Supporting information for

Diastereoselective addition of sugar radicals to camphorsultam glyoxilic oxime ether: A route toward *C*-glycosylthreonine and allothreonine

Nicolas Bragnier, Régis Guillot, Marie-Christine Scherrmann*

Université de Paris-Sud 11, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 410, 91405 Orsay, France.

mcscherr@icmo.u-psud.fr

Table of contents	page
General Methods	
Experimental procedure and characterisation of products 10a,b ; 11a,b ; 12a,b	S 3
Experimental procedure and characterisation of products 13a,b; 14a,b; 15a,b	S 6
Experimental procedure and characterisation of products 16a,b; 17a,b; 18a,b	S 9
Compound 22a	S15
Compound 23a	S15
Compound 24a	S16
Compound 25a	S16
Compound 26a	S17
Methyl-4-C-(2',3',4',6'-O-acetyl-β-D-glucopyranosyl)-2-S-	
benzyloxycarbonylamino-3- <i>R</i> -methyl-butanate (27a)	S18
Methyl-4-C-(2',3',4',6'-O-acetyl-β-D-glucopyranosyl)-2-(benzyloxyamino)-3-	
methyl-butanate 29a,b,c,d	S19
Methyl-4-C-(2',3',4',6'-tetra-O-acetyl-β-D-glucopyranosyl)-2-	
benzyloxycarbonylamino-3-methyl-butanate (27a,b,c,d)	S20
¹ H NMR of 10a	S21
¹ H NMR of 10b	S21
¹³ C NMR of 10a , 10b	S22
¹ HNMR of 11a	S22
¹ H NMR of 11b	S23
¹ HNMR of $12a$	S23
¹ HNMR of $13a$	S24
¹ H NMR of 13b	S24
¹ H NMR of $14a$	S25
¹ H NMR of 14b	S25
¹ H NMR of 15a	S26
¹ H NMR of 15b	S26
¹ H NMR of 16a	S27
¹³ C NMR of 16a	S27
¹ H NMR of $17a$	S28
¹³ C NMR of 17a	S28
¹ HNMR of 18a	S29
¹ H NMR of 18b	S29
¹³ C NMR of 18a, 18b	S30

¹ H NMR of 19a	S30
¹³ C NMR of 19a	S31
¹ H NMR of 19b	S31
¹ H NMR of 20a	S32
¹³ C NMR of 20a	S32
¹ H NMR of 21a	S33
¹ H NMR of $23a$	S33
¹³ C NMR of 23a	S34
¹ H NMR of $24a$	S34
¹³ C NMR of 24a	S35
¹ H NMR of 25a	S35
¹ H NMR of $27a$	S36
¹³ C NMR of 27a	S36
¹ H NMR of 27a,b,c,d	\$37
¹³ C NMR of of 27a,b,c,d	S37

General Methods

All moisture-sensitive reactions were performed under argon using oven-dried glassware. Whenever necessary, solvents were distilled prior to use. Reactions were monitored on t.l.c. (silica gel 60 F_{254}). Detection was performed using UV light and/or 5% sulfuric or phosphomolybdic acid in ethanol, followed by heating. Flash chromatography was performed on silica gel 6-35 μ m. ¹H- and ¹³C-NMR spectra were recorded at room temperature with Bruker spectrometers (250, 300, 360 or 400 MHz). Chemical shifts are reported in δ vs Me₄Si for ¹H-NMR spectra in CDCl₃, and relative to acetone for ¹³C-NMR spectra in D₂O. Optical rotations were measured on an Electronic Digital Jasco DIP-370 Polarimeter. These optical rotations were given for pure compounds (as judged by NMR, chromatography and centesimal analysis). Mass spectra were recorded in positive mode on a Finnigan MAT 95 S spectrometer using electrospray ionisation. Elemental analysis were performed at the Service Central de Microanalyses du CNRS (Gif-sur-Yvette, France). X-ray structures were determined with Bruker KAPPA APEX II.

Experimental procedure and characterisation of products 10a,b; 11a,b; 12a,b

To a 0.1 M solution of the glycosidic ketone **7**, **8** or **9** in dry MeOH was added NaBH₄ (2 equiv) at -10 °C under argon. The reaction mixture was stirred at-10 °C for 20 min, then warmed to 0 °C, diluted with CH_2Cl_2 and neutralized by KH_2PO_4 (10% aq). The aqueous phase was extracted with CH_2Cl_2 and the combined organic phases were filtered through a phase separator filter, then concentrated to give the alcohol in quantitative yield. Alcohols were iodinated without any further purification. Analytical samples were obtained as described below.

1-C-(2',3',4',6'-Tetra-O-acetyl-**β**-D-glucopyranosyl)-2(S)- and 2(R)-propan-2-ol (10a, 10b)

From 1-*C*-(2',3',4',6'-tetra-*O*-acetyl- β -D-glucopyranosyl)-propan-2-one **4** (100 mg, 0.26 mmol). **10a,b** were obtained as a 2:1 mixture (101 mg, 100%). The major isomer **10a** was isolated by HPLC (Column dimension: 250 x 20 mm; Material: SiO₂, 5µm; Mobile phase:

85:15 Et₂O – Cyclohexane; Flow rate: 20 mL / min). Eluted first was **10a**: Mp. 93-94 °C (cyclohexane-EtOAc); $[\alpha]_D^{28} = + 8.9 (c = 1, CHCl_3)$; ¹H NMR (300 MHz, CDCl_3) δ 5.19 (dd, 1 H, $J_{2',3'} = J_{3',4'} = 9.5$ Hz, H-3'), 5.02 (dd, 1 H, $J_{1',2'} = J_{2',3'} = 9.5$ Hz, H-2'), 4.90 (dd, 1 H, $J_{4',5'} = 9.5$ Hz, H-4'), 4.23 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 2.5$ Hz, H-6'a), 4.09 (dd, 1 H, $J_{5',6'b} = 6.5$ Hz, H-6'b), 4.02 (ddd, 1 H, $J_{1a,2} = 11.5$ Hz, $J_{2,3} = 6.5$ Hz, H-2), 3.72 (ddd, 1 H, H-5'), 3.67 (ddd, 1 H, $J_{1',2'} = 9.5$ Hz, H-1'), 3.02 (s, 1 H, OH), 2.10, 2.06, 2.05, 2.01 (4 s, 12 H, 4 Ac), 1.65 (2 ddd, 2 H, H-1a, H-1b), 1.20 (d, 3 H, H-3); ¹³C NMR (90 MHz, CDCl_3) δ 20.4, 20.5 (COCH₃), 23.1 (C3), 39.5 (C1), 62.2 (C2), 67.0 (C6'), 68.5 (C4'), 71.7 (C2'), 73.8 (C3'), 75.6 (C1'), 78.1 (C5'), 169.3, 169.5, 170.2, 170.5 (COCH₃); HRMS (ESI) Calcd for C₁₇H₂₆O₁₀Na: 413.1418. Found 413.1423; Anal. Calcd for C₁₇H₂₆O₁₀ (%): C, 52.30; H, 6.71; O, 40.98. Found: C, 52.15; H, 6.76; O, 40.75.

Eluted second was 10b, contaminated by 25% of 10a.

10b: ¹H NMR (300 MHz, CDCl₃) $\delta = 5.21$ (dd, 1 H, $J_{2',3'} = J_{3',4'} = 9.5$ Hz, H-3'), 5.07 (dd, 1 H, $J_{1',2'} = J_{2',3'} = 9.5$ Hz, H-2'), 4.95 (dd, 1 H, $J_{4',5'} = 9.5$ Hz, H-4'), 4.25 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 5.0$ Hz, H-6'a), 4.13 (dd, 1 H, $J_{5',6'b} = 2.5$ Hz, H-6'b), 4.11 (ddd, 1 H, H-2), 3.76 (ddd, 1 H, H-1'), 3.70 (ddd, 1 H, H-5'), 2.72 (s, 1 H,OH), 2.10, 2.06, 2.05, 2.02 (4 s, 12 H, 4 Ac), 1.60 (2 ddd, 2 H, H-1a, H-1b), 1.23 (d, 3 H, $J_{2,3} = 6.5$ Hz, H-3); ¹³C NMR (90 MHz, CDCl₃) δ 20.4, 20.5 (COCH₃), 23.7 (C3), 39.7 (C1), 62.1 (C2), 63.6 (C6'), 65.6 (C4'), 71.4 (C2'), 74.1 (C3'), 74.9 (C1'), 75.5 (C5'), 169.3, 169.5, 170.2, 170.5 (COCH₃).

