Supporting Information

Palladium-catalysed synthesis of 1-isoindolecarboxylic acid esters and sequential Diels-Alder reactions: access to bridgedand fused-ring heterocycles

Daniel Solé* and Olga Serrano

Laboratori de Química Orgànica, Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028-Barcelona, Spain

Table of Contents:

General Methods	S2			
Experimental procedure and characterization data for new compounds of				
Schemes 1-3 and Table 1	S2-S7			
¹ H and ¹³ C NMR spectra of all new compounds	S8-S34			

General Methods. All commercially available reagents were used without further purification. Unless otherwise noted ¹H- and ¹³C NMR spectra were recorded in CDCl₃ solution, using Me₄Si as the internal standard, with a Varian Gemini 300 or a Varian Mercury 400 instrument. Chemical shifts are reported in ppm downfield (δ) from Me₄Si. TLC was carried out on SiO₂ (silica gel 60 F₂₅₄), and the spots were located with UV light, iodoplatinate reagent or 1% aqueous KMnO₄. Flash chromatography was carried out on SiO₂ (silica gel 60, 230-400 mesh ASTM). Drying of organic extracts during workup of reactions was performed over anhydrous MgSO₄. Evaporation of solvents was accomplished with a rotatory evaporator.

Experimental procedure and characterization data for new compounds of Schemes 1-3 and Table 1

General Procedure: A mixture of ester **1b** (75 mg, 0.18 mmol), K_3PO_4 (115 mg, 0.54 mmol), phenol (6 mg, 0.06 mmol), and Pd(PPh₃)₄ (21 mg, 0.018 mmol) in DMF (3 mL) was stirred at 90 °C for 24 h. The reaction mixture was poured into water and extracted with Et₂O. The organic extracts were washed with brine and 1N NaOH solution, dried, and concentrated.

The crude reaction mixture was dissolved in CH_2Cl_2 (10 mL) and DMAD (0.05 mL, 0.38 mmol) was added. The mixture was stirred at reflux for 12 h. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (SiO₂, from hexanes to 1:1 hexanes-EtOAc) to give cycloadduct **3b** (40 mg, 51%).

Methyl 2-benzylisoindole-1-carboxylate (**2a**). Flash chromatography of the α-arylation reaction mixture (SiO₂, CH₂Cl₂) gave isoindole **2a** (39 mg, 76%). ¹H NMR (C₆D₆, 300 MHz) δ 3.53 (s, 3H), 5.55 (s, 2H), 6.75 (s, 1H), 6.91-7.10 (m, 6H), 7.25 (ddd, J = 8.7, 6.6, and 1.2 Hz, 1H), 7.48 (dt, J = 8.7 and 1.2 Hz, 1H), 8.40 (dm, J = 8.7 Hz, 1H). ¹³C NMR (C₆D₆, 75.5 MHz) δ 50.5 (CH₃), 53.6 (CH₂), 111.6 (C), 120.5 (CH), 122.0 (CH), 122.2 (CH), 122.4 (CH), 124.6 (C), 125.6 (CH), 127.4 (CH), 127.7 (CH), 128.8 (CH), 129.9 (C), 138.0 (C), 162.0 (C). HRMS (ESI-TOF) cald for C₁₇H₁₅NO₂: 266.1176 [M+H]⁺; found: 266.1172.

Diels-Alder adduct 3a. ¹H NMR (CDCl₃, 400 MHz, 50 °C) δ 3.50 (broad, 1H), 3.67 (broad d, *J* = 12.8 Hz, 1H), 3.73 (s, 3H), 3.76 (s, 3H), 3.78 (s, 3H), 4.84 (broad s, 1H), 7.10 (m, 2H), 7.21-7.33 (m, 6H), 7.63 (broad, 1H). ¹³C NMR (CDCl₃, 100.5 MHz, 50 °C) δ 52.0 (CH₃), 52.1 (CH₂), 52.2 (CH₃), 52.5 (CH₃), 71.3 (CH), 84.1 (broad C), 122.8 (broad CH), 124.0 (broad CH), 126.0 (CH), 126.2 (CH), 127.4 (CH), 128.3 (CH), 129.3 (CH), 136.9 (C), 144.7 (broad C), 146.2 (C), 148.5 (broad C), 151.2 (broad C), 162.9 (C), 163.9 (broad C), 166.8 (C). IR (neat) v 1743, 1717, 1640, 1454, 1435, 1309, 1257, 1198, 1148, 1110 cm⁻¹. HRMS (ESI-TOF) cald for C₂₃H₂₂NO₆: 408.1442 [M+H]⁺; found: 408.1447.

