This journal is (c) The Royal Society of Chemistry 2009

Supporting Information for

Introduction of methyl groups on vinylene segments of phenylene vinylene systems: Synthesis and properties

Khai Leok Chan,^a and Alan Sellinger^{a,b*}

a) Institute of Materials Research and Engineering (IMRE) and the Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602, Republic of Singapore

b) Current address: Department of Materials Science and Engineering and the Center for Advanced Molecular Photovoltaics (CAMP), Geballe Laboratory for Advanced Materials, 476 Lomita Mall, Stanford University, Stanford, CA 94305-4045, USA

*Authors to whom correspondence should be addressed. E-mail: aselli@stanford.edu

This journal is (c) The Royal Society of Chemistry 2009

General Methods

¹H and ¹³C NMR data were performed on a Bruker DPX 400 MHz spectrometer with chemical shifts referenced to residual CHCl₃ in CDCl₃. Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra were obtained on a Bruker Autoflex TOF/TOF instrument without the use of matrix. Differential scanning calorimetry (DSC) was carried out under nitrogen on a TA Instrument DSC Q100 instrument (scanning rate of 20 °C min⁻¹). Thermal gravimetric analysis (TGA) was carried out using a TA Instrument TGA Q500 instrument (heating rate of 10 °C min⁻¹). UV–vis spectra were recorded on a Shimadzu model 2501-PC. Photoluminescence (PL) spectra were measured on a Perkin-Elmer (LS50B) spectrofluorimeter. Gas chromatography-mass spectrometry (GCMS) was carried out on a Varian Chrompack 3800 gas chromatograph coupled to a Varian 4000MS mass spectrometer detector.

All commercially available materials were used as received unless otherwise noted. All reactions were carried out using Schlenk techniques in an argon or nitrogen atmosphere with anhydrous solvents. Column chromatography was carried out on silica gel [Merck Kieselgel 60 (230-400 mesh)]. TLC was performed on 0.25 mm thick plates precoated with Merck Kieselgel 60 F_{254} silica gel, and visualised by UV light (254 and 366 nm) and cerium(VI) sulfate solution.

This journal is (c) The Royal Society of Chemistry 2009

1,4-bis((E)-1-(naphthalen-1-yl)prop-1-en-2-yl)benzene (1)

To a mixture of 1,4-di(prop-1-en-2-yl)benzene (200 mg, 1.26 mmol, 1 equiv.), 1-bromo-naphthalene (523 mg, 2.52 mmol, 2 equiv.) and Pd[P(*t*-Bu)₃]₂ (32 mg, 63 μ mol) in argon was added a degassed solution of dicyclohexylmethylamine (0.68 cm³, 3.16 mmol, 2.5 equiv.) in toluene (15 cm³). The resulting mixture was stirred at 100 °C for 60 hours and cooled to room temperature whereupon white precipitates were formed. The precipitates were filtered and the residue was washed with copious amount of distilled water followed by toluene to yield the *title compound* as an off-white solid (345 mg, 66%); mp 215–218 °C; Anal. Calcd. for C₃₂H₂₆: C, 93.62; H, 6.38. Found: C, 93.59; H, 6.41; ¹H NMR (400 MHz, CDCl₃) δ 2.19 (6H, s, CCH₃), 7.37 (2H, s, C=CH), 7.46–7.54 (8H, m, ArH), 7.72 (4H, s, ArH), 7.82 (2H, d, *J* = 8.0, ArH), 7.89–7.91 (2H, m, ArH), 8.05–8.08 (2H, m, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 17.8, 125.6, 125.7, 125.8, 126.2, 126.3, 126.4, 127.1, 127.7, 128.9, 132.6, 134.0, 136.1, 138.8, 142.6; MALDI-TOF-MS m/z: 410.1780; calcd for C₃₂H₂₆ = 410.2035.