1-C-(2',3',4',6'-Tetra-O-acetyl-β-D-mannopyranosyl)-2(S)- and 2(R)-propan-2-ol (11a, 11b)

From 1-*C*-(2',3',4',6'-tetra-*O*-acetyl- β -D-mannopyranosyl)-propan-2-one **8** (100 mg, 0.26 mmol). **11a,b** were obtained as a 1:1 mixture (101 mg, 100%). The major isomer **11a** was isolated by HPLC (Column dimension: 250 x 20 mm; Material: SiO₂, 5µm; Mobile phase: 90:10 Et₂O – Cyclohexane; Flow rate: 20 mL / min). Eluted first was **11a**: Mp. 101-102 °C (cyclohexane-EtOAc); [α]_D²⁸ = -11.9 (*c* = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.34 (dd, 1 H, $J_{1',2'}$ = 0.5 Hz, $J_{2',3'}$ = 3.5 Hz, H-2'), 5.20 (dd, 1 H, $J_{3',4'}$ = $J_{4',5'}$ = 9.5 Hz, H-4'), 5.06 (dd, 1

H, H-3'), 4.10 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 2.5$ Hz, H-6'a), 4.11 (dd, 1 H, $J_{5',6'b} = 6.5$ Hz, H-6'b), 3.99 (ddd, 1 H, $J_{1a,2} = 9.0$ Hz, $J_{1b,2} = 2.5$ Hz, $J_{2,3} = 6.5$ Hz, H-2), 3.89 (ddd, 1 H, $J_{1a,1'} = 9.5$ Hz, $J_{1b,1'} = 3.5$ Hz, H-1'), 3.72 (ddd, 1 H, H-5'), 2.89 (s, 1 H,OH), 2.19, 2.10, 2.06, 1.99 (4 s, 12 H, 4 Ac), 1.76 (ddd, 1 H, $J_{1a,1b} = 14.5$ Hz, H-1a), 1.52 (ddd, 1 H, H-1b), 1.19 (d, 3 H, $J_{2,3} = 6.5$ Hz, H-3); ¹³C NMR (90 MHz, CDCl₃): δ 20.6, 20.7 (COCH₃), 23.9 (C3), 39.5 (C1), 62.9 (C2), 64.4 (C6'), 66.3 (C4'), 70.7 (C2'), 72.4 (C3'), 74.0 (C1'), 76.2 (C5'), 169.7, 170.1, 170.6, 170.7 (COCH₃); HRMS (ESI) Calcd for C₁₇H₂₆O₁₀Na: 413.1418. Found 413.1414; Anal. Calcd for C₁₇H₂₆O₁₀ (%): C, 52.30; H, 6.71; O, 40.98. Found: C, 52.43; H, 6.76; O, 40.85. Eluted second was **11b** contaminated by **11a**.

11b: ¹H NMR (300 MHz, CDCl₃): δ 5.32 (dd, 1 H, $J_{1',2'} = 0.5$ Hz, $J_{2',3'} = 3.5$ Hz, H-2'), 5.24 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 9.5$ Hz, H-4'), 5.08 (dd, 1 H, H-3'), 4.27 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 6.0$ Hz, H-6'a), 4.12 (dd, 1 H, $J_{5',6'b} = 2.5$ Hz, H-6'b), 4.02 (ddd, 1 H, $J_{1a,2} = 2.5$ Hz, $J_{1b,2} = 9.5$ Hz, $J_{2,3} = 6.5$ Hz, H-2), 3.96 (ddd, 1 H, $J_{1a,1'} = 9.5$ Hz, $J_{1b,1'} = 3.0$ Hz, H-1'), 3.68 (dd, 1 H, H-5'), 2.19, 2.10, 2.06, 1.99 (4 s, 12 H, 4 Ac), 1.80 (ddd, 1 H, $J_{1a,1b} = 14.5$ Hz, H-1a), 1.41 (ddd, 1 H, H-1b); ¹³C NMR (90 MHz, CDCl₃): δ 20.4, 20.5 (COCH₃), 23.5 (C3), 38.9 (C1), 62.9 (C2), 66.2 (C6'), 66.7 (C4'), 69.8 (C2'), 72.1 (C3'), 74.0 (C1'), 76.3 (C5'), 169.7, 170.1, 170.6, 170.7 (COCH₃).

1-C-(2',3',4',6'-Tetra-O-acetyl-**β**-D-galactopyranosyl)-2(S)- and 2(R)-propan-2-ol (12a, 12b)

From 1-*C*-(2',3',4',6'-tetra-*O*-acetyl-β-D-galactopyranosyl)-propan-2-one **9** (100 mg, 0.26 mmol). **12a,b** were obtained as a 2:1 mixture (101 mg, 100%). The major isomer **12a** was isolated by HPLC (Column dimension: 250 x 20 mm; Material: SiO₂, 5µm; Mobile phase: 85:15 Et₂O – Cyclohexane; Flow rate: 20 mL / min). Eluted first was **12a**: $[\alpha]_D^{28} = +17.9$ (*c* = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.43 (dd, 1 H, $J_{3',4'} = 3.5$ Hz, $J_{4',5'} = 0.5$ Hz, H-4'), 5.11 (dd, 1 H, $J_{1',2'} = J_{2',3'} = 9.5$ Hz, H-2'), 5.01 (dd, 1 H, H-3'), 4.10 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 5.5$ Hz, H-6'a), 4.09 (dd, 1 H, $J_{5',6'b} = 6.0$ Hz, H-6'b), 4.02 (ddd, 1 H, $J_{1a,2'} = 3.5$ Hz, $J_{1b,1'}$

= 9.5 Hz, H-1'), 3.07 (s, 1 H, O*H*), 2.16, 2.06, 1.98 (4 s, 12 H, 4 Ac), 1.72 (ddd, 1 H, $J_{1a,1b}$ = 14.5 Hz, H-1a), 1.63 (ddd, 1 H, H-1b), 1.19 (d, 3 H, H-3); ¹³C NMR (90 MHz, CDCl₃): δ 20.7 (COCH₃), 23.3 (C3), 39.6 (C1), 62.1 (C2), 67.6 (C6', C4'), 69.1 (C2'), 71.8 (C3'), 74.5 (C1'), 79.1 (C5'), 169.8, 170.2, 170.5 (*C*OCH₃); HRMS (ESI) Calcd for C₁₇H₂₆O₁₀Na: 413.1418. Found 413.1421; Anal. Calcd for C₁₇H₂₆O₁₀ (%): C, 52.30; H, 6.71; O, 40.98. Found: C, 52.05; H, 6.71; O, 40.91. Eluted second was **12b** contaminated by **12a**.

12b: ¹H NMR (300 MHz, CDCl₃): δ 5.45 (dd, 1 H, $J_{3',4'}$ = 3.5 Hz, $J_{4',5'}$ = 0.5 Hz, H-4'), 5.16 (dd, 1 H, $J_{1',2'} = J_{2',3'} = 9.5$ Hz, H-2'), 5.04 (dd, 1 H, H-3'), 4.16 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 7.5$ Hz, H-6'a), 4.07 (dd, 1 H, $J_{5',6'b} = 7.0$ Hz, H-6'b), 4.05 (ddd, 1 H, $J_{2,3} = 6.5$ Hz, H-2), 3.91 (ddd, 1 H, H-5'), 3.75 (ddd, 1 H, $J_{1a,1'} = 3.5$ Hz, $J_{1b,1'} = 9.5$ Hz, H-1'), 2.17, 2.07, 2.06, 2.00 (4 s, 12 H, 4 Ac), 1.63 (2 ddd, 2 H, $J_{1a,1b} = 14.5$ Hz, H-1a, H-1b), 1.23 (d, 3 H, H-3); ¹³C NMR (90 MHz, CDCl₃): δ 20.7 (COCH₃), 23.8 (C3), 39.6 (C1), 61.7 (C2), 63.9 (C6'), 67.7 (C4'), 68.8 (C2'), 72.1 (C3'), 74.3 (C1'), 75.6 (C5'), 169.8, 170.2, 170.5 (COCH₃).

Experimental procedure and characterisation of products 13a,b; 14a,b; 15a,b

To a solution of the alcohol **10a,b** or **11a,b** or **12a,b** (3.8 g; 9.74 mmol) in pyridine (80 mL) was added TsCl (2,8 g; 14.6 mmol) at r.t. under argon. The reaction mixture was kept at r.t for 24 h, then concentrated. The residue was suspended in CH_2Cl_2 and washed with brine. The organic layer was dried (MgSO₄) and concentrated. The residue was dissolved in acetone (80 mL) and NaI (7.3 g; 48 mmol) was added. The reaction mixture was refluxed for 24 h, then cooled to r.t., filtrated and concentrated. The residue was suspended in CH_2Cl_2 and washed with Na₂S₂O₃ (5% aq.). The organic layer was dried (MgSO₄) and concentrated. The residue was gurified by flash chromatography.

1-C-(2',3',4',6'-Tetra-O-acetyl- β -D-glucopyranosyl)-2(S)- and 2(R)-iodopropane (13a, 13b)

