Supplementary information for

Studies Towards the Total Synthesis of Oroidin Dimers

Rasapalli Sivappa, Sabuj Mukherjee, H.V. Rasika Dias* and Carl J. Lovely* Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019

Contents

- 1. Experimental procedures for the preparation of compounds 16-24, S2-S12.
- Experimental for and Figures of X-ray structures of spiro imidazolones 22a and 22b, S13-S14.
- 3. Copies of ¹H NMR and ¹³C NMR spectra for compounds **16-24**, S15-40.

All NMR spectra were recorded in CDCl₃ unless otherwise indicated and at 500 MHz for proton and 125 MHz for carbon spectra, unless indicated otherwise.

(1-Benzyl-1H-imidazol-4-yl)-propynoic acid ethyl ester (16a): DMF (50 mL) was

purged with N₂ then the Bn-protected 4-iodoimidazole **14a** (5.0 g, 0.02 mole) was added followed by Pd(PPh₃)₂Cl₂ (0.37 g, 0.53 mmol), copper iodide (200 mg, 1.06 mmol), orthoester **15**¹ (4.54 mL, 26 mmol) and finally triethylamine (6.1 mL, 40 mmol) under

an N₂ atmosphere. The reaction mixture was heated at 50 °C for 8 h. *p*-TsOH (400 mg) was added to the above reaction mixture and then stirred at rt overnight. The organic solvent was washed with water (200 mL), the organic layer was dried with anhydrous Na₂SO₄ concentrated and the residue was purified by chromatography on silica gel (hexane/EtOAc, 3:2) providing **16a** as a thick yellow liquid was obtained (2.68 g, 60%). ¹H NMR (300 MHz): δ = 7.38 (s, 1H), 7.38-7.36 (m, 4H), 7.18-7.17 (m, 2H), 5.11 (s, 2H), 4.26 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (75 MHz): δ = 154.2, 138.4, 134.9, 129.4, 128.9, 127.6, 127.5, 121.9, 81.7, 80.8, 61.9, 51.5, 14.27; FT-IR (neat, cm⁻¹): 2360, 2340, 2223, 1749, 173, 1716, 1699, 1497, 1489, 1473, 1457, 1436, 1419, 1396, 1374, 1362, 1339, 1318, 1094; HR-MS (*m*/*z*): calc for [M+H]⁺ C₁₅H₁₄N₂O₂ is 255.1128, found 255.1120.

(**1-Dimethylsulfamoyl-1***H***-imidazol-4-yl**)-**propynoic acid ethyl ester** (**16b**): DMF (55 mL) was purged by bubbling N₂ through it for 10 min then DMAS-protected 4iodoimidazole **14b** (5.5 g, 18 mmol) was added followed by Pd(PPh₃)₂Cl₂ (0.38 g, 0.54 mmol), copper iodide (0.21 g, 1.09 mmol), ortho ester 15¹ (4.7 mL, 27 mmol) and

triethylamine (6.3 mL, 45 mmol) under an N₂ atmosphere. The reaction mixture was heated at 45-50 °C for 8 h. *p*-TsOH (500 mg) was added to the above reaction mixture followed by stirring at rt overnight. The organic solvent was washed with water (250 mL), the organic layer was dried with anhydrous Na₂SO₄

concentrated and the residue was purified by chromatography on silica gel (hexane/EtOAc, 3:2) to provide **16b** a yellow solid (3.30 g, 67%). M.p. 72-74 °C. ¹H NMR: δ = 7.85 (s, 1H), 7.59 (s, 1H), 4.25 (q, *J* = 6.9 Hz, 2H), 2.87 (s, 6H), 1.31 (t, *J* = 7.3 Hz, 3H); ¹³C NMR: δ = 153.6, 137.1, 124.6, 123.4, 82.5, 78.2, 62.3, 38.3, 14.10; FT-IR (neat, cm⁻¹): 3131, 2984, 2223, 1706, 1474, 1421, 1396, 1332, 1288, 1218, 1176, 1080, 1024, 1010, 965, 856, 728; HR-MS (*m*/*z*): calc for [M+H]⁺C₁₀H₁₃N₃O₄S 272.0699, found 272.0700.