1,4-bis((E)-1-(anthracen-9-yl)prop-1-en-2-yl)benzene (2)

To a mixture of 1,4-di(prop-1-en-2-yl)benzene (200 mg, 1.26 mmol, 1 equiv.), 9-bromo-anthracene (650 mg, 2.52 mmol, 2 equiv.) and $Pd[P(t-Bu)_3]_2$ (32 mg, 63 μ mol) in argon was added a degassed solution of dicyclohexylmethylamine (0.68 cm³, 3.16 mmol, 2.5 equiv.) in toluene (15 cm³). The resulting mixture

This journal is (c) The Royal Society of Chemistry 2009

was stirred at 100 °C for 48 hours and cooled to room temperature whereupon yellow precipitates were formed. The precipitates were filtered and the residue was washed with copious amount of distilled water followed by toluene to yield the *title compound* as a yellow solid (456 mg, 70%); mp 300–305 °C; Anal. Calcd. for C₄₀H₃₀: C, 94.08; H, 5.92. Found: C, 94.08; H, 5.92; ¹H NMR (400 MHz, CDCl₃) δ 1.91 (6H, s, CCH₃), 7.59 (2H, s, C=CH), 7.48–7.53 (8H, m, ArH), 8.06–8.08 (8H, m, ArH), 8.20–8.22 (8H, m, ArH), 8.46 (2H, s, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 18.0, 124.2, 125.6, 125.9, 126.5, 126.6, 129.2, 130.2, 131.9, 133.3, 140.9, 142.2; MALDI-TOF-MS m/z: 510.2010; calcd for C₄₀H₃₀ = 510.2348.

4,4'-(1*E*,1'*E*)-2,2'-(1,4-phenylene)bis(prop-1-ene-2,1-diyl)bis(*N*-hexadecyl-1,8-naphthalimide) (3)

To a mixture of 1,4-di(prop-1-en-2-yl)benzene (200 mg, 1.26 mmol, 1 equiv.), 2-bromo-9,9-dimethyl-9*H*-fluorene (1.27 g, 2.52 mmol, 2 equiv.) and Pd[P(*t*-Bu)₃]₂ (32 mg, 63 μ mol) in argon was added a degassed solution of dicyclohexylmethylamine (0.68 cm³, 3.16 mmol, 2.5 equiv.) in toluene (15 cm³). The resulting mixture was stirred at 100 °C for 48 hours, cooled to room temperature and quenched with distilled water (20 cm³). The product was then extracted into dichloromethane (3 × 30 cm³) and the organic layer washed with dried with anhydrous MgSO₄ and evaporated. Purification by column chromatography (hexane:dichloromethane 1:1) followed by slow precipitation in hexane:dichloromethane (2:1) yielded the *title compound* as a pale green solid (350 mg, 28%); mp 59–62 °C; Anal. Calcd. for C₆₈H₈₈N₂O₄: C, 81.88; H, 8.89; N, 2.81. Found: C, 81.45; H, 8.73; N, 2.48; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (6H, t, *J* = 7.6, NCH₂CH₃), 1.20–1.48 (56H, m, CH₂), 1.70–1.80 (4H, s, NCH₂CH₂), 2.22 (6H, s, CCH₃), 4.20 (4H, d, *J* = 7.6, NCH₂), 7.39 (2H, s, C=CH), 7.51–7.78 (8H, m, Ar*H*), 8.40 (2H, d, *J* = 8.8, Ar*H*), 8.63–8.68 (4H, m, Ar*H*); ¹³C NMR (100 MHz, CDCl₃) δ 14.5, 18.1, 23.1, 27.6, 28.6, 29.8, 32.3, 40.9, 121.9, 123.6, 124.3, 126.7, 127.1, 128.1, 128.9, 131.0, 131.1, 131.6, 131.7, 141.6, 142.5, 142.9, 164.5, 164.7; MALDI-TOF-MS m/z: 996.6890; calcd for C₆₈H₈₈N₂O₄ = 996.6744.

This journal is (c) The Royal Society of Chemistry 2009

1,4-bis((E)-1-(pyren-1-yl)prop-1-en-2-yl)benzene (4)

To a mixture of 1,4-di(prop-1-en-2-yl)benzene (200 mg, 1.26 mmol, 1 equiv.), 1-bromo-pyrene (708 mg, 2.52 mmol, 2 equiv.) and Pd[P(*t*-Bu)₃]₂ (32 mg, 63 μ mol) in argon was added a degassed solution of dicyclohexylmethylamine (0.68 cm³, 3.16 mmol, 2.5 equiv.) in toluene (15 cm³). The resulting mixture was stirred at 100 °C for 24 hours, cooled to room temperature and quenched with distilled water (20 cm³). The product was then extracted into dichloromethane (3 × 30 cm³) and the organic layer washed with dried with anhydrous MgSO₄ and evaporated. Purification by column chromatography (hexane:dichloromethane 4:1) followed recrystallisation in toluene solution yielded the *title compound* as a yellow solid (56 mg, 8 %); mp 234–237 °C; Anal. Calcd. for C₄₄H₃₀: C, 94.59; H, 5.41. Found: C, 94.22; H, 5.78; ¹H NMR (400 MHz, CDCl₃) δ 2.26 (6H, s, CCH₃), 7.69 (2H, s, C=CH), 7.83 (4H, s, ArH), 7.00–7.04 (4H, m, ArH), 8.10–8.14 (6H, m, ArH), 8.20–8.23 (6H, m, ArH), 8.31 (2H, d, *J* = 8.0, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 17.9, 124.9, 125.2, 125.3, 125.4, 125.5, 126.3, 126.4, 126.5, 127.6, 127.7, 127.8, 129.6, 130.8, 131.5, 131.9, 133.9, 139.2, 142.7; MALDI-TOF-MS m/z: 558.1760; calcd for C₄₄H₃₀ = 558.2348.