From **12a,b**. Flash chromatography (7:3 Petroleum ether / EtOAc) afforded **13a,b** as a 2:1 mixture. (4,8 g, 100%). The two isomers were separated by HPLC (Column dimension: 250 x 20 mm; Material: SiO₂, 5 μ m; Mobile phase: 40:60 Et₂O – Cyclohexane; Flow rate: 20 mL /

min). Eluted first was 13a: Mp. 83-84 °C (cyclohexane); $\left[\alpha\right]_{D}^{28} = -26.5$ (c = 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃): δ 5.23 (dd, 1 H, $J_{2',3'} = J_{3',4'} = 9.5$ Hz, H-3'), 5.04 (dd, 1 H, $J_{1',2'} =$ 9.5 Hz, H-2'), 4.95 (dd, 1 H, $J_{4',5'}$ = 9.5 Hz, H-4'), 4.34 (ddd, 1 H, $J_{1a,2}$ = 11.5 Hz, $J_{1b,2}$ = 2.5 Hz, $J_{2,3} = 7.0$ Hz, H-2), 4.27 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 5.5$ Hz, H-6'a), 4.10 (dd, 1 H, $J_{5',6'b} = 2.5$ Hz, H-6'b), 3.70 (ddd, 1 H, H-5'), 3.67 (ddd, 1 H, $J_{1a,1'} = 2.5$ Hz, $J_{1b,1'} = 9.5$ Hz, H-1'), 2.10, 2.07, 2.03, 2.01 (4 s, 12 H, 4 Ac), 1.96 (d, 3 H, H-3), 1.85 (ddd, 1 H, $J_{1a,lb} = 14.5$ Hz, H-1a), 1.56 (ddd, 1 H, H-1b); ¹³C NMR (90 MHz, CDCl₃): δ 20.5, 20.6 (COCH₃), 21.9 (C2), 27.4 (C3), 44.2 (C1), 62.1 (C6'), 68.5 (C4'), 71.6 (C2'), 74.1 (C3'), 75.7 (C1'), 76.4 (C5'), 169.3, 169.4, 170.2, 170.5 (COCH₃); HRMS (ESI) Calcd for C₁₇H₂₅O₉INa: 523.0435. Found 523.0444; Anal. Calcd for C₁₇H₂₅O₉I (%): C, 40.81; H, 5.04; O, 28.78. Found: C, 40.85; H, 5.17; O, 28.74. Eluted second was **13b**: Mp. 120-121 °C (cyclohexane); $[\alpha]_D^{28} = +$ 0.16 (c = 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃): δ 5.20 (dd, 1 H, $J_{2',3'} = J_{3',4'} = 9.5$ Hz, H-3'), 5.04 (dd, 1 H, $J_{1',2'} = 9.5$ Hz, H-2'), 4.90 (dd, 1 H, $J_{4',5'} = 9.5$ Hz, H-4'), 4.38 (ddd, 1 H, $J_{1a,2} =$ 4.5 Hz, $J_{1b,2} = 11.5$ Hz, $J_{2,3} = 7.0$ Hz, H-2), 4.23 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 5.5$ Hz, H-6'a), 4.10 (dd, 1 H, $J_{5'.6'b} = 2.5$ Hz, H-6'b), 3.65 (ddd, 1 H, H-5'), 3.60 (ddd, 1 H, $J_{la,l'} = 9.5$ Hz, $J_{1b,1'} = 2.5$ Hz, H-1'), 2.21 (ddd, 1 H, $J_{1a,1b} = 14.5$ Hz, H-1a), 2.10, 2.07, 2.03, 2.01 (4 s, 12) H, 4 Ac), 2.05 (ddd, 1 H, H-1b), 1.91 (d, 3 H, H-3); ¹³C NMR (90 MHz, CDCl₃): δ 20.4, 20.5 (COCH₃), 25.1 (C2), 29.2 (C3), 43.7 (C1), 62.1 (C6'), 68.6 (C4'), 71.5 (C2'), 75.9 (C3'), 77.2 (C1'), 78.1 (C5'), 169.4, 169.8, 170.2, 170.5 (COCH₃); HRMS (ESI) Calcd for C₁₇H₂₅O₉INa: 523.0435. Found 523.0449.

1-C-(2',3',4',6'-Tetra-O-acetyl-**β**-D-mannopyranosyl)-2(S)- and 2(R)-iodopropane (14a, 14b)

From **11a,b**. Flash chromatography (7:3 Petroleum ether / EtOAc) afforded **14a,b** as a 55:45 mixture. (4,8 g, 100%) The two isomers were separated by HPLC (Column dimension: 250 x 20 mm; Material: SiO₂, 5µm; Mobile phase: 47:53 Ether – Cyclohexane; Flow rate: 20 mL / min). Eluted first was **14a**: Mp. 78-79 °C (cyclohexane); $[\alpha]_D^{28} = -46.2$ (c = 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃): δ 5.34 (dd, 1 H, $J_{1',2'} = 0.5$ Hz, $J_{2',3'} = 3.5$ Hz, H-2'), 5.22 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 10.0$ Hz, H-4'), 5.11 (dd, 1 H, H-3'), 4.34 (ddd, 1 H, $J_{2,3} = 7.0$ Hz, H-2), 4.30 (dd,

1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 5.5$ Hz, H-6'a), 4.11 (dd, 1 H, $J_{5',6'b} = 2.5$ Hz, H-6'b), 3.86 (ddd, 1 H, H-1'), 3.68 (ddd, 1 H, H-5'), 2.18, 2.11, 2.05, 1.99 (4 s, 12 H, 4 Ac), 1.96 (d, 3 H, H-3), 1.74-1.65 (2 ddd, 2 H, H-1a, H-1b); ¹³C NMR (90 MHz, CDCl₃): δ 20.5, 20.6, 20.7 (COCH₃), 25.9 (C2), 29.2 (C3), 42.7 (C1), 62.5 (C6'), 66.1 (C4'), 69.9 (C2'), 72.1 (C3'), 76.4 (C1'), 77.3 (C5'), 169.5, 169.7, 170.1, 170.3 (COCH₃); HRMS (ESI) Calcd for C₁₇H₂₅O₉INa: 523.0435. Found 523.0445; Anal. Calcd for C₁₇H₂₅O₉I (%): C, 40.81; H, 5.04; O, 28.78. Found: C, 40.89; H, 5.11; O, 28.95.

Eluted second was **14b**: Mp. 100-101 °C (cyclohexane); $[\alpha]_D^{28} = + 0.2$ (c = 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃): δ 5.33 (dd, 1 H, $J_{1',2'} = 0.5$ Hz, $J_{2',3'} = 3.0$ Hz, H-2'), 5.22 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 10.0$ Hz, H-4'), 5.11 (dd, 1 H, H-3'), 4.26 (dd, 1 H, $J_{6'a,6'b} = 12.5$ Hz, $J_{5',6'a} = 5.5$ Hz, H-6'a), 4.18 (ddd, 1 H, $J_{2,3} = 7.0$ Hz, H-2), 4.11 (dd, 1 H, $J_{5',6'b} = 2.5$ Hz, H-6'b), 3.86 (ddd, 1 H, H-5'), 2.18, 2.11, 2.05, 1.99 (4 s, 12 H, 4 Ac), 1.96 (d, 3 H, H-3), 1.74-1.65 (2 ddd, 2 H, H-1a, H-1b); ¹³C NMR (90 MHz, CDCl₃): δ 20.6, 20.7, 20.8 (COCH₃), 22.1 (C2), 28.3 (C3), 42.8 (C1), 62.8 (C6'), 66.2 (C4'), 69.1 (C2'), 72.2 (C3'), 76.3 (C1'), 77.2 (C5'), 169.7, 170.1, 170.5, 170.6 (COCH₃); HRMS (ESI) Calcd for C₁₇H₂₅O₉INa: 523.0435. Found 523.0447.

$1-C-(2',3',4',6'-O-Acetyl-\beta-D-galactopyranosyl)-2(S)-$ and 2(R)-iodopropane (15a, 15b)

From **12a,b**. Flash chromatography (7:3 Petroleum ether / EtOAc) afforded **15a,b** as a 3:1 mixture. (4.8 g, 100%) The two isomers were separated by HPLC (Column dimension: 250 x 20 mm; Material: SiO₂, 5µm; Mobile phase: 45:55 Et₂O – Cyclohexane; Flow rate: 20 mL / min). Eluted first was **15a**: Mp. 147-148 °C (cyclohexane); $[\alpha]_D^{28} = -19.6$ (c = 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 5.45 (dd, 1 H, $J_{3',4'} = 3.5$ Hz, $J_{4',5'} = 0.5$ Hz, H-4'), 5.16 (dd, 1 H, $J_{1',2'} = J_{2',3'} = 9.5$ Hz, H-2'), 5.07 (dd, 1 H, H-3'), 4.35 (ddd, 1 H, $J_{1a,2} = 11.5$ Hz, $J_{1b,2} = 2.5$ Hz, $J_{2,3} = 7.0$ Hz, H-2), 4.16 (dd, 1 H, $J_{6'a,6'b} = 11.5$ Hz, $J_{5',6'a} = 7.0$ Hz, H-6'a), 4.07 (dd, 1 H, $J_{5',6'b} = 6.0$ Hz, H-6'b), 3.91 (ddd, 1 H, H-5'), 3.64 (ddd, 1 H, $J_{1a,1'} = 2.0$ Hz, $J_{1b,1'} = 9.5$ Hz, H-1'), 2.15, 2.09, 2.08, 1.99 (4 s, 12 H, 4 Ac), 1.97 (d, 3 H, H-3), 1.87 (ddd, 1 H, $J_{1a,1b} = 14.5$ Hz, H-1a), 1.64 (ddd, 1 H, H-1b); ¹³C NMR (90 MHz, CDCl₃): δ 20.5, 20.6 (COCH₃), 25.0 (C2), 29.2 (C3), 43.7 (C1), 61.4 (C6'), 67.6 (C4'), 68.8 (C2'), 71.8 (C3'), 74.4 (C1'), 78.3 (C5'),

169.9, 170.0, 170.2 (COCH₃); HRMS (ESI) Calcd for $C_{17}H_{25}O_9INa$: 523.0435. Found 523.0433; Anal. Calcd for $C_{17}H_{25}O_9I$ (%): C, 40.81; H, 5.04; O, 28.78. Found: C, 41.09; H, 5.08; O, 28.97.

