dq, 1H, $J_{4,5}$ = 9.2 Hz, $J_{5,6}$ = 6.2 Hz, H-5), 3.32 (s, 3H, OCH₃), 3.30–3.36 (m, 1H, H-4), 1.94 (br s, 1H, OH), 1.65–1.85 (m, 4H, H-2a, H-2e, H-3a, H-3e), 1.24 (d, 3H, $J_{5,6}$ = 6.2 Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 97.3 (C-1), 72.0 (C-4), 69.3 (C-5), 54.4 (OCH₃), 29.5 (C-2), 27.6 (C-3), 17.9 (C-6). HRMS (ESI) calcd for (M+Na) C₇H₁₄O₃Na: 169.0835. Found: 169.0834. Anal. calcd for C₇H₁₄O₃: C, 57.51; H, 9.65. Found C, 57.64; H, 9.77.

(**42β**): R_f 0.17 (2–1 hexanes:EtOAc); IR: *v* 3411 (O–H) cm⁻¹; $[\alpha]_D^{23}$ +47.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 4.36 (dd, 1H, $J_{1,2a} = 9.2$ Hz, $J_{1,2e} = 2.0$ Hz, H-1), 3.48 (s, 3H, OCH₃), 3.25–3.32 (m, 2H, H-4, H-5), 2.03–2.08 (m, 1H, H-3e), 1.86–1.91 (m, 1H, H-2e), 1.53–1.66 (m, 2H, H-2a, OH), 1.43–1.52 (m, 1H, H-3a), 1.32 (d, 3H, $J_{5,6} = 5.9$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 102.5 (C-1), 75.7 (C-5), 71.6 (C-4), 56.3 (OCH₃), 31.0 (C-2/C-3), 30.5 (C-3/C-2), 18.0 (C-6). HRMS (EI) calcd for C₇H₁₄O₃: 146.0943. Found: 146.0940. Anal. calcd for C₇H₁₄O₃: C, 57.51; H, 9.65. Found C, 58.02; H, 9.76.

Methyl 4-azido-2,3,4,6-trideoxy-α-L-*threo*-hexopyranoside (43α) and Methyl 4-azido-2,3,4,6trideoxy-β-L-*threo*-hexopyranoside (43β)

Compounds 42 α and 42 β (378 mg, 2.59 mmol) were dissolved in CH₂Cl₂ (20 mL), and Et₃N (1.08 mL, 7.77 mmol) was added. The solution was cooled to 0 °C and then mesyl chloride (0.40 mL, 5.2 mmol) was added dropwise. After stirring for 2 h, the reaction mixture was washed with 1N HCl, 1N NaOH The solution was dried over Na₂SO₄. After filtration, the solvent was and brine sequentially. evaporated and the acquired yellow oil was dissolved in DMF (7 mL). To this solution was added NaN_3 (933 mg, 14.4 mmol) and the reaction mixture was stirred at 110 °C for 24 h before cooling and extraction with Et_2O . The ether solution was dried (Na₂SO₄), filtered, and evaporated. The resulting residue was purified by column chromatography (20:1, hexanes–EtOAc) to acquire pure 43a (230 mg) and 43 β (22 mg), and their mixture (83 mg) as colorless oils respectively (335 mg, 76%). (43 α): R_f 0.24 (20:1 hexanes–EtOAc); IR: v 2098 cm⁻¹ (N=N=N); $[\alpha]_D^{23}$ –71.9 (c 3.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 4.68 (br d, 1H, $J_{12a \text{ or } 2e} = 2.7 \text{ Hz}$, H-1), 3.95 (dq, 1H, $J_{5,6} = 6.5 \text{ Hz}$, $J_{4,5} = 1.7 \text{ Hz}$, H-5), 3.42 (br s, 1H, H-4), 3.32 (s, 3H, OCH₃), 2.06–2.14 (m, 1H, H-3e), 1.84–1.95 (m, 2H, H-3a, H-2e), 1.51– 1.57 (m, 1H, H-2a), 1.20 (d, 3H, $J_{5.6} = 6.5$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 97.9 (C-1), 65.0 (C-5), 59.9 (C-4), 54.6 (OCH₃), 24.0 (C-2), 23.0 (C-3), 17.9 (C-6). HRMS (EI) calcd for C₇H₁₃N₃O₂: 171.1008. Found: 171.0993. Anal. calcd for C₇H₁₃N₃O₂: C, 49.11; H, 7.65; N, 24.54. Found C, 49.33; H, 8.00; N, 24.69.