Diels-Alder adduct 3b. ¹H NMR (CDCl₃, 400 MHz, 50 °C) δ 1.32 (t, J = 7.2 Hz, 3H), 3.50 (broad, 1H), 3.68 (d, J = 12.8 Hz, 1H), 3.72 (s, 3H), 3.79 (s, 3H), 4.18-4.33 (m, 2H), 4.83 (s, 1H), 7.07 (td, J = 7.6 and 0.8 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 7.21-7.32 (m, 6H), 7.63 (broad, 1H). ¹³C NMR (CDCl₃, 100.5 MHz, 50 °C) δ 14.1 (CH₃), 51.9 (CH₂), 52.1 (CH₃), 52.2 (CH₃), 61.8 (CH₂), 71.1 (CH), 84.1 (C), 122.7 (broad CH), 124.3 (CH), 126.0 (CH), 126.2 (CH), 127.4 (CH), 128.3 (CH), 129.3 (CH), 137.0 (C), 144.9 (broad C), 146.3 (C), 151.5 (broad C), 162.9 (broad C), 164.3 (C), 164.1 (broad C), 166.2 (C). IR (neat) v 1719, 1632, 1435, 1308, 1254, 1255, 1107, 747 cm⁻¹. HRMS (ESI-TOF) cald for C₂₄H₂₄NO₆: 422.1598 [M+H]⁺; found: 422.1599.

Diels-Alder adduct 5. ¹H NMR (CDCl₃, 400 MHz, 50 °C) δ 1.69 (s, 3H), 3.40 (s, 3H), 3.47 (broad d, J = 14 Hz, 1H), 3.60 (broad d, J = 14 Hz, 1H), 3.71 (s, 3H), 3.76 (s, 3H), 7.09-7.33 (m, 8H), 7.69 (broad, 1H). ¹³C NMR (CDCl₃, 100.5 MHz, 50 °C) δ 12.1 (CH₃), 50.1 (CH₃), 51.9 (CH₂), 52.0 (2 CH₃), 78.8 (C), 81.8 (C), 121.2 (broad CH), 124.2 (broad CH), 126.0 (CH), 126.1 (CH), 126.9 (CH), 128.0 (CH), 129.0 (CH), 138.3 (C), 145.5 (C), 149.0 (C), 149.4 (C), 153.4

(broad C), 163.4 (broad C), 164.3 (C), 167.1 (C). IR (CH₂Cl₂) v 1743, 1721, 1634, 1451, 1305, 1257, 1197, 1157, 1128, 1028, 757 cm⁻¹. HRMS (ESI-TOF) cald for $C_{24}H_{24}NO_6$: 422.1598 [M+H]⁺; found: 422.1599.

Diels-Alder adduct 6. ¹H NMR (CDCl₃, 300 MHz, only the most significant resonances from a mixture with 20% of the retro products are reported) δ 2.26 (s, 3H), 3.15 (d, *J* = 12.9 Hz, 1H), 3.54 (d, *J* = 12.9 Hz, 1H), 3.72 (dd, *J* = 8.1 and 5.4 Hz, 1H), 3.86 (s, 3H), 4.12 (d, *J* = 8.1 Hz, 1H), 4.55 (d, *J* = 5.4 Hz, 1H), 7.63 (dd, *J* = 6 Hz and 1.8 Hz, 1H).