Eluted second was **15b**: White crystals from cyclohexane (mp. 73-74 °C); $[\alpha]_D^{28} = +10.8$ (c = 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 5.43 (dd, 1 H, $J_{3',4'} = 9.5$, $J_{4',5'} = 0.5$ Hz, H-4'), 5.11 (dd, 1 H, $J_{1',2'} = J_{2',3'} = 9.5$ Hz, H-2'), 5.04 (dd, 1 H, H-3'), 4.40 (ddd, 1 H, $J_{1a,2} = 4.5$ Hz, $J_{1b,2} = 11.5$ Hz, $J_{2,3} = 7.0$ Hz, H-2), 4.15 (dd, 1 H, $J_{6'a,6'b} = 11.5$ Hz, $J_{5',6'a} = 7.0$ Hz, H-6'a), 4.06 (dd, 1 H, $J_{5',6'b} = 6.5$ Hz, H-6'b), 3.87 (ddd, 1 H, H-5'), 3.57 (ddd, 1 H, $J_{1a,1'} = 9.5$ Hz, $J_{1b,1'} = 2.5$ Hz, H-1'), 2.28 (ddd, 1 H, $J_{1a,1b} = 14.5$ Hz, H-1a), 2.17, 2.09, 2.06, 2.00 (4 s, 12 H, 4 Ac), 2.12 (ddd, 1 H, H-1b), 1.91 (d, 3 H, H-3); ¹³C NMR (90 MHz, CDCl₃): δ 20.4, 20.5 (COCH₃), 22.0 (C2), 27.2 (C3), 44.2 (C1), 61.5 (C6'), 67.5 (C4'), 68.9 (C2'), 71.9 (C3'), 74.3 (C1'), 78.2 (C5'), 169.9, 170.0, 170.2 (COCH₃); HRMS (ESI) Calcd for C₁₇H₂₅O₉INa: 523.0435. Found 523.0441.

Experimental procedure and characterisation of products 16a,b; 17a,b; 18a,b

To a degassed solution of camphorsultam derivative (-)-1 or (+)-1 (75 mg, 0.20 mmol) in CH_2Cl_2 (2 mL) were added $Zn(OTf)_2$ (145 mg, 0.40 mmol), iodinated compound **13a,b** or **14a,b** or **15a,b** (300 mg, 0.60 mmol), Bu₃SnH (140 µL, 0.50 mmol) and Et₃B was added (2 mL of a 1 M solution in hexane, 2 mmol) by portion of 400 µL each 30 min. After the last addition, the reaction mixture was stirred 2 h at -78°C then diluted with saturated aqueous NaHCO₃. The aqueous layer was extracted with CH₂Cl₂. The organic layer was dried (MgSO₄) and concentrated. The residue was purified by flash chromatography (3:97 acetone-CH₂Cl₂) to give the product as a diastereoisomeric mixture (90 mg, 60 %).

C-glucosides 16a and 16b

From camphorsultam derivative (-)-1 and 13a,b, compounds 16a and 16b were obtained as a 80:20 diastereoisomeric mixture. The major isomer 16a was isolated by HPLC (Column

dimension: 250 x 21.2 mm; Material: Hypersil APS 2, 5µm; Mobile phase: 25:75 EtOAc – Cyclohexane; Flow rate: 20 mL / min) and crystallization from cyclohexane - EtOAc.

16a: Mp. 154-155 °C (*i*Pr₂O); $[\alpha]_D^{28} = -28.2$ (*c* = 1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 5 H, HAr), 6.38 (d, 1 H, $J_{2,NH}$ = 12.5 Hz, NH), 5.17 (dd, 1 H, $J_{3',4'}$ = $J_{2',3'}$ = 9.5 Hz, H-3'), 5.13 (dd, 1 H, $J_{4',5'} = 9.5$ Hz, H-4'), 4.81 (dd, 1 H, $J_{1',2'} = 9.5$ Hz, H-2'), 4.66 (d, 1 H, J = 12.0 Hz, NHOCH₂), 4.62 (d, 1 H, J = 12.0 Hz, NHOCH₂), 4.38 (dd, 1 H, $J_{5',6'a} = 3.0$ Hz, $J_{6'a,6'b} = 12.5$ Hz, H-6'a), 4.32 (dd, 1 H, $J_{2,3} = 3.0$ Hz, H-2), 4.07 (dd, 1 H, $J_{5',6'b} = 2.0$ Hz, H-6'b), 3.98 (dd, 1H, $J_{2'',3''a} = 5.0$ Hz, $J_{2'',3''b} = 7.5$ Hz, H-2''), 3.58 (ddd, 1 H, H-5'), 3.46 (s, 2 H, H-10", H-10", 3.38 (ddd, 1 H, $J_{1',1a} = 9.5$ Hz, $J_{1',1b} = 1.0$ Hz, H-1"), 2.29 (dddd, 1 H, H-3), 2.10 (m, 2 H, Hsult), 2.11, 2.08, 2.05, 2.02 (4 s, 12 H, 4 Ac), 1.95-1.80 (m, 4 H, 3 Hsult, H-4a), 1.60 (s, 1 H, Hsult), 1.42 (s, 1 H, Hsult), 1.32 (ddd, 1 H, H-4b), 1.10 (s, 3 H, H-8''), 0.97 (s, 3 H, H-9''), 0.73 (s, 3 H, $J_{CH3,3} = 7.0$ Hz, CH₃); ¹³C NMR (90 MHz, CDCl₃): δ 15.0 (CH₃), 19.9 (C8''), 20.6, 20.7, 20.8, 20.9 (COCH₃, C9''), 26.5 (C5''), 30.0 (C3), 32.8 (C6''), 35.5 (C4), 38.5 (C3''), 44.6 (C4''), 47.8 (C7''), 48.6 (C1''), 53.0 (C10''), 61.8 (C6'), 64.3 (C2), 65.0 (C2''), 68.4 (C4'), 72.1 (C2'), 74.7 (C3'), 75.0 (C1'), 75.2 (C5'), 75.9 (CH₂OPh), 127.8, 128.4, 128.5, 138.0 (CAr), 169.5, 169.8, 170.4, 170.9 (COCH₃), 173.3 (C1); HRMS (ESI) Calcd for C₃₆H₅₀O₁₃N₂SNa: 773.2926. Found 773.2933; Anal. Calcd for C₂₂H₃₃O₁₂N (%): C, 57.59; H, 6.71; N, 3.73; O, 27.70; S, 4.27. Found: C, 57.52; H, 6.71; N, 3.68; O, 27.85; S, 4.04.

C-mannosides 17a and 17b

From camphorsultam derivative (-)-1 and 14a,b, compounds 17a and 17b were obtained as a 85:15 diastereoisomeric mixture. The major isomer 17a was isolated by HPLC (Column dimension: 250 x 21.2 mm; Material: Hypersil APS 2, 5 μ m; Mobile phase: 25:75 EtOAc – Cyclohexane; Flow rate: 20 mL / min) and crystallization from *i*Pr₂O.

17a: Mp. 133-134 °C (*i*Pr₂O); [α]_D²⁸ = - 48.4 (*c* = 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ (ppm): δ 7.49-7.34 (m, 5 H, HAr), 6.37 (d, 1 H, $J_{2,NH}$ = 12.0 Hz, NH), 5.23 (dd, 1 H, $J_{3',4'}$ =

 $J_{4',5'} = 10.0$ Hz, H-4'), 4.98 (dd, 1 H, $J_{2',3'} = 3.5$ Hz, H-3'), 4.94 (dd, 1 H, $J_{1',2'} = 1.0$ Hz, H-2'), 4.69 (d, 1 H, J = 12.5 Hz, NHOC H_2), 4.54 (d, 1 H, J = 12.5 Hz, NHOC H_2), 4.42 (dd, 1 H, $J_{5',6'a} = 3.5$ Hz, $J_{6'a,6'b} = 12.5$ Hz, H-6'a), 4.07 (dd, 1 H, $J_{5',6'b} = 3.0$ Hz, H-6'b), 4.20-3.95 (m, 2 H, H-2'', H-2), 3.52-3.38 (m, 3 H, H-5', H-10''), 3.10 (ddd, 1 H, H-1'), 2.20-1.95 (m, 2 H, H-3, Hsult), 2.14, 2.08, 2.03, 2.00 (4 s, 12 H, Ac) 1.95-1.80 (m, 4 H, Hsult), 1.45-1.31 (m, 2 H, H-4a, H-4b), 1.06 (s, 3 H, H-8''), 0.96 (s, 3 H, H-9''), 0.68 (d, 3 H, J = 7.0 Hz, CH₃); ¹³C NMR (90 MHz, CDCl₃): δ 14.7 (CH₃), 19.9 (C8''), 20.6 (C9''), 20.7, 20.8, 20.8, 21.0 (COCH₃), 26.5 (C5''), 30.1 (C3), 32.7 (C6''), 34.6 (C4), 38.4 (C3''), 44.5 (C4''), 47.8 (C7''), 48.7 (C1''), 53.0 (C10''), 62.4 (C6'), 64.9 (C2), 65.1 (C2''), 66.4 (C4'), 70.6 (C2'), 72.4 (C3'), 73.8 (C1'), 75.6 (C5'), 76.1 (CH₂OPh), 128.0, 128.4, 129.0, 138.4 (CAr), 169.7, 170.1, 170.5, 170.9 (COCH₃), 173.4 (C1); HRMS (ESI) Calcd for C₃₆H₅₀O₁₃N₂SNa: 773.2926. Found 773.2916; Anal. Calcd for C₂₂H₃₃O₁₂N (%): C, 57.59; H, 6.71; N, 3.73; O, 27.70; S, 4.27. Found: C, 57.70; H, 6.37; N, 3.73; O, 27.85; S, 4.06.