(**43β**): $R_f 0.13$ (20:1 hexanes–EtOAc); IR: *v* 2096 cm⁻¹ (N=N=N); [α]_D²³+164.1 (*c* 1.9, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 4.35 (m, 1H, H-1), 3.66 (dq, 1H, $J_{5,6} = 6.4$ Hz, $J_{4,5} = 1.7$ Hz, H-5), 3.48 (s, 3H, OCH₃), 3.36–3.40 (m, 1H, H-4), 2.11–2.17 (m, 1H, H-3e), 1.77–1.85 (m, 1H, H-3a), 1.65–1.75 (m, 2H, H-2a, H-2e), 1.30 (d, 3H, $J_{5,6} = 6.4$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, δ_C) 102.6 (C-1), 72.7 (C-5), 59.0 (C-4), 55.9 (OCH₃), 26.8 (C-3), 25.8 (C-2), 17.9 (C-6). HRMS (ESI) calcd for (M+Na) C₇H₁₃N₃O₂Na: 194.0900. Found: 194.0901.

2-Propargyl 4-azido-2,3,4,6-trideoxy-α-L*-threo*-hexopyranoside (44α) and **2-Propargyl 4-azido**-2,3,4,6-trideoxy-β-L*-threo*-hexopyranoside (44β)

To a flask were added the mixture of 43α and 43β (200 mg, 1.17 mmol), crushed activated 4Å molecular sieves (100 mg), propargyl alcohol (0.41 mL, 7.0 mmol), and CH₂Cl₂ (5 mL). The mixture was stirred for 10 min at room temperatu, cooled to -40 °C, and then BF₃•Et₂O (0.37 mL, 2.9 mmol) was added dropwise via syringe. After adding the BF₃•Et₂O, the reaction mixture was warmed to -10 °C. Once the starting material was fully consumed (about 4 h), the reaction mixture was quenched by the addition of K₂CO₃ (150 mg). Next, H₂O (5 mL), satd aqueous NaHCO₃ solution (5 mL) and CH₂Cl₂ (15 mL) were added. The organic layer was separated, washed with brine, dried (Na_2SO_4), filtered, and concentrated. The crude product was purified by column chromatography (30:1, hexanes-EtOAc) to acquire pure 44a and 44 β both as colorless oils (203 mg, 89%, α : β = 3.5:1). (44a): R_f 0.32 (20:1) hexanes–EtOAc); IR: v 3297 (\equiv C–H), 2100 (N=N=N) cm⁻¹; $[\alpha]_D^{23}$ –109.0 (c 1.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 4.60 (br d, 1H, $J_{1,2a \text{ or } 2e}$ = 3.5 Hz, H-1), 4.22 (dd, 1H, J = 15.7 Hz, J = 2.4 Hz, $OCH_2C=CH$), 4.17 (dd, 1H, J = 15.7 Hz, J = 2.4 Hz, $OCH_2C=CH$), 4.00 (dq, 1H, $J_{5,6} = 6.5$ Hz, $J_{4,5} = 1.7$ Hz, H-5), 3.45 (br s, 1H, H-4), 2.41 (t, 1H, J = 2.4 Hz, OCH₂C=C<u>H</u>), 2.10–2.18 (m, 1H, H-3e), 1.87– 2.00 (m, 2H, H-3a, H-2e), 1.58–1.63 (m, 1H, H-2a), 1.20 (d, 3H, $J_{5,6} = 6.5$ Hz, H-6); ¹³C NMR (125) MHz, CDCl₃, δ_C) 95.9 (C-1), 79.5 (<u>C</u>=CH), 74.6 (C=<u>C</u>H), 65.6 (C-5), 59.8 (C-4), 54.2 (OCH₂), 23.8 (C-2), 22.9 (C-3), 17.8 (C-6). HRMS (EI) calcd for C₉H₁₃N₃O₂ (loss of –OCH₂C=CH): 140.0824. Found: 140.0828. Anal. calcd for C₇H₁₃N₃O₂: C, 55.37; H, 6.71; N, 21.52. Found C, 55.85; H, 7.02; N, 21.74.

