This journal is (c) The Royal Society of Chemistry 2009

©Royal Society of Chemistry

Electronic Supplementary Information

Cucurbit[7]uril host-guest complexes and pseudorotaxanes with α,ωbis(pyridinium)alkane dications

Ian W. Wyman and Donal H. Macartney*

Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada.

Fax: +1 613 533 6669; Tel: +1 613 533 2617; E-mail: donal@chem.queensu.ca

Contents	Page
Figure S1. ¹ H NMR spectra of BPE ²⁺ (0.98 x 10^{-3} mol dm ⁻³) in the presence of (a) 0.00 equiv, (b) 0.23 equiv, (c) 0.74 equiv, (d) 1.26 equiv, and (e) 6.60 equiv of CB[7] in D ₂ O.	S2
Figure S2. ¹ H NMR spectra of BAPE ²⁺ ($1.08 \times 10^{-3} \mod \text{dm}^{-3}$) in the presence of (a) 0.00 equiv, (b) 0.73 equiv, (c) 1.14 equiv, (d) 1.86 equiv, and (e) 2.34 equiv of CB[7] in D ₂ O.	S3
Figure S3. ¹ H NMR spectra of BBPE ²⁺ (1.00 x 10 ⁻³ mol dm ⁻³) in the presence of (a) 0.00 equiv, (b) 0.30 equiv, (c) 0.73 equiv, (d) 1.57 equiv, and (e) 2.19 equiv of CB[7] in D_2O .	S4
Figure S4. ¹ H NMR spectra of BPH ²⁺ ($1.13 \times 10^{-3} \text{ mol dm}^{-3}$) in the presence of (a) 0.00 equiv, (b) 0.49 equiv, (c) 1.06 equiv, (d) 1.58 equiv, and (e) 5.94 equiv of CB[7] in D ₂ O.	S5
Figure S5. ¹ H NMR spectra of B2PH ²⁺ (1.16 x 10 ⁻³ mol dm ⁻³) in the presence of (a) 0.00 equiv, (b) 0.67 equiv, (c) 0.95 equiv, (d) 1.62 equiv, and (e) 7.45 equiv of CB[7] in D ₂ O.	S6
Figure S6. ¹ H NMR spectra of B3PH ²⁺ (1.08 x 10 ⁻³ mol dm ⁻³) in the presence of (a) 0.00 equiv, (b) 0.47 equiv, (c) 0.99 equiv, (d) 1.43 equiv, and (e) 2.17 equiv of CB[7] in D_2O .	S 7
Figure S7. ¹ H NMR spectra of BAPH ²⁺ ($1.13 \times 10^{-3} \text{ mol dm}^{-3}$) in the presence of (a) 0.00 equiv, (b) 0.54 equiv, (c) 1.17 equiv, (d) 2.37 equiv, and (e) 5.47 equiv of CB[7] in D ₂ O.	S8
Figure S8. ¹ H NMR spectra of BBPH ²⁺ (1.00 x 10^{-3} mol dm ⁻³) in the presence of (a) 0.00 equiv, (b) 0.70 equiv, (c) 1.14 equiv, (d) 1.80 equiv, and (e) 2.22 equiv of CB[7] in D ₂ O.	S9
Figure S9. ¹ H NMR spectra of BBPX ²⁺ (0.51 x 10^{-3} mol dm ⁻³) in the presence of (a) 0.00 equiv, (b) 0.34 equiv, (c) 0.90 equiv, (d) 1.57 equiv, and (e) 2.48 equiv of CB[7] in D ₂ O.	S10
Figure S10. ¹ H NMR chemical shift titration of BPE ²⁺ (1.13 x 10^{-3} mol dm ⁻³) with CB[7] in D ₂ O. The solid circles are for the H3/H5 protons, while empty circles are for the H4 protons.	S10
Figure S11. Double reciprocal plot of $1/\Delta\delta$ against $1/[CB[7]]$ for the titration of BPE ²⁺ (1.13 x 10^{-3} mol dm ⁻³) with CB[7] in D ₂ O. The solid circles are for the H3/H5 protons, while empty circles are for the H4 protons.	S11
Table S1. Mass spectral peaks for the 1:1 and 2:1 CB[7] host-guest complexes in aqueous	S12