C-galactosides 18a and 18b

From camphorsultam derivative (-)-1 and 15a,b, compounds 18a and 18b were obtained as a 80:20 diastereoisomeric mixture. The major isomer 18a was isolated by HPLC (Column dimension: 250 x 21.2 mm; Material: Hypersil APS 2, 5µm; Mobile phase: 25:75 EtOAc – Cyclohexane; Flow rate: 20 mL / min). Eluted first was 18a: ¹H NMR (250 MHz, CDCl₃) δ : 7.41-7.28 (m, 5 H, HAr), 6.40 (d, 1 H, $J_{2,NH} = 12.0$ Hz, NH), 5.41 (dd, 1 H, $J_{3',4'} = 3.0$ Hz, $J_{4',5'} = 0.2$ Hz, H-4'), 5.02 (dd, 1 H, $J_{2',3'} = 9.5$ Hz, H-3'), 4.98 (dd, 1 H, $J_{1',2'} = 9.5$ Hz, H-2'), 4.65 (s, 2 H, J = 12.5 Hz, NHOCH₂), 4.32 (dd, 1 H, H-2), 4.21 (dd, 1 H, $J_{5',6'a} = 5.5$ Hz, $J_{6'a,6'b} = 10.5$ Hz, H-6'a), 4.05 (dd, 1 H, $J_{5',6'b} = 9.0$ Hz, H-6'b), 4.01 (dd, 1H, $J_{2'',3''a} = 5.0$ Hz, $J_{2'',3''b} = 7.5$ Hz, H-2''), 3.80 (ddd, 1 H, H-5'), 3.50 (dd, 2 H, $J_{10''a,1''} = J_{10''b,1''} = 14.0$ Hz, H-10''a, H-10''b), 3.36 (ddd, 1 H, $J_{1',4a} = 1.0$ Hz, $J_{1',4b} = 9.5$ Hz, H-1'), 2.27 (dddd, 1 H, H-3), 2.13, 2.05, 2.04, 1.98 (4 s, 12 H, 4 Ac), 1.95-1.70 (m, 6 H, Hsult), 1.45-1.30 (m, 3 H, H-4a, H-4b, Hsult), 1.09 (s, 3 H, H-8''), 0.97 (s, 3 H, H-9''), 0.72 (d, 3 H, $J_{CH3,3} = 7.0$ Hz, CH₃); ¹³C NMR (90 MHz, CDCl₃): δ 14.9 (CH₃), 19.8 (C8''), 20.6, 20.7, 20.8, (C9'', COCH₃), 26.4 (C5''),

30.0 (C3), 32.6 (C6''), 35.7 (C4), 38.3 (C3''), 44.5 (C4''), 47.8 (C7''), 48.6 (C1''), 52.9 (C10''), 60.2 (C6'), 64.3 (C2), 64.8 (C2''), 67.5 (C4'), 68.2 (C2'), 69.6 (C3'), 72.1 (C1'), 75.2 (C5'), 75.8 (CH₂OPh), 127.7, 128.3, 128.4, 138.0 (CAr), 169.9, 170.1, 170.2, 170.3 (COCH₃), 173.3 (C1); HRMS (ESI) Calcd for $C_{36}H_{50}O_{13}N_2SNa$: 773.2926. Found 773.2908; Anal. Calcd for $C_{22}H_{33}O_{12}N$ (%): C, 57.59; H, 6.71; N, 3.73; O, 27.70; S, 4.27. Found: 57.42, 6.55, 3.71, 27.58, 4.72.

Eluted second was 18b contaminated by 18a.

18b: ¹H NMR (250 MHz, CDCl₃) δ 7.41-7.28 (m, 5 H, HAr), 6.18 (d, 1 H, $J_{2,NH} = 11.0$ Hz, NH), 5.39 (dd, 1 H, $J_{3',4'} = 2.0$ Hz, $J_{4',5'} = 0.2$ Hz, H-4'), 5.08-4.95 (m, 2 H, H-2', H-3'), 4.71 (d, 1 H, J = 12.5 Hz, NHOCH₂), 4.62 (d, 1 H, J = 12.5 Hz, NHOCH₂), 4.20 (dd, 1 H, H-2), 4.10-3.92 (m, 3 H, H-6'a, H-6'b, H-2''), 3.80 (ddd, 1 H, $J_{5',6'a} = 1.5$ Hz, $J_{5',6'b} = 7.0$, $J_{6'a,6'b} = 9.0$ Hz H-5'), 3.50 (s, 2 H, H-10''a, H-10''b), 3.46-3.32 (m, 1 H, H-1'), 2.20-1.62 (m, 7 H, H-3, Hsult), 2.15, 2.04, 2.03, 1.98 (4 s, 12 H, 4 Ac), 1.50-1.20 (m, 3 H, H-4a, H-4b, Hsult), 1.14 (s, 3 H, H-8''), 1.01 (d, 3 H, $J_{CH3,3} = 7.0$ Hz, CH₃), 0.99 (s, 3 H, H-9'').

C-glucosides 19a and 19b

From camphorsultam derivative (+)-1 and 13a,b, compounds 19a and 19b were obtained as a 75:25 diastereoisomeric mixture. The major isomer 19a was isolated by HPLC (Column dimension: 250 x 21.2 mm; Material: Hypersil APS 2, 5µm; Mobile phase: 25:75 EtOAc – Cyclohexane; Flow rate: 20 mL / min). Eluted first was 19a: Mp. 133-134 °C (*i*Pr₂O); $[\alpha]_D^{28} = +19 (c = 1, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ (ppm): δ 7.40-7.28 (m, 5 H, HAr), 5.96 (d, 1 H, $J_{2,NH} = 12.0$ Hz, NH), 5.02 (dd, 1 H, $J_{3',4'} = J_{2',3'} = 9.5$ Hz, H-3'), 4.90 (dd, 1 H, $J_{4',5'} = 9.5$ Hz, H-4'), 4.70 (dd, 1 H, $J_{1',2'} = 9.5$ Hz, H-2'), 4.68, 4.62 (2 d, 2 H, J = 12.0 Hz, NHOCH₂), 4.32 (dd, 1 H, $J_{2,3} = 8.0$ Hz, H-2), 4.05 (dd, 1 H, $J_{5',6'a} = 5.5$ Hz, $J_{6'a,6'b} = 12.5$ Hz, H-6'a), 4.02 (dd, 1 H, $J_{1',4a} = 9.5$ Hz, $J_{1',4b} = 3.0$ Hz, H-2''), 3.96 (dd, 1 H, $J_{5',6'b} = 2.0$ Hz, H-6'b), 3.57 (ddd, 1 H, $J_{1',4a} = 9.5$ Hz, $J_{1',4b} = 3.0$ Hz, H-1'), 3.52 (2 d, 2 H, $J_{10',a,1''} = J_{10',b,1''} = 14.0$ Hz, H-10''a, H-10''b), 2.97 (ddd, 1 H, H-5'), 2.12 (m, 2 H, Hsult), 2.07, 2.05, 2.01 (4 s, 12 H, 4 Ac), 1.95-1.85 (m, 3 H, Hsult), 1.80 (dddd, 1 H, H-3), 1.56 (s, 1 H, Hsult), 1.55-

1.46 (m, 2 H, H-4a, H-4b), 1.44 (s, 1 H, Hsult), 1.14 (s, 3 H, H-8''), 0.99 (s, 3 H, H-9''), 0.98 (d, 3 H, CH₃); ¹³C NMR (90 MHz, CDCl₃): δ 18.0 (CH₃), 20.0 (C8''), 20.6, 20.7, 20.8 (COCH₃, C9''), 26.4 (C5''), 31.8 (C3), 33.0 (C6''), 36.7 (C4), 38.4 (C3''), 44.6 (C4''), 47.8 (C7''), 48.3 (C1''), 53.3 (C10''), 62.3 (C6'), 65.4 (C2), 67.2 (C2''), 68.6 (C4'), 72.6 (C2'), 74.4 (C3'), 74.9 (C1'), 75.0 (C5'), 75.8 (CH₂OPh), 127.7, 128.4, 128.5, 138.9 (Ar), 169.5, 169.9, 170.4, 170.7 (COCH₃), 174.3 (C1); HRMS (ESI) Calcd for C₃₆H₅₀O₁₃N₂SNa: 773.2926. Found 773.2923; Anal. Calcd for C₂₂H₃₃O₁₂N (%): C, 57.59; H, 6.71; N, 3.73; O, 27.70; S, 4.27. Found: C, 57.01; H, 6.54; N, 3.71; O, 27.15; S, 4.25.

Eluted second was 19b contaminated by 19a.

19b ¹H NMR (250 MHz, CDCl₃) δ (ppm): δ 7.40-7.24 (m, 5 H, HAr), 6.24 (d, 1 H, $J_{2,NH}$ = 11.0 Hz, N*H*), 5.21-5.05 (m, 2 H, H-3', H-4'), 4.70 (dd, 1 H, $J_{1',2'}$ = 9.5 Hz, H-2'), 4.85-4.78 (m, 1H, H-2), 4.68, (d, 1 H, J = 12.0 Hz, NHOC*H*₂), 4.62 (d, 1 H, J = 12.0 Hz, NHOC*H*₂), 4.38 (dd, 1 H, $J_{5',6'b}$ = 3.0 Hz, $J_{6'a,6'b}$ = 12.5 Hz, H-6'a), 4.21 (dd, 1 H, $J_{5',6'a}$ = 1.5 Hz, Hz, H-6'a), 4.02-3.95 (m, 1H, H-2''), 3.78-3.65 (m, 2 H, H-1', H-5'), 3.52 (s, 2 H, H-10''a, H-10''b), 2.20-1.82 (m, 6 H, Hsult, H-3), 2.07, 2.02, 1.84, 1.60 (4 s, 12 H, 4 Ac), 1.50-1.30 (m, 3 H, H-4a, H-4b, Hsult), 1.15 (s, 3 H, H-8''), 1.02 (s, 3 H, H-9''), 0.98 (d, J = 7.0 Hz, 3 H, CH₃).