(1-Benzyl-1H-imidazol-4-yl)-propynoic acid 3-(1-benzyl-1H-imidazol-4-yl)-allyl ester (19a): Ester 16a (1.7 g, 6.6 mmol) was dissolved in a mixture of THF (17 mL) and

LiOH (1N in water, 19.6 mL) and stirred at rt for 3 h. The pH of the solution was adjusted to pH = 4 through the addition of 1N HCl, then the resulting solution was extracted with EtOAc. The organic solvent was evaporated and a yellow solid (1.46 g) was obtained which consists of the corresponding acid and a trace of

ester. The acid was not purified any further and was used directly in the preparation of the propriolate derivative. In a round bottom flask the crude acid **17a** (0.90 g, 3.97

mmol), alcohol **18** (1.02 g, 4.77 mmol), DMAP (0.04 g, 0.39 mmol) and camphorsulfonic acid (500 mg, 0.21 mmol) were dissolved in dry CH₂Cl₂ (30 mL).² The mixture was cooled to (-78 °C) and DCC (1.23 g, 5.96 mmol) in dry CH₂Cl₂ (8 mL) was added dropwise. The reaction mixture was allowed to warm up to rt and stirred for 2 h. The resulting mixture was filtered through Celite and the filter cake was washed with CH₂Cl₂. Concentration of the filtrate provided the crude product, which was purified by chromatography (hexane/EtOAc, 1:19) to provide **19a** a thick colorless liquid (1.08 g, 60%). ¹H NMR: δ = 7.48 (s, 1H), 7.46 (s, 1H), 7.32-7.28 (m, 6H), 7.28 (s, 1H), 7.17-7.12 (m, 4H), 6.84 (s, 1H), 6.54 (d, *J* = 15.6 Hz, 1H), 6.38 (td, *J* = 6.4, 16.0 Hz, 1H), 5.08 (s, 2H), 5.05 (s, 2H), 4.79 (d, *J* = 6.4 Hz, 2H); ¹³C NMR: δ = 153.9, 139.9, 138.3, 137.9, 135.9, 134.9, 129.3, 129.1, 128.9, 128.4, 127.6, 127.6, 127.4, 126.7, 121.9, 120.6, 117.9, 81.5, 81.2, 66.3, 51.4, 51; FT-IR (neat, cm⁻¹): 2215, 1701, 1540, 1496, 1455, 1377, 1292, 1219, 1148, 1044, 969, 940, 840, 727, 632; HR-MS (*m*/*z*): calc for [M+H]⁺C₂₆H₂₂N₄O₂ 423.1816, found 423.1856.

(1-Dimethylsulfamoyl-1H-imidazol-4-yl)-propynoic acid (17b): Ester 16a (3.10 g, 11

mmol) was dissolved in THF (20 mL) and LiOH (1N in water, 31 mL) and stirred at rt for 2.5 h. The pH of the basic solution was adjusted to pH = 4 by the addition of 1N HCl, and the resulting precipitate was collected by vacuum filtration and washed with small amount of cold water. After drying in vacuo,

the corresponding acid **17b** was obtained as a colorless solid (2.00 g, 75%). Mp 138-140 °C. ¹H NMR (DMSO, 300 MHz): $\delta = 8.32$ (s, 1H), 8.31 (s, 1H), 2.85 (s, 6H); ¹³C NMR

(DMSO, 75 MHz): δ = 154.7, 138.7, 126.7, 122.1, 83.4, 78.6, 39.7; FT-IR (KBr, cm⁻¹): 3393, 3143, 2945, 2773, 2501, 2239, 1891, 1693, 1481, 1458, 1426, 1394, 1336, 1282, 1242, 1205, 1187, 1096, 999, 972, 727, 669, 618.