1,4-bis((*E*)-1-(9,9-dimethyl-9H-fluoren-2-yl)prop-1-en-2-yl)benzene (5)

To a mixture of 1,4-di(prop-1-en-2-yl)benzene (200 mg, 1.26 mmol, 1 equiv.), 2-bromo-9,9-dimethyl-9H-

This journal is (c) The Royal Society of Chemistry 2009

fluorene (688 mg, 2.52 mmol, 2 equiv.) and Pd[P(*t*-Bu)₃]₂ (32 mg, 63 μ mol) in argon was added a degassed solution of dicyclohexylmethylamine (0.68 cm³, 3.16 mmol, 2.5 equiv.) in toluene (15 cm³). The resulting mixture was stirred at 100 °C for 48 hours, cooled to room temperature and quenched with distilled water (20 cm³). The product was then extracted into dichloromethane (3 × 30 cm³) and the organic layer washed with dried with anhydrous MgSO₄ and evaporated. Purification by column chromatography (hexane:dichloromethane 2:1) followed by recrystallisation in hexane:dichloromethane (4:1) yielded the *title compound* as a pale green solid (112 mg, 14%); mp 248–250 °C; Anal. Calcd. for C₄₂H₃₈: C, 92.94; H, 7.06. Found: C, 92.93; H, 7.07; ¹H NMR (400 MHz, CDCl₃) δ 1.53 (12H, s, C(CH₃)₂), 2.39 (6H, s, CCH₃), 7.00 (2H, s, C=CH), 7.30–7.48 (8H, m, CH₂), 7.59 (4H, s, ArH), 7.74 (2H, d, *J* = 8.0, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 18.0, 27.6, 47.2, 120.1, 120.4, 123.0, 123.8, 126.3, 127.4, 127.5, 128.5, 128.6, 137.0, 137.9, 138.1, 139.4, 143.2, 154.0, 154.3; MALDI-TOF-MS m/z: 542.2780; calcd for C₄₂H₃₈ = 542.2974

Synthesis of 4,4'-(1*E*,1'*E*)-2,2'-(1,4-phenylene)bis(prop-1-ene-2,1-diyl)bis(N,N-diphenylaniline) (6)

To a mixture of 1,4-di(prop-1-en-2-yl)benzene (200 mg, 1.26 mmol, 1 equiv.), 4-bromotriphenylamine (820 mg, 2.52 mmol, 2 equiv.) and Pd[P(*t*-Bu)₃]₂ (32 mg, 63 μ mol) in argon was added a degassed solution of dicyclohexylmethylamine (0.68 cm³, 3.16 mmol, 2.5 equiv.) in toluene (15 cm³). The resulting mixture was stirred at 100 °C for 48 hours, cooled to room temperature and quenched with distilled water (20 cm³). The product was then extracted into dichloromethane (3 × 30 cm³) and the organic layer washed with dried with anhydrous MgSO₄ and evaporated. Purification by column chromatography (hexane:dichloromethane 2:1) followed by recrystallisation in hexane:dichloromethane (4:1) yielded the *title compound* as a pale green solid (177 mg, 22%); mp 243–245 °C; Anal. Calcd. for C₄₈H₄₀N₂: C, 89.40; H, 6.25; N, 4.34. Found: C, 89.53; H, 6.37; N, 4.10; ¹H NMR (400 MHz, CDCl₃) δ 1.52 (6H, s, CH₃), 6.82 (2H, s, C=CH), 7.00–7.18 (16H, m, ArH), 7.25–7.30 (12H, m, ArH), 7.52 (4H, s, ArH); ¹³C

This journal is (c) The Royal Society of Chemistry 2009

NMR (100 MHz, CDCl3) δ 18.0, 123.3, 123.7, 124.8, 126.2, 12.5, 129.7, 130.5, 133.0, 136.2, 143.2, 136.6, 148.1; MALDI-TOF-MS m/z: 644.3190; calcd for C₄₈H₄₀N₂ = 644.3191

This journal is (c) The Royal Society of Chemistry 2009

Figure S1. ¹H and ¹³C NMR spectra of compound 1.