(44β): R_f 0.22 (20:1 hexanes–EtOAc); IR: v 3297 (=C–H), 2098 (N=N=N) cm⁻¹; [α]_D²³+208.6 (*c* 0.9, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 4.66 (dd, 1H, $J_{1,2a}$ = 8.8 Hz, $J_{1,2e}$ = 3.1 Hz, H-1), 4.38 (dd, 1H, J = 15.7 Hz, J = 2.4 Hz, OC<u>H</u>₂C=CH), 4.34 (dd, 1H, J = 15.7 Hz, J = 2.4 Hz, OC<u>H</u>₂C=CH), 3.68 (dq, 1H, $J_{5,6}$ = 6.3 Hz, $J_{4,5}$ = 1.7 Hz, H-5), 3.40 (br s, 1H, H-4), 2.40 (t, 1H, J = 2.4 Hz, OCH₂C=C<u>H</u>), 2.13–2.19 (m, 1H, H-3e), 1.68–1.88 (m, 3H, H-2a, H-2e, H-3a), 1.29 (d, 3H, $J_{5,6}$ = 6.3 Hz, Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 99.1 (C-1), 79.3 (<u>C</u>=CH), 74.3 (C=<u>C</u>H), 72.9 (C-5), 59.0 (C-4), 54.6 (OCH₂), 26.8 (C-3), 25.7 (C-2), 17.8 (C-6). HRMS (ESI) calcd for (M+Na) C₉H₁₃N₃O₂Na: 218.0900. Found: 218.0901.

2-Propargyl 4-amino-2,3,4,6-trideoxy-α-L-threo-hexopyranoside (45)

To a solution of compound **44***a* (423 mg, 2.17 mmol) in THF (25 mL) and H₂O (0.39 mL) was added PPh₃ (0.85 g, 3.3 mmol), and the reaction was stirred for 10 h under reflux. After cooling and evaporation, the residue was purified by column chromatography (EtOAc \rightarrow CH₃OH) to yield pure **45** (313 mg, 85%) as a foamy white solid: R_f 0.39 (5:1 CH₂Cl₂–CH₃OH); IR: *v* 3392 (N–H), 3295 (≡C–H), 3257 (N–H), 2118 (C≡C) cm⁻¹; $[\alpha]_{D}^{23}$ –156.1 (*c* 3.5, CH₃OH); ¹H NMR (500 MHz, CD₃OD, δ_{H}) 4.60 (br d, 1H, *J*_{1,2a or 2e} = 3.6 Hz, H-1), 4.20 (d, 2H, *J* = 2.4 Hz, OCH₂C≡CH), 4.00 (dq, 1H, *J*_{5,6} = 6.7 Hz, *J*_{4,5} = 1.5 Hz, H-5), 2.80 (t, 1H, *J* = 2.4 Hz, OCH₂C≡C<u>H</u>), 2.71 (br s, 1H, H-4), 2.00–2.09 (m, 1H, H-3e), 1.88–1.96 (m, 1H, H-2e), 1.58–1.64 (m, 1H, H-3a), 1.45–1.51 (m, 1H, H-2a), 1.10 (d, 3H, *J*_{5,6} = 6.7 Hz, H-6); ¹³C NMR (125 MHz, CD₃OD, δ_{C}) 97.1 (C-1), 80.7 (<u>C</u>≡CH), 75.4 (C≡<u>C</u>H), 67.6 (C-5), 54.8 (OCH₂), 49.2 (C-4), 26.7 (C-3), 24.1 (C-2), 17.7 (C-6). HRMS (ESI) calcd for (M+H) C₉H₁₆NO₂: 170.1176. Found: 170.1177. Anal. calcd for C₉H₁₅NO₂: C, 63.88; H, 8.93; N, 8.28. Found C, 63.99; H, 9.01; N, 7.90.