(1-Dimethylsulfamoyl-1H-imidazol-4-yl)-propynoic acid 3-(1-benzyl-1H-imidazol-4yl)-allyl ester (19b): In a round bottom flask the acid 17b (2.00 g, 8.22 mmol), alcohol

18 (2.11 g, 9.86 mmol), DMAP (100 mg, 0.82 mmol) and camphorsulfonic acid (110 mg, 0.49 mmol) was dissolved in dry CH_2Cl_2 (40 mL) under N₂ atmosphere. The mixture was cooled to (- 78 °C) and DCC (2.54 g, 12.0 mmol) dissolved in dry CH_2Cl_2 (15 mL) was added dropwise.² The reaction mixture

was allowed to warm up to rt and stirred for 2 h. The mixture was filtered over Celite and the filter cake was washed with CH₂Cl₂. The filtrate was concentrated and the crude product was purified by chromatography (hexane/EtOAc, 1:19) affording **19b** as a white solid (2.40 g, 68%). Mp 118-120 °C. ¹H NMR (300 MHz): δ = 7.85 (d, *J* = 0.9 Hz, 1H), 7.59 (d, *J* = 0.9 Hz, 1H), 7.50 (s, 1H), 7.37-7.32 (m, 3H), 7.15 (d, *J* = 6.9 Hz, 2H), 6.86 (s, 1H), 6.57 (d, *J* = 15.6 Hz, 1H), 6.42 (td, *J* = 15.8, 6.4 Hz 1H), 5.07 (s, 2H), 4.48 (d, *J* = 6.4 Hz, 2H), 2.88 (s, 6H); ¹³C NMR (75 MHz): δ = 153.4, 139.7, 137.9, 137.1, 135.9, 129.2, 128.5, 127.4, 126.9, 124.6, 120.4, 117.9, 82.4, 78.9, 66.7, 51.1, 38.3; FT-IR (neat, cm⁻¹): 3125, 2928, 2222, 1705, 1539, 1456, 1421, 1395, 1332, 1286, 1180, 1080, 1008, 967, 842, 728, 617; HR-MS (*m*/z): calc for [M+H]⁺ C₂₁H₂₁N₅O₄S 440.1387, found 440.1409.

3-Benzyl-4-(1-benzyl-1H-imidazol-4-yl)-3,7,7a,8-tetrahydro-furo[3',4':4,5]benzo[1,2-d]imidazol-5-one (20a): CH₂Cl₂ (75 mL) was placed in a resealable thick-walled tube

and was purged with N_2 for 10 minutes, then ester **19a** (0.70 g, 1.65 mmol) was added and again the reaction mixture was purged with N_2 for an additional 5 minutes. After sealing the tube with a Teflon screw cap, the reaction mixture was heated at 130 °C for 12 h. The reaction mixture was cooled to rt and the

CH₂Cl₂ was evaporated under vacuum. The crude product was purified by chromatography (acetone/EtOAc, 7:3) to provide **20a** (490 mg, 70%) as a yellow solid. M.p 202-204 °C. ¹H NMR: δ = 7.59 (s, 1H), 7.55 (s, 1H), 7.50 (s, 2H), 7.36-7.33 (m, 3H), 7.23 (d, *J* = 6.4 Hz, 2H), 7.15 (d, *J* = 7.3 Hz, 1H), 7.06 (t, *J* = 7.3 Hz, 2H), 6.59 (d, *J* = 7.3 Hz, 2H), 5.15-5.06 (m, 3H), 4.96 (d, *J* = 15.6 Hz, 1H), 4.62 (t, *J* = 9.2 Hz, 1H), 3.56-3.49 (m, 1H), 2.99 (dd, *J* = 15.6, 8.3 Hz, 1H), 2.68 (t, *J* = 16.0 Hz, 1H); ¹³C NMR: δ = 168.7, 144.6, 140.9, 136.5, 136.3, 135.7, 133.0, 131.5, 129.2, 128.6, 127.9, 127.7, 126.4, 125.4, 116.9, 70.9, 51.3, 51.0, 38.4, 27.7; FT-IR (neat, cm⁻¹): 1732, 1604, 1520, 1497, 1455, 1372, 1252, 1223, 1164, 1097, 1075, 1016, 913, 852, 766, 727; HR-MS (*m/z*): calc for [M+H]⁺C₂₆H₂₂N₄O₂ 423.1816, found 423.1856.