C-mannosides 20a and 20b

From camphorsultam derivative (+)-1 and 14a,b, compounds 20a and 20b were obtained as a 75:25 diastereoisomeric mixture. The major isomer 20a was isolated by HPLC (Column dimension: 250 x 21.2 mm; Material: Hypersil APS 2, 5 μ m; Mobile phase: 25:75 EtOAc – Cyclohexane; Flow rate: 20 mL / min).

20a: $[\alpha]_D^{28} = +43$ (*c* = 1, CHCl₃); ¹H NMR (360 MHz, CDCl₃) δ (ppm): δ 7.41-7.30 (m, 5 H, HAr), 5.98 (d, 1 H, $J_{2,NH} = 12.0$ Hz, N*H*), 5.18 (dd, 1 H, $J_{1',2'} = 1.0$ Hz, $J_{2',3'} = 3.5$ Hz, H-2'), 5.11 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 10.0$ Hz, H-4'), 4.90 (dd, 1 H, H-3'), 4.70, 4.65 (2 d, 2 H, J = 12.5 Hz, NHOC*H*₂), 4.31 (dd, 1 H, $J_{2,3} = 9.5$ Hz, H-2), 4.14 (dd, 1 H, $J_{5',6'a} = 5.5$ Hz, $J_{6'a,6'b} = 12.5$

Hz, H-6'a), 4.07 (dd, 1 H, $J_{5',6'b} = 2.5$ Hz, H-6'b), 4.04 (dd, 1H, H-2''), 3.76 (ddd, 1 H, $J_{1',4a} = 9.5$ Hz, $J_{1',4b} = 3.0$ Hz, H-1'), 3.54 (2 d, 2 H, $J_{10''a,1''} = J_{10'b,1''} = 14.0$ Hz, H-10''a, H-10''b), 3.08 (ddd, 1 H, H-5'), 2.13, 2.09, 2.07, 2.00 (4 s, 12 H, 4 Ac), 1.96-1.80 (m, 3 H, Hsult, H-3), 1.76-1.70 (m, 4 H, Hsult), 1.52-1.38 (m, 3 H, H-4a, H-4b, Hsult), 1.15 (s, 3 H, H-8''), 1.00 (s, 3 H, H-9''), 0.99 (d, 3 H, CH_3); ¹³C NMR (90 MHz, CDCl_3): δ 17.7 (CH₃), 19.9 (C8''), 20.6, 20.7 (C9'', COCH₃), 26.4 (C5''), 31.5 (C3), 32.9 (C6''), 35.8 (C4), 38.4 (C3''), 44.5 (C4''), 47.7 (C7''), 48.2 (C1''), 53.2 (C10''), 62.7 (C6'), 65.3 (C2), 66.2 (C2''), 68.3 (C4'), 70.2 (C2'), 72.4 (C3'), 74.7 (C1'), 74.9 (C5'), 75.5 (CH₂OPh), 127.5, 128.0, 128.3, 128.7, 138.9 (CAr), 169.7, 170.1, 170.6, 170.7 (COCH₃), 174.2 (C1); HRMS (ESI) Calcd for C₃₆H₅₀O₁₃N₂SNa: 773.2926. Found 773.2928; Anal. Calcd for C₂₂H₃₃O₁₂N: C, 57.59; H, 6.71; N, 3.73; O, 27.70; S, 4.27. Found: C, 57.63; H, 6.31; N, 3.66; O, 27.55; S, 4.03.

C-galactosides 21a and 21b

From camphorsultam derivative (+)-1 and 15a,b, compounds 21a and 21b were obtained as a 67:33 diastereoisomeric mixture. The major isomer 21a was isolated by HPLC (Column dimension: 250 x 21.2 mm; Material: Hypersil APS 2, 5 μ m; Mobile phase: 25:75 EtOAc – Cyclohexane; Flow rate: 20 mL / min).

21a: ¹H NMR (360 MHz, CDCl₃) δ (ppm): δ 7.41-7.29 (m, 5 H, HAr), 5.95 (d, 1 H, $J_{2,NH} =$ 12.0 Hz, NH), 5.12 (dd, 1 H, $J_{3',4'} = 3.5$ Hz, $J_{4',5'} = 0.5$ Hz, H-4'), 4.89 (dd, 1 H, $J_{1',2'} = J_{2',3'} =$ 9.5 Hz, H-2'), 4.80 (dd, 1 H, H-3'), 4.70, 4.62 (2 d, 2 H, J = 12.5 Hz, NHOCH₂), 4.25 (dd, 1 H, H-2), 4.04 (dd, 1 H, $J_{2'',3''a} = 5.5$ Hz, $J_{2'',3''b} = 7.5$ Hz, H-2''), 3.92 (dd, 1 H, $J_{H5',H6'a} = 7.5$ Hz, $J_{H6'a,H6'b} = 11.5$ Hz, H-6'a), 3.85 (dd, 1 H, $J_{5',6'b} = 5.5$ Hz, H-6'b), 3.54 (2 d, 2 H, $J_{10''a,1''} = J_{10''b,1''} = 14.0$ Hz, H-10''a, H-10''b), 3.53 (ddd, 1 H, H-1'), 2.84 (ddd, 1 H, H-5') 2.12 (dddd, 1 H, H-3), 2.12, 2.10, 2.07, 1.97 (4 s, 12 H, 4 Ac), 2.00-1.80 (m, 4 H, Hsult), 1.60-1.30 (m, 5 H, H-4a, H-4b, Hsult), 1.14 (s, 3 H, H-8''), 0.98 (s, 3 H, H-9''), 0.97 (d, 3 H, CH₃); ¹³C NMR (90 MHz, CDCl₃): δ 18.3 (CH₃), 20.0, 20.7, 20.8, 20.9 (C8'', C9'', COCH₃), 26.4 (C5''), 31.5 (C3), 33.0 (C6''), 37.2 (C4), 38.4 (C3''), 44.6 (C4''), 47.8 (C7''), 48.3 (C1''), 53.3 (C10''), 62.1 (C2), 65.4 (C2''), 67.5 (C6'), 68.1 (C4'), 70.1 (C2'), 72.1 (C3'), 73.4

(C1'), 75.0 (C5'), 76.3 (CH₂OPh), 127.7, 128.4, 139.2 (CAr), 170.1, 170.2, 170.4, 170.5 (COCH₃), 174.3 (C1); HRMS (ESI) Calcd for C₃₆H₅₀O₁₃N₂SNa: 773.2926. Found 773.2929; Anal. Calcd for C₂₂H₃₃O₁₂N: C, 57.59; H, 6.71; N, 3.73; O, 27.70; S, 4.27. Found: C, 57.37; H, 6.76; N, 3.57; O, 27.65; S, 4.33.

Compound 22a

To a solution of **15a** (100mg, 0.13 mmol) in dry MeOH (10 mL) was added a solution of MeONa in MeOH (1mL, 1 M). The reaction mixture was stirred for 1 hour, then treated with Dowex 50 X-8 200 H+ to reach pH 6. The resin was filtered and the solution was concentrated to give **22a** (79 mg, 97 %), as a white solid. (mp. 109-110 °C); ¹H NMR (360 MHz, CD₃OD) δ (ppm): δ 7.40-7.28 (m, 5 H, HAr), 7.07 (d, 1 H, N*H*), 4.69 (2 d, 2 H, NHOC*H*₂), 4.26 (d, 1 H, N*H*), 3.90-3.00 (m, 10 H, H-1', H-2', H-3', H-4', H-5', H-6', H-2'', H-10''), 2.30-1.50 (m, 10 H, H-3, H-4a, H-4b, Hsult), 1.28 (s, 3 H, H-8''), 0.94 (m, 6 H, H-9'', CH₃); ¹³C NMR (90 MHz, CDCl₃): δ 16.3 (CH₃), 20.2 (C8''), 20.6 (C9''), 26.9 (C5''), 30.7 (C3), 31.8 (C6''), 35.2 (C2), 39.5 (C3''), 44.6 (C4''), 48.9 (C7''), 49.2 (C1''), 54.5 (C10''), 61.8 (C6'), 67.6 (C2), 70.1, 73.6, 76.2, 78.5, 79.6 (C2'', C1', C2', C3', C4', C5', CH₂OPh), 128.2, 128.6, 129.6, 136.7 (CAr), 172.9 (C1); HRMS (ESI) Calcd for C₂₉H₄₆O₁₀N₂SNa: 637.2765. Found 637.2776.