Diels-Alder adduct 8a. ¹H NMR (CDCl₃, 400 MHz) δ 3.71 (s, 3H), 3.84 (s, 3H), 3.88 (s, 3H), 5.62 (s, 1H), 6.89 (d, *J* = 7.2 Hz, 2H), 7.00 (t, *J* = 7.2 Hz, 2H), 7.10 (m, 2H), 7.18-7.24 (m, 2H), 7.39 (dd, *J* = 5.6 and 2 Hz, 1H), 7.57 (dd, *J* = 5.6 and 2 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 52.4 (CH₃), 52.5 (CH₃), 53.1 (CH₃), 74.2 (CH), 82.6 (C), 121.0 (CH), 122.1 (CH), 122.4 (CH), 123.6 (CH), 126.1 (CH), 126.6 (CH), 129.0 (CH), 144.4 (C), 145.3 (C), 145.6 (C), 146.1 (C), 151.7 (C), 162.5 (C), 164.3 (C), 167.2 (C). IR (CH₂Cl₂) v 1743, 1720, 1639, 1596, 1493, 1435, 1252, 1200, 1146, 1113, 757 cm⁻¹. HRMS (ESI-TOF) cald for C₂₂H₂₀NO₆: 394.1285 [M+H]⁺; found: 394.1291.

Diels-Alder adduct 8b. ¹H NMR (CDCl₃, 400 MHz) δ 3.73 (s, 3H), 3.84 (s, 3H), 3.88 (s, 3H), 5.54 (s, 1H), 6.84-6.94 (m, 4H), 7.11 (m, 2H), 7.40 (m, 1H), 7.57 (m, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 52.5 (CH₃), 52.6 (CH₃), 53.1 (CH₃), 74.5 (CH), 82.9 (C), 115.8 (d, *J* = 22.5 Hz, CH), 122.2 (CH), 122.5 (CH), 122.6 (d, *J* = 7.7 Hz, CH), 126.2 (CH), 126.7 (CH), 140.5 (d, *J* = 2.3 Hz, C), 145.0 (C), 145.5 (C), 146.2 (C), 151.5 (C), 159.4 (d, *J* = 242.7 Hz, C), 162.4 (C),

164.2 (C), 167.0 (C). IR (CH₂Cl₂) v 1743, 1720, 1639, 1596, 1493, 1435, 1252, 1200, 1146, 1113, 757 cm⁻¹. HRMS (ESI-TOF) cald for $C_{22}H_{19}FNO_6$: 412.1191 [M+H]⁺; found: 412.1186.

Diels-Alder adduct 8c. ¹H NMR (CDCl₃, 300 MHz) δ 3.74 (s, 3H), 3.84 (s, 3H), 3.85 (s, 3H), 3.90 (s, 3H), 5.70 (s, 1H), 6.90 (d, J = 8.7 Hz, 2H), 7.11 (m, 2H), 7.40 (m, 1H), 7.62 (m, 1H), 7.89 (d, J = 8.7 Hz, 1H). ¹³C NMR (CDCl₃, 75.5 MHz) δ 51.9 (CH₃), 52.5 (CH₃), 52.7 (CH₃), 53.2 (CH₃), 73.8 (CH), 82.1 (C), 120.2 (CH), 122.2 (CH), 122.7 (CH), 125.1 (C), 126.3 (CH), 126.7 (CH), 130.7 (CH), 144.6 (C), 145.1 (C), 146.4 (C), 148.5 (C), 151.8 (C), 162.2 (C), 163.9 (C), 166.5 (C), 166.9 (C). IR (neat) v 1719, 1606, 1436, 1281, 1191, 1145, 1112, 1014, 771 cm⁻¹. HRMS (ESI-TOF) cald for C₂₄H₂₂NO₈: 452.1340 [M+H]⁺; found: 452.1335.

Diels-Alder adduct 8d. ¹H NMR (CDCl₃, 300 MHz) δ 3.72 (s, 3H), 3.73 (s, 3H), 3.85 (s, 3H), 3.87 (s, 3H), 5.53 (s, 1H), 6.76 (m, 2H), 6.85 (m, 2H), 7.10 (m, 2H), 7.40 (m, 1H), 7.54 (m, 1H). ¹³C NMR (CDCl₃, 100.5 MHz, from a mixture with small amounts of aziridine **9d**) δ 52.4 (CH₃), 52.5 (CH₃), 53.1 (CH₃), 55.3 (CH₃), 74.5 (CH), 83.2 (C), 114.3 (CH), 122.1 (CH), 122.3 (CH), 122.4 (CH), 126.1 (CH), 126.5 (CH), 137.6 (C), 145.4 (C), 145.8 (C), 146.2 (C), 151.5 (C), 156.1 (C), 162.6 (C), 164.5 (C), 167.2 (C). IR (neat) v 1719, 1606, 1436, 1281, 1191, 1145, 1112, 1014, 771 cm⁻¹. HRMS (ESI-TOF) cald for C₂₃H₂₁NO₇: 424.1391 [M+H]⁺; found: 424.1389.