4-(3-Benzyl-5-oxo-5,7,7a,8-tetrahydro-3H-furo[3',4':4,5]benzo[1,2-d]imidazol-4-yl)imidazole-1-sulfonic acid dimethylamide (20b): CH₂Cl₂ (80 mL) was placed in a thick-walled pressure tube and purged with N₂ for 10 min, then ester **19b** (500 mg, 11.4 mmol) was added and again the reaction mixture was purged with N₂ for 5 min. After sealing the tube with a Teflon screw cap, the reaction mixture was heated to 120 °C for 12 h. The reaction mixture was cooled to rt., and then the reaction mixture was

8.7 Hz, 1H), 3.03 (dd, J = 8.7, 8.3 Hz, 1H), 2.88 (s, 6H), 2.70 (dd, J = 16.0, 15.6 Hz, 1H); ¹³C NMR: $\delta = 168.4, 144.9, 141.4, 135.9, 135.8, 131.9, 131.2, 128.9, 128.1, 126.9, 126.1,$ 121.8, 118.6, 71.1, 50.9, 38.4, 38.2, 27.7; FT-IR (neat, cm⁻¹): 3122, 2926, 1736, 1615, 1557, 1521, 1457, 1420, 1392, 1334, 1255, 1176, 1083, 1011, 963, 848, 728, 702, 648; HR-MS (m/z): calc for [M+H]⁺C₂₁H₂₁N₅O₄S is 440.1387, found 440.1428.

3-Benzyl-4-(1-benzyl-1H-imidazol-4-yl)-3,4,4a,7,7a,8-hexahydro-

furo[3',4':4,5]benzo[1,2-d]imidazol-5-one (21a): The Diels-Alder product 20a (160

mg, 0.37 mmol) was dissolved in dry ethanol (10 ml). To the reaction mixture 10% Pd/C (100 mg) was added. The heterogeneous reaction mixture was stirred at 36 °C for 8 h under a hydrogen atmosphere. The reaction mixture was filtered over Celite and the filter cake was repeatedly washed with hot ethanol. The

filtrate was evaporated under reduced pressure followed by purification of the residue by chromatography on silica gel (CHCl₃/MeOH, 49:1) furnished the hydrogenated compound **21a** (110 mg, 71%) as a thick colorless liquid. ¹H NMR: δ = 7.45 (s, 1H),

7.37 (s, 1H), 7.34-7.30 (m, 4H), 7.26-7.22 (m, 4H), 7.07 (d, J = 7.3 Hz, 2H), 6.86 (d, J = 7.8 Hz, 2H), 6.53 (s, 1H), 4.98 (q, J = 15.1 Hz, 2H), 4.85 (d, J = 15.6 Hz, 1H), 4.57 (d, J = 16.0 Hz, 1H), 4.31-4.21 (m, 3H), 3.19-3.02 (m, 3H), 2.74 (d, J = 16.0 Hz, 1H); ¹³C NMR (75 MHz): $\delta = 139.8$, 137.7, 137.4, 136.2, 136.1, 135.6, 129.1, 128.9, 128.4, 128.1, 127.2, 126.9, 124.5, 118.4, 72.5, 50.9, 48.7, 44.4, 34.9, 30.8, 22.4; FT-IR (neat, cm⁻¹): 2366, 2334, 1773, 1502, 1449, 1207, 1144, 1010, 737, 708. HR-MS (*m/z*): calc for [M+H]⁺C₂₆H₂₄N₄O₂ 425.1972, found 425.1999.