Compound 23a

To a solution of **15a** (170 mg, 0.23 mmol) in MeOH (5 mL) was added concentrated HCl (250 μ L). The reaction mixture was refluxed for 5 h, then cooled to r.t. and treated with Dowex 1X8 (HCO₃⁻ form) to reach pH 7. The resin was filtered and the solution was

concentrated. Flash chromatography of the residue afforded **23a** (130 mg, 98 %) as a white solid (mp 88-89 °C); $[\alpha]_D^{28} = -45$ (c = 1, CHCl₃); ¹H NMR (360 MHz, CD₃OD) δ (ppm): δ 7.40-7.24 (m, 5 H, HAr), 4.69, 4.61 (2 d, 2 H, J = 12.0 Hz, NHOC*H*₂), 4.45 (d, 1 H, N*H*), 3.98 (dd, 1H, $J_{2'',3''a} = 5.0$ Hz, $J_{2'',3''b} = 6.5$ Hz, H-2''), 3.84 (dd, 1 H, $J_{5',6'a} = 2.5$ Hz, $J_{6'a,6'b} = 12.0$ Hz, H-6'a), 3.70 (dd, 1 H, $J_{5',6'b} = 5.0$ Hz, H-6'b), 3.70, 3.60 (2 d, 2 H, $J_{10''a,1''} = J_{10''b,1''} = 14.0$ Hz, H-10''a, H-10''b), 3.37 (dd, 1 H, $J_{2,3} = 2.5$ Hz, H-2) 3.29 (ddd, 1 H, H-5'), 2.42-2.30 (m, 2 H, H-3, Hsult), 2.10-1.83 (m, 5 H, Hsult), 1.49 (ddd, 1 H, H-4a), 1.40-1.25 (m, 2 H, H-4b, Hsult), 1.15 (s, 3 H, H-8''), 1.02 (s, 3 H, H-9''), 0.80 (s, 3 H, $J_{CH3,3} = 6.5$ Hz, CH₃); ¹³C NMR (90 MHz, CD₃OD): δ 15.5 (CH₃), 19.9 (C8''), 20.8 (C9''), 26.4 (C5''), 30.6 (C3), 32.7 (C6''), 35.5 (C2), 38.5 (C3''), 44.6 (C4''), 47.8 (C7''), 48.6 (C1''), 53.0 (C10''), 62.1 (C6'), 62.3 (C2), 65.1 (C2''), 70.3, 74.2, 75.2, 75.6, 75.9, 79.0 (C1', C2', C3', C4', C5', CH₂OPh), 127.8, 128.2, 128.3, 128.7, 138.0 (CAr), 173.5 (C1); HRMS (ESI) Calcd for C₂₈H₄₂O₉N₂SNa: 605.2503. Found 605.2503; Anal. Calcd for C₂₂H₃₃O₁₂N (%): C, 57.71; H, 7.26; N, 4.81; S, 5.50.

Compound 24a

To a warmed (60 °C) solution of **23a** (50 mg, 0.09 mmol) in phosphate buffer (0.1 M, 1 mL, pH 7) was added 40% aqueous formaldehyde (150 µL). The reaction mixture was stirred overnight at 60 °C, then cooled to room temperature, extracted with CH₂Cl₂ and concentrated. The residue was eluted on a Sephadex-DEAE column with 0.2 M triethylammonium bicarbonate eluent. The collected fractions were lyophilized three times to afford **24a** as a white solid (26 mg, 75%). ¹H NMR (360 MHz, CD₃OD) δ (ppm): δ 3.87 (dd, 1 H, *J*_{5',6'a} = 1.5 Hz, *J*_{6'a,6'b} = 12.0 Hz, H-6'a), 3.65 (ddd, 1 H, *J*_{5',6'b} = 4.0 Hz, *J*_{4',5'} = 11.5 Hz, H-5'), 3.55-3.29 (m, 5 H, H-1', H-2', H-3', H-4', H-6'b), 3.22 (dd, 6 H, N(CH₂CH₃)₃), 2.28 (ddd, 1 H, *J*_{3,4a} = 4.5 Hz, *J*_{3,4b} = 12.0 Hz, *J*_{3,CH3} = 6.5 Hz, H-3), 1.88 (ddd, 1 H, *J*_{4a,1'} = 4.5 Hz, *J*_{4a,4b} = 12.0 Hz, H-4a), 1.55 (ddd, 1 H, *J*_{4b,1'} = 14.5 Hz, H-4b), 1.33 (dd, 9 H, N(CH₂CH₃)₃, 0.87 (d, 3 H, CH₃); ¹³C NMR (90 MHz, CDCl₃): δ 7.8 (N(CH₂CH₃)₃), 15.3 (CH₃), 32.9 (C4), 34.8 (C3), 46.2 (N(CH₂CH₃)₃), 61.8 (C-6'), 71.1 (C4'), 73.9 (C3'), 75.0 (C5'), 75.4 (C2'), 80.8 (C1'), 97.1 (C2), 175.4 (C1); HRMS (ESI) Calcd for C₁₁H₁₇O₈: 277.0918. Found 277.0865.

24a (26 mg, 0.07 mmol) was treated with CH₂N₂ in MeOH (500 µL). The solution was concentrated, then suspended in 2:1 pyridine-acetic anhydride (1.5 mL) at 0 °C. The reaction mixture was stirred overnight, then concentrated. The residue was suspended in CH₂Cl₂ and washed with water and brine. The organic layer was dried (MgSO₄) and concentrated. Flash chromatography (95:5 CH₂Cl₂-acetone) afforded **25a** (27 mg, 94 %). Mp 134-135 °C (*i*Pr₂O); $[\alpha]_D^{28} = 8$ (c = 1, CHCl₃); ¹H NMR (360 MHz, CD₃OD) δ (ppm): δ 5.18 (dd, 1 H, $J_{2',3'} = J_{3',4'} = 10.0$ Hz, H-3'), 5.02 (dd, 1 H, $J_{4',5'} = 10.0$ Hz, H-4'), 4.22 (dd, 1 H, $J_{5',6'a} = 5.0$ Hz, $J_{6'a,6'b} = 12.5$ Hz, H-6'a), 4.11 (dd, 1 H, $J_{5',6'b} = 2.5$ Hz, H-6'b), 3.93 (d, 1 H, $J_{OHb,3} = 1.5$ Hz, OH), 3.85 (s, 3 H, CO₂CH₃), 3.84 (dd, 1 H, $J_{1',2'} = 10.0$ Hz, H-2'), 3.70 (ddd, 1 H, H-5'), 3.37 (ddd, 1 H, $J_{1',4a} = 4.5$ Hz, $J_{1',4b} = 14.5$ Hz, H-1'), 2.28 (ddd, 1 H, $J_{3,4a} = 4.5$ Hz, $J_{3,4b} = 12.5$ Hz, $J_{-2,5}$ Hz, H-4b), 0.88 (d, 3 H, CH₃); HRMS (ESI) Calcd for C₁₈H₂₆O₁₁Na: 441.1367. Found 441.1368.

Compound 26a

To a solution of **23a** (60 mg, 0.1 mmol) in CH₃CN (1.5 mL) and H₂O (100 μ L) was added Mo(CO)₆ (80 mg, 3 equiv) under argon at room temperature. The reaction mixture was refluxed for 6 h, then coevaporated with toluene. The residue was suspended in acetone, and treated at 0 °C with Na₂CO₃ (32 mg, 0.3 mmol) in H₂O (200 μ L) then benzyl chloroformate (21 μ L, 0.15 mmol). The reaction mixture was stirred for 2 h at room temperature, then concentrated. The residue was suspended in CH₂Cl₂ and washed with water and brine. The organic layer was dried (MgSO₄) and concentrated. Flash chromatography of the residue (85:15 CH₂Cl₂-MeOH) afforded **26a** (30 mg, 50 %) as a white solid. ¹H NMR (360 MHz,

CD₃OD) selected data δ : 7.40-7.30 (m, 5 H, HAr), 5.60 (d, 1 H, $J_{2,NH} = 9.0$ Hz, N*H*), 4.70, 4.60 (2 d, 2 H, J = 12.0 Hz, NHOC*H*₂), 3.90-3.00 (m, 9 H, H-1', H-2', H-3', H-4', H-5', H-6'a, H-6'b, H-2'', H-10''), 2.20-1.80 (m, 5 H, Hsult), 1.40-1.20 (m, 3 H, H-4a, H-4b, Hsult), 1.11 (s, 3 H, H-8''), 0.96 (s, 3 H, H-9''), 0.78 (s, 3 H, $J_{CH3,3} = 6.5$ Hz, CH₃); ¹³C NMR (90 MHz, CDCl₃) selected data δ 14.9 (CH₃), 19.8 (C8''), 20.7 (C9''), 26.5 (C5''), 32.0 (C3), 32.7 (C6''), 35.4 (C2), 38.4 (C3''), 44.6 (C4''), 47.8 (C7''), 48.7 (C1''), 52.9 (C10''), 62.6 (C6'), 65.0, 65.1 (C2, C2''), 67.6, 70.8, 74.0, 79.2 (C1', C2', C3', C4', C5', *C*H₂OPh), 128.1, 128.3, 128.6, 135.9 (CAr), 155.9 (NH(*C*O)OCH₂), 171.7 (C1); HRMS (ESI) Calcd for C₂₉H₄₂O₁₀N₂SNa: 633.2452. Found 633.2461.