3-(2-Phenyl-benzo[*b*]furan-3-yl)-prop-2-ynyl 4-*O*-acetyl-2,3,6-trideoxy-α-L- *erythro*hexopyranoside (46)

Compound **24** (97.9 mg, 0.39 mmol), compound **40** (110.3 mg, 0.59 mmol), and crushed activated 4Å molecular sieves (30 mg) were suspended in anhydrous CH₂Cl₂ (5 mL). The mixture was stirred for 5–10 min at room temperature and then cooled to -10 °C. BF₃•Et₂O (102 μ L, 0.8 mmol) was added dropwise via syringe. After adding BF₃•Et₂O, the reaction mixture was warmed to 0 °C. Once the starting material was fully consumed, the reaction mixture was quenched by the addition of K₂CO₃ (0.1 g), and then H₂O (10 mL), satd NaHCO₃ solution (5 mL) and CH₂Cl₂ (20 mL) were added. The organic layer was separated, washed with brine, and was dried (Na₂SO₄), filtered and concentrated. The crude product was purified by column chromatography (10:1, hexanes–EtOAc) giving pure **46** as a yellow paste (77.3 mg, 49%). (**46**): R_f 0.46 (4:1 hexanes–EtOAc); IR: *v* 2222 (C≡C), 1737 (C=O) cm⁻¹; [α]_D – 108.0 (*c* 5.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, $\delta_{\rm H}$) 8.26–8.30 (m, 2H, Ar), 7.66–7.70 (m, 1H, Ar),

7.47–7.53 (m, 3H, Ar), 7.39–7.43 (m, 1H, Ar), 7.28–7.36 (m, 2H, Ar), 5.13 (br s, 1H, H-1), 4.64 (s, 2H, OC<u>H</u>₂C≡C), 4.52–4.58 (m, 1H, H-4), 3.93 (dq, 1H, $J_{4,5} = 9.6$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 2.06 (s, 3H, O=CCH₃), 1.83–2.01 (m, 4H, H-2a, H-2e, H-3a, H-3e), 1.20 (d, 3H, $J_{5,6} = 6.3$ Hz, H-6); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.2 (C=O), 156.8 (Ar), 153.4 (Ar), 129.9(9) (Ar), 129.9(6) (Ar), 129.2 (Ar), 128.6 (2, Ar), 126.0 (2, Ar), 125.3 (Ar), 123.4 (Ar), 120.3 (Ar), 111.2 (Ar), 98.5 (Ar), 95.0 (C-1), 92.6 (≡C), 77.8 (≡C), 73.4 (C-4), 67.1 (C-5), 55.0 (OCH₂), 29.0 (C-2), 24.1 (C-3), 21.2 (O=C<u>C</u>H₃), 17.9 (C-6). HRMS (ESI) calcd for (M+Na) C₂₅H₂₄O₅Na: 427.1516. Found: 427.1517. Anal. calcd for C₂₅H₂₄O₅: C, 74.24; H, 5.98. Found C, 74.50; H, 6.33.

3-(2-Phenyl-benzo[*b*]thiophen-3-yl)-prop-2-ynyl 4-*O*-acetyl-2,3,6-trideoxy-α- L-*erythro*hexopyranoside (47)

Compound **47** was synthesized from **25** (124.2 mg, 0.47 mmol) and **40** (133.2 mg, 0.71 mmol) in 43% yield by following the same procedure used for the synthesis of **46**. (**47**): white needle-like solid after recrystallization from hexanes–Et₂O (2:1), m.p.: 89–91 °C; R_f 0.36 (6:1 hexanes–EtOAc); IR: *v* 2216 (C=C), 1736 (C=O) cm⁻¹; $[\alpha]_D$ –120.2 (*c* 1.4, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, δ_H) 7.96–8.00 (m, 2H, Ar), 7.92–7.96 (m, 1H, Ar), 7.79–7.82 (m, 1H, Ar), 7.36–7.50 (m, 5H, Ar), 5.08 (br s, 1H, H-1), 4.58 (s, 2H, OCH₂C=C), 4.50–4.57 (m, 1H, H-4), 3.89 (dq, 1H, $J_{4,5} = 9.7$ Hz, $J_{5,6} = 6.3$ Hz, H-5), 2.06 (s, 3H, O=CCH₃), 1.80–2.00 (m, 4H, H-2a, H-2e, H-3a, H-3e), 1.17 (d, 3H, $J_{5,6} = 6.3$ Hz, H-6); ¹³C NMR (100 MHz, CDCl₃, δ_C) 170.2 (C=O), 146.9 (Ar), 141.1 (Ar), 137.5 (Ar), 133.7 (Ar), 128.8 (Ar), 128.7 (2, Ar), 128.4 (2, Ar), 125.2 (Ar), 124.9 (Ar), 123.3 (Ar), 122.0 (Ar), 112.9 (Ar), 94.8 (C-1), 90.2 (=C), 80.4 (=C), 73.4 (C-4), 67.0 (C-5), 54.8 (OCH₂), 29.0 (C-2), 24.0 (C-3), 21.2 (O=CCH₃), 17.8 (C-6). HRMS (ESI) calcd for (M+Na) C₂₅H₂₄O₄SNa: 443.1288. Found: 443.1289. Anal. calcd for C₂₅H₂₄O₄S: C, 71.40; H, 5.75; S, 7.63. Found C, 71.34; H, 5.80; S, 7.41.