4-(3-Benzyl-5-oxo-4,4a,5,7,7a,8-hexahydro-3H-furo[3',4':4,5]benzo[1,2-d]imidazol-4yl)-imidazole-1-sulfonic acid dimethylamide (21b): The Diels-Alder product 20b (200

mg, 0.45 mmol) was dissolved in dry ethanol (15 mL), and 10% Pd/C (120 mg) was added. The resulting heterogeneous reaction mixture was stirred at 40 °C for 12 h under hydrogen atmosphere (60 psi). On completion of the reaction, the reaction mixture was filtered through Celite and the filter cake was washed repeatedly with hot ethanol. The filtrate was evaporated under reduced

pressure followed by purification of the residue by chromatography on silica gel (CHCl₃/MeOH, 49:1) which furnished reduced compound **21b** (150 mg, 75%) as yellow solid. M.p 158-160 °C. ¹H NMR: δ = 7.68 (s, 1H), 7.54 (s, 1H), 7.27-7.26 (m, 3H), 6.92 (m, 2H), 6.93-6.91 (s, 1H), 4.92 (d, *J* = 15.6 Hz, 1H), 4.67 (d, *J* = 15.6 Hz, 1H), 4.28-4.22 (m, 2H), 4.21 (t, *J* = 8.7 Hz, 1H), 3.11-3.06 (m, 3H), 2.80 (d, *J* = 2.8 Hz, 1H), 2.77 (s, 6H); ¹³C NMR: δ = 176.7, 140.6, 138.2, 136.6, 136.2, 135.6, 129.0, 128.3, 126.8, 123.1,

116.4, 72.3, 49.1, 43.8, 38.3, 34.8, 30.6, 22.7; FT-IR (neat, cm⁻¹): 2360, 1770, 1716, 1652, 1558, 1540, 1497, 1457, 1418, 1390, 1268, 1175, 1078, 1008, 962, 728; HR-MS (*m/z*): calc for [M+H]⁺C₂₁H₂₃N₅O₄S 442.1544, found 442.1581.

Spiro Imidazolone (22a): The hydrogenated product 21b (90 mg, 0.21 mmol) was

mg, 0.53 mmol) was added to the reaction mixture. The reaction mixture was stirred at reflux for 8 h. The organic layer was washed with 2M NaOH solution and the organic layer was dried with anhydrous Na₂SO₄ concentrated and the residue was

dissolved in chloroform (5 mL) and Davis' oxaziridine (160

purified by chromatography on silica gel (CHCl₃/MeOH, 49:1) furnished rearranged product **22a** (60 mg, 64%) as a yellow liquid. ¹H NMR (300 MHz): δ = 7.43 (s, 1H), 7.22-7.37 (m, 10H), 7.05-6.99 (m, 3H), 6.85 (s, 1H), 4.93 (s, 1H), 4.59 (d, *J* = 15.1 Hz, 1H), 4.53 (d, *J* = 8.6 Hz, 1H), 4.41 (d, *J* = 15.5 Hz, 1H), 4.28 (dd, *J* = 9.3, 3.1 Hz, 1H), 4.07 (d, *J* = 8.3 Hz, 1H), 3.48-3.35 (m, 2H), 2.63 (dd, *J* = 13.4, 8.9 Hz, 1H), 1.84 (d, *J* = 13.4 Hz, 1H); ¹³C NMR (75 MHz): δ = 181.7, 177, 152.6, 136.2, 135.7, 135. 5, 133.8, 128.9, 128.2, 127.7, 127.3, 119.4, 78.9, 72.1, 52, 50.9, 46.3, 44.7, 43.4, 37.4; FT-IR (neat, cm⁻¹): 2363, 2336, 1770, 1733, 1651, 1557, 1542, 1508; HR-MS (*m*/*z*): calc for [M+H]⁺C₂₂H₂₄N₄O₃ 441.1808, found 441.1936.

Spiro Imidazolone (22b): The tetrahydrobenzimidazole **21b** (90 mg, 0.20 mmol) was dissolved in chloroform (3.5 mL) and Davis' oxaziridine (150 mg, 0.5 mmol) was added to the reaction mixture. The resulting mixture was stirred at reflux for 8 h. The organic

layer was washed with 2M NaOH solution and the organic layer was dried with anhydrous Na₂SO₄ concentrated and the residue was purified by chromatography on silica gel (CHCl₃/MeOH, 49:1) to provide the spiro imidazolone (50 mg, 60%) as a colorless solid. M.p 188 – 190 °C. ¹H NMR: δ = 7.68 (d, *J* = 0.9 Hz, 1H), 7.60 (s, 1H), 7.29-7.25 (m, 3H), 7.09 (d, *J*