This journal is (c) The Royal Society of Chemistry 2009

Figure S2. ¹H and ¹³C NMR spectra of compound 2.

S10

Figure S3. ¹H and ¹³C NMR spectra of compound 3.

Figure S4. ¹H and ¹³C NMR spectra of compound 4.

Figure S5. ¹H and ¹³C NMR spectra of compound 5.

This journal is (c) The Royal Society of Chemistry 2009

Figure S6. ¹H and ¹³C NMR spectra of compound 6.

2D NOESY NMR of compound 6

A 2D NOESY ¹H NMR was recorded of compound 6 to confirm the *trans,trans*-conformation (Figure S7a). The hydrogens have been assigned to the respective peaks on the NMR spectrum. Figure S7b shows an expansion of the same spectrum with focus on the NOEs of the aliphatic hydrogen (H_g). No interactions can be observed between H_g and H_f , indicating that the two hydrogens are not on the same side of the double bond, and that the double bond adopts a trans-configuration.

Figure S7a. 2D NOESY ¹H NMR spectrum of compound 6.

Figure S7b. 2D NOESY ¹H NMR spectrum of compound **6**. There is no evidence of interaction between between H_g and H_f , indicating that the double bond configuration has to be *trans*, and not *cis*.

This journal is (c) The Royal Society of Chemistry 2009

Oxidative Stability study

Thin films of compounds **6** and **14** were drop cast on quartz plates from toluene solutions and left to dry in the dark. Photoluminescence spectra were recorded on a Perkin Elmer LS55 Fluorescence Spectrometer under ambient conditions with the following settings: scan rate = 10 nm/s; excitation wavelength = 400 nm; excitation slit width = 2.5 nm; emission slit width = 2.5 nm. Successive measurements (20 in total) were taken with the same settings at intervals of 1 min, while the sample remains in the spectrometer chamber (Figure S8). The emission intensities at the emission peaks (461 nm for **6**, 516nm for **14**) of each measurement were then noted, and plotted against each measurement (Figure 3 in main text).

Figure S8. Photoluminescence spectra of (a) compound 6 and (b) compound 14 in solid state, excited at 400 nm and recorded over 1 minute intervals.

This journal is (c) The Royal Society of Chemistry 2009

Density Functional Theory (DFT) calculations

The DFT calculations were performed using the DMol³ module in the Materials Studio Modeling software package (Accelrys Inc.).^{1, 2} DFT calculations were carried out in the generalized gradient approximation with nonlocal exchange and correlation functions according to Perdew–Wang (GGA–PW91),³ and using the Double Numerical plus polarization (DNP) as the basis set. The convergence tolerances for energy change, maximum force, and maximum displacement between optimization cycles were set as 10⁻⁵ hartree, 0.002 hartree/Å, and 0.005 Å, respectively. Self-consistent-field (SCF) density convergence was 10⁻⁶. The orbital cutoff of 4 Å was used for all atoms.

Table S1. Table of Cartesian coordinates and total energy for geometrically optimized compound 14.Total Energy = -1883.9951068 Ha