Diels-Alder adduct 8e. ¹H NMR (CDCl₃, 300 MHz) δ 1.84 (s, 3H), 3.72 (s, 3H), 3.74 (s, 3H), 3.77 (s, 3H), 3.80 (s, 3H), 6.73 (m, 2H), 6.90 (m, 2H), 7.11 (m, 2H), 7.23 (m, 1H), 7.68 (m, 1H). ¹³C NMR (CDCl₃, 75.5 MHz) δ 12.5 (CH₃), 52.2 (CH₃), 52.4 (CH₃), 52.8 (CH₃), 55.2 (CH₃), 79.3 (C), 80.9 (C), 113.7 (CH), 120.8 (CH), 122.3 (CH), 126.0 (2 CH), 126.3 (CH), 134.9 (C),

146.3 (C), 148.8 (C), 150.5 (C), 151.4 (broad C), 157.3 (C), 163.6 (C), 163.8 (C), 167.2 (C). IR (neat) v 1736, 1717, 1508, 1435, 1303, 1228, 1197, 1154, 1032, 729 cm⁻¹. HRMS (ESI-TOF) cald for $C_{24}H_{24}NO_7$: 438.1547 [M+H]⁺; found: 438.1542.

Aziridine 9a. ¹H NMR (CDCl₃, 400 MHz) δ 3.81 (s, 3H), 3.84 (s, 3H), 3.93 (s, 3H), 4.42 (s, 1H), 6.61 (d, J = 7.2 Hz, 2H), 6.78 (t, J = 7.2 Hz, 1H), 6.94 (t, J = 7.2 Hz, 2H), 7.17 (d, J = 8 Hz, 1H), 7.34 (td, J = 8 and 1.2 Hz, 1H), 7.54 (td, J = 8 and 1.2 Hz, 1H), 7.78 (dd, J = 8 and 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 46.6 (C), 50.3 (CH), 52.7 (CH₃), 52.9 (CH₃), 53.1 (CH₃), 121.7 (CH), 122.5 (CH), 127.7 (CH), 127.8 (C), 127.9 (CH), 129.0 (CH), 129.3 (C), 130.6 (CH), 130.9 (CH), 139.5 (C), 142.3 (C), 165.7 (C), 167.0 (C), 168.8 (C). One C was not observed. IR (CH₂Cl₂) v 1728, 1591, 1487, 1437, 1229, 1206 cm⁻¹. HRMS (ESI-TOF) cald for C₂₂H₂₀NO₆: 394.1285 [M+H]⁺; found: 394.1282.

Aziridine 9b. ¹H NMR (CDCl₃, 400 MHz) δ 3.82 (s, 3H), 3.84 (s, 3H), 3.93 (s, 3H), 4.42 (s, 1H), 6.56 (m, 2H), 6.63 (m, 2H), 7.19 (d, J = 8 Hz, 1H), 7.36 (td, J = 8 and 1.2 Hz, 1H), 7.54 (td, J = 8 and 0.8 Hz, 1H), 7.77 (dd, J = 8 and 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 46.9 (C), 50.5 (CH), 52.8 (CH₃), 52.9 (CH₃), 53.1 (CH₃), 114.8 (d, J = 22.5 Hz, CH), 122.4 (C), 122.9 (d, J = 7.8 Hz, CH), 126.4 (C), 127.8 (CH), 128.9 (C), 129.1 (CH), 130.7 (CH), 131.1 (CH), 138.2 (d, J = 3.1Hz, C), 139.4 (C), 158.3 (d, J = 241.2 Hz, C), 165.8 (C), 166.8 (C), 168.6 (C). IR (CH₂Cl₂) v 1732, 1615, 1505, 1436, 1212, 770 cm⁻¹. HRMS (ESI-TOF) cald for C₂₂H₁₉FNO₆: 412.1191 [M+H]⁺; found: 412.1182.

