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Scheme S1. Geometry models to seek isomers of = complexes.
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Scheme S2. Canonical resonance structures which stabilize the transition state of [3,3]

sigmatropy (Claisen) rearrangement.
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Scheme S3. The charge-transfer (CT) interaction to support the Dewar's & complex derived
from mono-protonated 2,2'-dimethoxyhydrazobenzene (14H"). The Dewar's mono-protonated
n complex shown by (ii) in Scheme 2 has been obtained in the substrate,
2,2'-dimethoxyhydrazobenzene (Figure 3). The complex may be present even in the gas phase
(Figure S9). However, the complex is absent for the parent substrate, 1H" (Figure S10). The
mono-protonated complex arises from CT from HOMO of 2-methoxyaniline to lumo of its H’
subtracted form (2-MeO-C¢H,=NH") (Scheme S3). One methoxy group gives the aniline
higher donor ability, and the other relaxes the cation destabilization. Thus, the two methoxy
groups may give the donor-acceptor Dewar's = complex. On the other hand, the ©= complex
from the parent hydrazobenzene is supported by the non-classical mutual charge transfer in
the di-protonated form.
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Figure S1. Geometric changes along the path from the protonated parent hydrazobenzene
(1H") to the protonated benzidine (2H). TS denotes transtion state, and Int does intermediate.
RB3LYP/6-31G* and RB3LYP/6-311+G** distances are shown without and with parentheses,

respectively.
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Figure S2. The water-free geometry of the = complex int2a is converted to the other one with
the C-C covalent bond.
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Figure S3. Geometric changes along the path from the intermediate Int5 to the protonated

diphenyline (3H"), which corresponds to Scheme 10.
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Figure S4. Geometric changes along the path from the intermediate Int5 to the protonated
o-semidine (7H" X=H), which corresponds to Scheme 11.
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Figure S5. Geometric changes along the path from the protonated parent hydrazobenzene

(1H") to the protonated 2,2'-diamino-biphenyl (16H"), which corresponds to Scheme 12.
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Figure S6. Optimization results of initial geometries rotated along the way shown in Scheme
Sl
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Figure S8. Two Claisen rearrangements in the mono-protonated form.
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Figure S9. The gas-phase = complex of the mono-protonated 2,2'-dimethoxy-hydrazobenzene.
The left geometry is an assumed one which is taken from that of the = complex one in Figure

3.

Figure S10. A © complex intermediate of the mono-protonated hydrazobenzene is absent. The

left geometry is an assumed one which is taken from that of the = complex one in Figure 3.

S25



Intl3a

AG® = 0 kcal/mol

Int13b

AG°® = +4.78 kcal/mol

HED
1.0662 A

1.7963 A

@ (Fig. S11-1)

S26



TS16
TS of proton relay

AG° = +8.01 kcal/mol

products,
4-chloroaniline(proton adduct),
12H* X=ClI

AG° = -0.85 kcal/mol

(Fig. S11-2)

Figure S11. Geometric changes via disproportionation (Scheme 5) in a system composed of

the T complex of the di-protonated 4,4'-dichlorohydrazobenzene and a neutral one.
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Figure S12. Geometries of two mono-protonated © complexes in the system of
2-methoxyhydrazobenzene and (H30"),(H.0)1. Total energies of MPWBIK/6-31G* are
-1605.535863 a.u. (a) and -1605.540736 a.u. (b), respectively. The isomer (b) is slightly more
stable than (a). That is, the methoxy group works slightly more effective for stabilization of

the cation than for enhancement of the donor ability of aniline.
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