= 1.4 Hz, 1H), 6.94 (d, J = 7.6 Hz, 2H), 4.72 (d, J = 15.6 Hz, 1H), 4.56 (t, J = 8.7 Hz, 1H), 4.42 (d, J = 15.1 Hz, 1H), 4.26 (dd, J = 9.2, 3.8 Hz, 1H), 4.06 (d, J = 8.3 Hz, 1H), 3.41-3.39 (m, 2H), 2.78 (s, 6H), 2.60 (dd, J = 15.3, 9.2 Hz, 1H), 1.88 (d, J = 13.7 Hz, 1H); ¹³C NMR: δ = 181.2, 176.8, 153.5, 135.1, 134.9, 129.3, 129.2, 128.4, 127.3, 117.2, 79.1, 77.4, 77.1, 76.9, 73.7, 51.1, 46.1, 44.9, 43.7, 38.3, 37.2; FT-IR (neat, cm⁻¹): 2932, 2367, 2328, 1766, 1727, 1598, 1390, 1162, 1079, 954, 726; HR-MS (*m*/*z*): calc for [M+H]⁺C₂₁H₂₃N₅O₅S 458.1471, found 458.1471.

3-Benzyl-4-(1-dimethylsulfamoyl-1H-imidazol-4-yl)-6-hydroxymethyl-4,5,6,7tetrahydro-3H-benzoimidazole-5-carboxylic acid methyl ester (24): The

tetrahydrobenzimidazole **21b** (200 mg, 0.42 mmol) was dissolved in MeOH (60 mL) under nitrogen atmosphere. To this reaction mixture 0.23 M sodium methoxide was added dropwise.³ After stirring this reaction at room temperature for 1 h it was heated to 60 °C for 2 h. Then cooling this

reaction mixture to room temperature, saturated ammonium chloride solution (20 mL) was added followed by addition of equal amount of water. Then this aqueous solution

was extracted repeatedly by EtOAc. The organic extracts were dried with anhydrous Na₂SO₄ concentrated and the residue was purified by chromatography on silica gel (CH₂Cl₂/MeOH, 4:1) furnishing the product **24** (120 mg, 52%) as a colorless oil. In addition, unreacted lactone (70 mg, 35%) was recovered. ¹H NMR: δ = 7.74 (s, 1H), 7.40 (s, 1H), 7.31-7.25 (m, 4H), 6.85 (d, *J* = 7.3 Hz, 2H), 6.81 (s, 1H), 4.85 (d, *J* = 16.9 Hz, 1H), 4.48 (d, *J* = 18.3 Hz, 1H), 4.20 (d, *J* = 10.5 Hz, 1H), 3.62-3.59 (m, 2H), 3.57 (s, 3H), 3.00 (t, *J* = 9.2 Hz, 1H), 2.90-2.78 (m, 1H), 2.75 (s, 6H), 2.72-2.69 (m, 1H) 2.37 – 2.34 (m, 1H); ¹³C NMR: δ = 174.5, 142.7, 137.9, 137.2, 136.1, 129.0, 127.9, 126.3, 115.4, 65.1, 51.9, 51.6, 49.2, 40.6, 38.1, 35.8, 26.8; FT-IR (neat, cm⁻¹): 3112, 2935, 1723, 1455, 1394, 1265, 1170, 1074, 953, 733, 603, 598; calc for [M+H]⁺ C₂₂H₂₇N₅O₅S 474.1806, found 474.1830.