	A 1	V	17	7		A /	V	17	7
	Atom	X	Y	L		Atom	Х	Y	L
1	С	-1.432105	0.136187	0.083974	43	С	12.082088	0.008635	-1.206874
2	С	-0.812280	-1.064568	0.494371	44	С	11.319396	-0.547255	-0.182916
3	С	0.565352	-1.204057	0.533490	45	С	9.524153	-2.307944	2.946330
4	С	1.415949	-0.141643	0.163837	46	С	10.153188	-3.000059	3.978581
5	С	0.796045	1.060614	-0.241512	47	С	11.232843	-3.844980	3.712670
6	С	-0.581153	1.200193	-0.280334	48	С	11.673775	-3.995922	2.396577
7	С	2.864826	-0.217830	0.172580	49	С	11.040369	-3.321394	1.354863
8	С	3.630530	-1.280503	0.525573	50	Н	8.721381	-1.735726	-2.035850
9	С	5.080077	-1.357734	0.523885	51	Н	10.070488	-0.719579	-3.849209
10	С	5.925642	-0.298417	0.129829	52	Н	12.233322	0.404728	-3.326559
11	С	7.304967	-0.426014	0.147377	53	Н	13.023815	0.499973	-0.964375
12	С	7.912953	-1.629389	0.551397	54	Н	11.660137	-0.494942	0.849655
13	С	7.087659	-2.695234	0.944646	55	Н	8.691691	-1.638396	3.156736
14	С	5.706841	-2.551590	0.935030	56	Н	9.802939	-2.866107	5.001609
15	Н	-1.442777	-1.905753	0.786565	57	Н	11.725407	-4.380977	4.522367
16	Н	0.990170	-2.153317	0.856890	58	Н	12.508929	-4.659578	2.174104
17	Н	1.426245	1.901215	-0.535872	59	Н	11.379856	-3.449925	0.328291
18	Н	-1.005436	2.148707	-0.606274	60	Ν	-9.321108	1.746151	-0.621268
19	Н	3.132935	-2.197550	0.850483	61	С	-9.895856	2.529415	-1.659894
20	Н	5.495262	0.651221	-0.184920	62	С	-10.162494	1.102144	0.325062
21	Н	7.932786	0.411334	-0.153681	63	С	-9.390619	2.452786	-2.967113
22	Н	7.538285	-3.635482	1.258158	64	С	-9.945300	3.229696	-3.980876
23	Н	5.084203	-3.393940	1.239715	65	С	-11.019152	4.081922	-3.714019
24	С	-2.881067	0.209150	0.049239	66	С	-11.529410	4.151859	-2.416074
25	С	-3.637280	1.276814	-0.309587	67	С	-10.972303	3.389191	-1.392290
26	С	-5.085238	1.353837	-0.367101	68	С	-9.815109	1.076906	1.685370
27	С	-5.945432	0.273779	-0.074438	69	С	-10.639829	0.438861	2.608157
28	С	-7.322924	0.398420	-0.155064	70	С	-11.829880	-0.166433	2.199250
29	С	-7.914971	1.619389	-0.529529	71	С	-12.181543	-0.134237	0.847987
30	С	-7.074204	2.706914	-0.818134	72	С	-11.355729	0.487501	-0.085296
31	С	-5.695557	2.566442	-0.746152	73	Н	-8.560305	1.780400	-3.177069
32	Н	-3.129125	2.199556	-0.599922	74	Н	-9.543966	3.155730	-4.991018
33	Н	-5.526116	-0.691245	0.206964	75	Н	-11.455724	4.684100	-4.509359
34	Н	-7.960565	-0.457606	0.059942	76	Н	-12.362157	4.818578	-2.193746
35	Н	-7.512686	3.661384	-1.104451	77	Н	-11.363198	3.456608	-0.378436
36	Н	-5.062832	3.426554	-0.969035	78	Н	-8.894021	1.558902	2.009529
37	Ν	9.322987	-1.755718	0.567628	79	Н	-10.355615	0.430400	3.660073
38	С	10.101666	-1.182046	-0.473469	80	Н	-12.475204	-0.657978	2,925829

This journal is (c) The Royal Society of Chemistry 2009

42	C	11.058508	-0.039803	-2.330084	04	11	-5.580450	-0./124//	0.347738
12	C	11 638508	0.030803	2 530084	84	ц	3 386450	0 712477	0 3/7738
41	С	10.424137	-0.664377	-2.820270	83	Н	3.363761	0.699239	-0.149711
40	С	9.661948	-1.238292	-1.805484	82	Н	-11.628733	0.500760	-1.139401
39	С	9.962166	-2.463177	1.622032	81	Н	-13.104226	-0.607002	0.512284

 Table S2. Table of Cartesian coordinates and total energy for geometrically optimized compound 6.