Aziridine 9d. ¹H NMR (CDCl₃, 400 MHz) δ 3.62 (s, 3H), 3.82 (s, 3H), 3.84 (s, 3H), 3.92 (s, 3H), 4.39 (s, 1H), 6.47 (d, *J* = 9 Hz, 2H), 6.53 (d, *J* = 9 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.35 (td, *J* = 9 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.35 (td, *J* = 9 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.35 (td, *J* = 9 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.35 (td, *J* = 9 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.35 (td, *J* = 9 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.35 (td, *J* = 9 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.19 (d, J = 8 Hz, 1H),

J = 8 and 1.2 Hz, 1H), 7.52 (td, J = 8 and 0.8 Hz, 1H), 7.77 (dd, J = 8 and 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 46.9 (C), 50.6 (CH), 52.7 (CH₃), 52.9 (CH₃), 53.1 (CH₃), 55.2 (CH₃), 113.3 (CH), 122.6 (C), 122.7 (CH), 127.7 (CH), 127.9 (C), 128.9 (CH), 129.4 (C), 130.6 (CH), 130.8 (CH), 135.4 (C), 139.4 (C), 154.9 (C), 165.9 (C), 167.0 (C), 168.9 (C). IR (CH₂Cl₂) v 1734, 1615, 1564, 1508, 1437, 1289, 1237, 753 cm⁻¹. HRMS (ESI-TOF) cald for C₂₃H₂₁NO₇: 424.1391 [M+H]⁺; found: 424.1391.

Trimethyl 1,2,3-naphthalenetricarboxylate (10). ¹H NMR (CDCl₃, 400 MHz) δ 3.95 (s, 3H), 3.96 (s, 3H), 4.01 (s, 3H), 7.65 (ddd, J = 8, 7.2, and 0.9 Hz, 1H), 7.71 (ddd, J = 8, 7.2, and 0.9 Hz, 1H), 7.97 (dd, J = 8 and 0.9 Hz, 1H), 8.16 (dd, J = 8 and 0.9 Hz, 1H), 8.56 (s, 1H). ¹³C NMR (CDCl₃, 100.5 MHz) δ 52.8 (CH₃), 52.9 (CH₃), 52.9 (CH₃), 125.8 (C), 125.9 (CH), 128.4 (CH), 129.4 (CH), 130.0 (CH), 130.4 (C), 130.7 (C), 130.9 (C), 132.7 (C), 133.7 (CH), 166.2 (C), 167.3 (C), 168.1 (C). IR (neat) v 2946, 1722, 1608, 1521, 1444, 1306, 1276, 1210, 1135, 1013, 971 cm⁻¹. HRMS (ESI-TOF) cald for C₁₆H₁₅O₆: 303.0863 [M+H]⁺; found: 303.0864.

proton	δ	HMBC correlations	
H-4	8.56	166.2 (COO)	
		130.9 (C-8a)	CO Ma
		130.4 (C-2)	$\overset{8}{\wedge} \overset{8}{\otimes} \overset{1}{\downarrow} CO_2 Me$
		129.4 (C-5)	
H-5	7.98	133.7 (C-4)	6 $4a$ 3 CO_2Me
		130.9 (C-8a)	
		130.0 (C-7)	
Н-6	7.65	132.7 (C-4a)	
		125.9 (C-8)	^{130.9} CO Mo
H-7	7.71	130.9 (C-8a)	125.9 130.7 CO ₂ Me
		129.4 (C-5)	130.0
H-8	8.16	132.7 (C-4a)	128.4 129.4 133.7 CO ₂ Me
		130.7 (C-1)	132.7
		128.4 (C-6)	166.2
OCH ₃	3.96	166.2 (COO)	

Structure determination on compound 10

S-8

 $Ar, \\ N CO_2Me \\ CO_2Me \\ H CO_2Me \\ Ar: p-MeO_2CC_6H_4, 8c$

S-26