Methyl-4-*C*-(2',3',4',6'-*O*-acetyl-**β**-D-glucopyranosyl)-2-*S*-benzyloxycarbonylamino-3-*R*methyl-butanate (27a)

To a solution of 26a (70 mg, 0.11 mmol) in THF (1.1 mL) was added 37 % aqueous H₂O₂ (30 µL, 0.22 mmol) and 35 % aqueous tetrabutyl ammonium hydroxyde (80 µL, 0.22 mmol) at -10 °C. The reaction mixture was stirred for 4 h, then warmed to r.t. and treated with Dowex 50X8 (H⁺ form) to reach pH 3. The resin was filtered and the solution was concentrated. The residue was eluted on a Sephadex-DEAE column with 0.2 M triethylammonium bicarbonate eluent. The collected fractions were lyophilized three times and the residue was treated with CH_2N_2 in MeOH (500 μ L). The solution was concentrated, then suspended in 2:1 pyridine / acetic anhydride (1.5 mL) at 0 °C. The reaction mixture was stirred overnight, then concentrated. The residue was suspended in CH₂Cl₂ and washed with water and brine. The organic layer was dried (MgSO₄) and concentrated. Flash chromatography of the residue (95:5 CH₂Cl₂-acetone) afforded **27a** (27 mg, 40 % for 3 steps) as an oil; $[\alpha]_D^{28} = -3$ (c = 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ (ppm): δ 7.43-7.32 (m, 5 H, HAr), 5.27 (d, 1 H, *J*_{2,NH} = 9.5 Hz, NH), 5.24 (dd, 1 H, $J_{3',4'} = J_{2',3'} = 9.5$ Hz, H-3'), 5.13 (2 d, 2 H, J = 14.0 Hz, NHOCH₂), 5.05 (dd, 1 H, $J_{4',5'} = 9.5$ Hz, H-4'), 4.85 (dd, 1 H, $J_{1',2'} = 9.5$ Hz, H-2'), 4.51 (dd, 1 H, $J_{2,3} = 3.5$ Hz, H-2), 4.26 (dd, 1 H, $J_{5',6'a} = 5.5$ Hz, $J_{6'a,6'b} = 12.5$ Hz, H-6'a), 4.11 (dd, 1 H, $J_{5',6'b} = 2.5$ Hz, H-6'b), 3.76 (s, 3 H, CO₂Me), 3.78-3.60 (2 ddd, 2 H, H-1', H-5'), 2.43 (ddd, 1 H, H-3), 2.08, 2.04, 2.01, 1.97 (4 s, 12 H, 4 Ac), 1.55 (ddd, 1 H, $J_{1',4a} = 2.5$ Hz, $J_{4a,4b} = 14.5$ Hz, $J_{4a,3} = 9.5$ Hz, H-4a), 1.39 (ddd, 1 H, $J_{1',4b} = 9.5$ Hz, $J_{4b,3} = 4.5$ Hz, H-4b), 0.85 (s, 3 H, $J_{CH3,3} = 7.0$ Hz, CH₃); ¹³C NMR (90 MHz, CDCl₃): δ 15.7 (CH₃), 20.7 (COCH₃), 29.7 (C4), 34.9 (C4), 52.5 (CO₂*Me*), 55.8 (C2), 62.5 (C6'), 67.2 (NH(CO)OCH₂), 68.7 (C4'), 72.4 (C2'), 74.3 (C3'), 75.3 (C1'), 75.7 (C5'), 128.1, 128.3, 128.6, 136.1 (CAr), 156.5 (NH(CO)OCH₂), 169.6, 169.9, 170.3, 170.7 (COCH₃), 172.5 (CO₂*Me*); HRMS (ESI) Calcd for C₂₈H₃₇O₁₃NNa: 618.2157. Found 618.2168; Anal. Calcd for C₂₈H₃₇O₁₃N (%): C, 56.46; H, 6.26; N, 2.35; O, 34.92. Found: C, 56.22; H, 6.27; N, 2.28; O, 35.16.

Methyl-4-*C*-(2',3',4',6'-*O*-acetyl-**β**-D-glucopyranosyl)-2-(benzyloxyamino)-3-methylbutanate 29a,b,c,d

To a degassed solution of **13a** (500 mg, 1 mmol) and methyl *E*-2-(benzyloxyimino)ethanate **28** (39 mg, 0.2 mmol) in CH₂Cl₂ (2 mL) were added Bu₃SnH (120 μ L, 2.5 éq) and Et₃B (0.5 mL, 2.5 eq) under argon. The reaction mixture was stirred overnight, then diluted with saturated aqueous NaHCO₃. The aqueous layer was extracted with CH₂Cl₂. The organic layer was dried (MgSO₄) and concentrated. Flash chromatography of the residue (5:95 acetone-CH₂Cl₂) afforded the coupling product as an 1:1:1:1 mixture (82 mg, 74 %).

¹H NMR (250 MHz, CDCl₃) selected data: δ (ppm): 7.40-7.30 (m, 5 H, HAr); 6.12-5.95 (m, 1 H, N*H*), 5.20-4.58 (m, 4 H, H-2', H-3', H'4, H-2).4.69-4.60 (m, 2 H, OC*H*₂C₆H₅), 4.27-3.90 (2 dd, 2 H, H-6'a, H-6'b), 3.75 (s, 3 H, CO₂Me), 3.63-3.05 (2 ddd, 2 H, H-1', H-5'), 2.09-1.98 (4 s, 12 H, 4 Ac), 1.90-1.24 (m, 3 H, H-3, H-4a, H-4b), 0.90-0.77 (d, 3 H, CH₃); ¹³C NMR (90 MHz, CDCl₃) selected data: δ 14.5, 16.0, 17.6 (CH₃), 20.5 (OAc), 29.8, 30.1, 30.2, 30.6 (C3), 34.4, 35.0, 35.1, 36.5 (C4), 51.5, 51.8, 53.3 (CO₂Me, C2), 62.2, 62.2, 65.5 (C6'), 67.6, 68.5, 68.6, 68.7 (C4'), 71.9, 72.1, 72.3, 72.5 (C2'), 74.0, 74.1, 74.2 (C3'), 75.0-76.0 (C1', C5'), 127.7-128.5, 137.7, 138.8 (CAr), 169.3-170.4 (OAc), 173.8 (CO₂Me); HRMS (ESI) Calcd for C₂₇H₃₇O₁₂NNa: 590.2208. Found 590.2218; Anal. Calcd for C₂₇H₃₇O₁₂N (%): C, 57.14; H, 6.57; N, 2.47. Found: C, 57.08; H, 6.62; N, 2.41.

Methyl-4-*C*-(2',3',4',6'-tetra-*O*-acetyl-**β**-D-glucopyranosyl)-2-benzyloxycarbonylamino-3-methyl-butanate (27a,b,c,d)

To a solution of **29a,b,c,d** (100 mg, 0.18 mmol) in CH₃CN (2.3 mL) and H₂O (170 µL) was added Mo(CO)₆ (142 mg, 3 equiv) under argon at room temperature. The reaction mixture was refluxed for 6 h, then coevaporated with toluene. The residue was suspended in acetone, and treated at 0°C with Na₂CO₃ (52 mg, 0.5 mmol) in H₂O (330 µL) then benzyl chloroformate (35 µL, 0.25 mmol). The reaction mixture was stirred for 2 h at room temperature, then concentrated. The residue was suspended in CH₂Cl₂ and washed with water and brine. The organic layer was dried (MgSO₄) and concentrated. Flash chromatography of the residue (5:95 acetone-CH₂Cl₂) afforded **27a,b,c,d** (55 mg, 40 %) as an oil. ¹H NMR (250 MHz, CDCl₃) selected data: $\delta = 7.40-7.30$ (m, 5 H, HAr), 5.59, 5.48, 5.34, 5.28 (d, 1 H, $J_{2.NH}$ = 9.5 Hz, NH), 5.24-5.14 (dd, 1 H, H-3'), 5.12, 5.11 (2 d, 2 H, J = 14.0 Hz, NHOCH₂), 5.09-4.98 (dd, 1 H, J_{4',5'} = 9.5 Hz, H-4'), 4.89-4.80 (dd, 1 H, H-2'), 4.51-4.06 (m, 3 H, H-2, H-6'a, H-6'b), 3.77-3.45 (m, 5 H, CO₂Me, H-1', H-5'), 2.45-2.20 (dddd, 1 H, H-3), 2.08, 2.06, 2.04, 2.03, 2.02, 2.01, 1.97 (4 s, 12 H, 4 Ac), 1.68-1.28 (2 ddd, 2 H, H-4a, H-4b), 0.97, 0.96, 0.89, 0.85 (d, 3 H, $J_{CH3,3} = 7.0$ Hz, CH₃); ¹³C NMR (90 MHz, CDCl₃) selected data: δ 14.8, 15.6, 17.0 (CH₃), 20.4-20.8 (COCH₃), 29.6 (C4), 52.1, 52.2, 52.3, 52.4 (CO₂Me), 55.8, 57.6, 58.1, 58.4 (C2), 62.1, 62.3, 62.4 (C6'), 66.9, 67.0, 67.1 (NH(CO)OCH₂), 68.5, 68.6, 68.7, (C4'), 72.0, 72.1, 72.2, 72.3 (C2'), 74.3-74.4 (C3'), 75.3, 75.6, 75.7, 75.8, 75.9 (C1',C5'), 126.9, 127.6, 128.0-128.3, 128.6, 136.1-136.2 (CAr), 155.8, 156.0, 156.1, 156.2, 156.3, 156.5 (NH(CO)OCH₂), 169.4-170.7 (COCH₃), 171.7, 172.1, 172.2, 172.4 (CO₂Me).

RI Glue B

29

16 off 1544.66 Hz 1544.66 Hz

zg30 20 Hz 250.1315447 MHz

CDCl3 20.6930 ppm 5175.983 Hz

16384

0.0000000fqc 0.0000000

0.0000000 0.00 Hz

 $0 \\ 0$

0 16.522 ppm 0.000 degree 0.000 degree 250.1300000 MHz 8192 0.0000000