Total Energy = -1962.6030057 Ha

	Atom	Х	Y	Ζ		Atom	Х	Y	Z
1	С	-1.357570	0.521143	0.171922	46	Ν	-8.764796	2.155930	2.559426
2	С	-1.042957	-0.822597	-0.125052	47	С	9.862997	-2.155306	-1.601482
3	С	0.244531	-1.224192	-0.450196	48	С	9.026846	-2.366721	-3.904986
4	С	1.310695	-0.301898	-0.477692	49	С	-8.949136	2.163649	3.969983
5	С	0.995870	1.043177	-0.191792	50	С	-9.893514	2.151004	1.699041
6	С	-0.291460	1.444618	0.136299	51	С	-9.896758	1.376743	0.527187
7	С	2.691052	-0.643928	-0.805130	52	С	-11.011475	1.373970	-0.308133
8	С	3.393771	-1.782177	-0.543901	53	С	-12.144739	2.123622	0.014300
9	С	4.776517	-1.914063	-1.052448	54	С	-12.145497	2.890116	1.181756
10	С	5.166618	-1.314506	-2.267091	55	С	-11.030209	2.912974	2.015632
11	С	6.467261	-1.397925	-2.746139	56	С	-8.143825	2.975291	4.784794
12	С	7.445697	-2.112546	-2.035361	57	С	-8.321118	2.976643	6.166245
13	С	7.069772	-2.739528	-0.837880	58	С	-9.309535	2.185860	6.755845
14	С	5.767289	-2.639915	-0.363709	59	С	-10.115601	1.382494	5.945973
15	Н	-1.846396	-1.560200	-0.118927	60	С	-9.935722	1.362740	4.564842
16	Н	0.422338	-2.262745	-0.722389	61	С	8.211920	-3.200625	-4.687872
17	Н	1.799245	1.780802	-0.197497	62	С	8.462740	-3.351456	-6.049574
18	Н	-0.464410	2.482989	0.410087	63	Ċ	9.534414	-2.691164	-6.654059
19	Н	3.245402	0.168978	-1.280453	64	С	10.350513	-1.867055	-5.875724
20	Н	4.422360	-0.786364	-2.862043	65	С	10.098057	-1.696067	-4.516889
21	Н	6.732385	-0.920752	-3.688421	66	Ċ	9.856934	-1.235468	-0.542151
22	Н	7.809651	-3.308974	-0.277208	67	Ċ	10.918802	-1.196001	0.358365
23	Н	5.525441	-3.137084	0.573746	68	Ċ	12.008407	-2.056034	0.208973
24	С	2.847724	-2.912491	0.287109	69	Ċ	12.020499	-2.965444	-0.849950
25	Ĥ	2.619878	-3.793757	-0.332240	70	Ċ	10.955542	-3.024008	-1.745792
26	Н	1.939646	-2.622919	0.824038	71	Н	-9.021260	0.778797	0.279510
27	Н	3.580390	-3.242467	1.035292	72	Н	-10.997980	0.765202	-1.211941
28	С	-2.732454	0.844163	0.532580	73	Н	-13.016045	2.112561	-0.639139
29	Ċ	-3.439020	2.003244	0.402406	74	Н	-13.018811	3.487339	1.442699
30	Ċ	-4.808827	2.071563	0.957430	75	Н	-11.030777	3.519400	2.919967
31	H	-3.284040	-0.009681	0.932673	76	Н	-7.382118	3.602239	4.323484
32	С	-5.159830	1.340420	2.111310	77	Н	-7.690244	3.614381	6.784965
33	С	-6.447711	1.354050	2.628057	78	Н	-9.451833	2.195162	7.835594
34	Ċ	-7.452901	2.125980	2.023215	79	Н	-10.882921	0.751976	6.394686
35	Ċ	-7.117090	2.880753	0.888167	80	Н	-10.557417	0.727795	3.935468
36	Č	-5.825576	2.852075	0.375214	81	Н	7.385884	-3.731997	-4.217979
37	Ĥ	-4.394504	0.758867	2.623361	82	Н	7.820974	-4.005547	-6.639139
38	Н	-6 682110	0 776095	3 520544	83	Н	9 732438	-2.816453	-7 717335
39	Н	-7 878962	3 493654	0 408516	84	Н	11 184884	-1 336586	-6 333663
40	Н	-5.615281	3.448214	-0.510906	85	Н	10.730664	-1.042602	-3.918267
41	C	-2.908685	3 217326	-0.311503	86	Н	9 013475	-0 555865	-0 429980
42	Ĥ	-3.679667	3.677752	-0.941763	87	Н	10.901370	-0.475631	1.175514
43	н	-2.059534	2.970827	-0.956982	88	н	12,839708	-2.020191	0.911480
44	Н	-2.587464	3.994057	0.400000	89	Н	12.860575	-3.648186	-0.975361
45	N	8 775432	-2.206814	-2 516430	90	Н	10 961167	-3 740707	-2 565132
15	11	0.775 152	2.200014	2.010100			10.201107	5.710707	2.000102

References

1. Delley, B. J. Chem. Phys. 2000, 113, 7756.

- 2. Delley, B. J. Chem. Phys. 1990, 92, 508.
- 3. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.