HPLC Analysis of test compounds HPLC: VARIAN ProStar Model 701 Column: VARIAN Polaris 5 C8-A 250x4.6 mm Detector: ELSD

Gradient of HPLC eluents

	0 min	2 min	5 min	20 min	21 min	25 min
25 mM NH ₄ OAc Buffer, pH = 5.3 (%)	60	60	40	40	60	60
CH ₃ CN (%)	40	40	60	60	40	40


```
Print Date: Mon Dec 03 13:55:04 2007
                                                 Page 1 of 1
          :
: c:\users\wei shi\desktop\001.run
Title
Run File
Method File : C:\star\Methods\Wei\Mannose.mth
Sample ID : Manual Sample
                                   Calculation Date: 2007/12/3 13:25
Injection Date: 2007/12/3 13:00
Operator : Wei
                                     Detector Type: ProStar/Dynamax (2 Volts)
                                     Bus Address : 24
Sample Rate : 5.00 Hz
Run Time : 24.987 min
Workstation:
Instrument : Instrument #1
Channel : 1 = INTGR 1
** LC Workstation Version 6.30 ** 02868-26D0-AE7-0234 **
Run Mode
                : Analysis
Peak Measurement: Peak Area
Calculation Type: Percent
                                         Time
                                 Ret.
                                                                   Width
 Peak
          Peak
                     Result
                                 Time
                                        Offset
                                                     Area
                                                             Sep.
                                                                   1/2
                                                                          Status
 No.
          Name
                      ()
                                 (min)
                                         (min)
                                                   (counts)
                                                             Code (sec)
                                                                          Codes
                        ____
  _ _ _
                                 ____
                                         _____
                                                   _____
                                                              ____
                                                                   _ _ _ _ _
                                                                          ____
                                         0.000
                                                     168790
                                                                   12.5
                        0.9944
                                 3.070
                                                               BВ
    1
2 0.0383 12.741 0.000 6497
3 98.9673 14.387 0.000 16798884
                                                            BB 2.8
BB 27.7
                    ____
                                        100.0000
                                           0.000
```

Totals:

16974171

Gradient of HPLC eluents	S
--------------------------	---

	0 min	2 min	5 min	20 min	21 min	25 min
25 mM NH ₄ OAc Buffer, pH = 5.3 (%)	60	60	40	40	60	60
CH ₃ CN (%)	40	40	60	60	40	40

Print Date: Fri Dec 07 19:38:41 2007 Page 1 of 1 Title : Run File : c:\users\wei shi\desktop\hplc1-42-6.run Method File : C:\star\Methods\Wei\Mannose.mth Sample ID : Manual Sample Injection Date: 2007/12/5 19:35 Calculation Date: 2007/12/5 20:00 : Wei Detector Type: ProStar/Dynamax (2 Volts) Operator Workstation: Bus Address : 24 Instrument : Instrument #1 Sample Rate : 5.00 Hz : 1 = INTGR 1 Run Time : 24.987 min Channel ** LC Workstation Version 6.30 ** 02868-26D0-AE7-0234 ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: Percent Ret. Time Width Offset Sep. Peak Peak Result Time Area 1/2 Status No. Name () (min) (min) (counts) Code (sec) Codes ____ _____ _____ _____ _____ ____ ____ _____ _ _ _ _ 1.077 1 0.0665 0.000 8350 ΒВ 3.0 2 0.0680 7.451 0.000 8547 ΒВ 7.7 З 0.0633 8.938 0.000 7951 0.0 BВ 0.0611 11.417 0.000 7680 4 ΒВ 3.5 99.6070 0.0673 15.899 12513063 5 0.000 BB 30.1 21.091 6 0.000 8448 BB 4.3 0.0669 22.411 7 0.000 8399 BВ 9.2

_ _ _ _ _ _ _

0.000

12562438

. _ _ _

100.0001

Totals:

Sample figure from the FID assays of compound 1-4