Ring-opened spiro imidazolone (23): The spiroimidazolone 22b (200 mg, 0.41 mmol)

was dissolved in MeOH (60 mL) under nitrogen atmosphere. To this reaction mixture 0.23 M sodium methoxide in MeOH (49 mL) was added dropwise. After stirring this reaction at room temperature for 1 h it was heated to 60 °C for 18 h.³ The reaction mixture was cooled to room temperature, then of saturated ammonium chloride solution (20 mL) was added followed by addition of equal

amount of water. The resulting aqueous solution was extracted repeatedly with EtOAc. The organic extracts were dried with anhydrous Na_2SO_4 and concentrated and the residue was purified by chromatography on silica gel (CH₂Cl₂/MeOH; 44:6) furnished the desired product (65 mg, 31%) as a colorless liquid. In addition, unreacted lactone (110 mg, 55%) was recovered. ¹H NMR: δ = 7.60 (s, 1H), 7.39 (s, 1H), 7.34-7.28 (m, 4H), 7.15 (d, *J* = 7.2 Hz, 2H), 7.00 (s, 1H), 4.71 (d, *J* = 15.1 Hz, 1H), 4.50 (d, *J* = 15.1 Hz, 1H), 4.02 (d, *J* = 11.0 Hz, 1H), 3.82-3.78 (m, 2H), 3.70 (s, 3H), 3.66-3.62 (m, 1H), 3.40 (m, 2H), 2.97-2.90 (m, 1H), 2.70-2.61 (m, 1H), 1.74 (d, *J* = 13.8 Hz, 1H); ¹³C NMR (75 MHz): δ = 180.9, 174.5, 152.6, 139.8, 135.8, 134.9, 129.1, 128.3, 127.9, 114.5, 77.2, 65.3, 52.2, 51.0, 48.6, 44.9, 43.8, 39.9, 38.2; FT-IR (neat, cm⁻¹): 2944, 2359, 1735, 1397, 1166, 1091, 962, 730; calc for [M+H]⁺C₂₂H₂₇N₅O₆S 490.1755, found 490.1758.

X-ray crystallographic data:

A suitable crystal of the compound of interest, covered with a layer of hydrocarbon oil, was selected and mounted with paratone-N oil in a cryo-loop and immediately placed in the low-temperature nitrogen stream for the low temperature work. The X-ray intensity data were measured at 100(2) K on a Bruker SMART APEX CCD area detector system equipped with a Oxford Cryosystems 700 Series cooler, a graphite monochromator, and a Mo K α fine-focus sealed tube ($\lambda = 0.710$ 73 Å).⁴ The data frames were integrated with the Bruker SAINT-Plus software package.⁵ Data were corrected for absorption effects using the multi-scan technique (SADABS). Structures were solved and refined using Bruker SHELXTL (Version 6.14) software package.⁶ Figures S1 and S2 depicting X-ray crystal structures of compounds **22a** and **22b** were generated using Mercury CSD program (note that compounds **22a** and **22b** are racemates; only one stereoisomer of each is shown in the Figures. There are of course equal numbers of molecules with the opposite stereochemistries in the crystals).⁷ Crystal data and additional experimental details are given in the cif files.

Figure S1: X-ray structure of compound 22a

Figure S2: X-ray structure of compound 22b.

References:

- 1. Gassman, P. G.; Chavan, S. P. *Tetrahedron Lett.* **1988**, *29*, 3407.
- Sunazuka, T.; Hirose, T.; Harigaya, Y.; Takamatsu, S.; Hayashi, M.; Komiyama,
 K.; Mura, S.; Sprengeler, P. A.; Smith, A. B. J. Am. Chem. Soc. 1997, 119, 10247.
- 3. Zancanella, M. A.; Romo, D. Org. Lett. 2008, 10, 3685.
- 4. SMART, Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
- 5. SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
- 6. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, A64, 112-122.
- C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457.

	20.0
	- 0.01
	- 0
	0.0
	0.
	34'62'4
	0.00
	2 76571
	0
	0.090
	0.0 100
	118.438 176.880
	0.0 150
	0.0 16
H H	
۲۰-۶۰ ۱۹۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶ - ۲۰۰۶	.0 180
	.0 190
	0 200
	X : P
\vec{E}	50
	90100000000000000000000000000000000000
ຕ ທທພ	
ecoup 131:13 131	
□Hy 11 8 8 0 00 01 07 00 01 01 01 00 01 01 01 00 01 01 01 00 01 01	
Barrie Ba	0=~0
88 88 88 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	
The second secon	
Letter a second	
Radia and a second a	