Figure S1. ¹H NMR spectra of BPE²⁺ (0.98 x 10^{-3} mol dm⁻³) in the presence of (a) 0.00 equiv, (b) 0.23 equiv, (c) 0.74 equiv, (d) 1.26 equiv, and (e) 6.60 equiv of CB[7] in D₂O.

Figure S2. ¹H NMR spectra of BAPE²⁺ (1.08 x 10⁻³ mol dm⁻³) in the presence of (a) 0.00 equiv, (b) 0.73 equiv, (c) 1.14 equiv, (d) 1.86 equiv, and (e) 2.34 equiv of CB[7] in D_2O .

Figure S3. ¹H NMR spectra of BBPE²⁺ (1.00 x 10^{-3} mol dm⁻³) in the presence of (a) 0.00 equiv, (b) 0.30 equiv, (c) 0.73 equiv, (d) 1.57 equiv, and (e) 2.19 equiv of CB[7] in D₂O.

Figure S4. ¹H NMR spectra of BPH²⁺ (1.13 x 10^{-3} mol dm⁻³) in the presence of (a) 0.00 equiv, (b) 0.49 equiv, (c) 1.06 equiv, (d) 1.58 equiv, and (e) 5.94 equiv of CB[7] in D₂O.

Figure S5. ¹H NMR spectra of B2PH²⁺ ($1.16 \times 10^{-3} \text{ mol dm}^{-3}$) in the presence of (a) 0.00 equiv, (b) 0.67 equiv, (c) 0.95 equiv, (d) 1.62 equiv, and (e) 7.45 equiv of CB[7] in D₂O.

Figure S6. ¹H NMR spectra of B3PH²⁺ ($1.08 \times 10^{-3} \text{ mol dm}^{-3}$) in the presence of (a) 0.00 equiv, (b) 0.47 equiv, (c) 0.99 equiv, (d) 1.43 equiv, and (e) 2.17 equiv of CB[7] in D₂O.

Figure S7. ¹H NMR spectra of BAPH²⁺ ($1.13 \times 10^{-3} \text{ mol dm}^{-3}$) in the presence of (a) 0.00 equiv, (b) 0.54 equiv, (c) 1.17 equiv, (d) 2.37 equiv, and (e) 5.47 equiv of CB[7] in D₂O.

Figure S8. ¹H NMR spectra of BBPH²⁺ ($1.00 \times 10^{-3} \text{ mol dm}^{-3}$) in the presence of (a) 0.00 equiv, (b) 0.70 equiv, (c) 1.14 equiv, (d) 1.80 equiv, and (e) 2.22 equiv of CB[7] in D₂O.

Figure S9. ¹H NMR spectra of BBPX²⁺ ($0.51 \times 10^{-3} \text{ mol dm}^{-3}$) in the presence of (a) 0.00 equiv, (b) 0.34 equiv, (c) 0.90 equiv, (d) 1.57 equiv, and (e) 2.48 equiv of CB[7] in D₂O.

Figure S10. ¹H NMR chemical shift titration of BPH²⁺ (1.13 x 10^{-3} mol dm⁻³) with CB[7] in D₂O. The solid circles are for the H3/H5 protons, while empty circles are for the H4 protons

Figure S11. Double reciprocal plot of $1/\Delta\delta$ against 1/[CB[7]] for the titration of BPH²⁺ (1.13 x 10⁻³ mol dm⁻³) with CB[7] in D₂O. The solid circles are for the H3/H5 protons, while empty circles are for the H4 protons

This journal is (c) The Royal Society of Chemistry 2009

Table S1.	Mass spectral peaks for the 1:1 and 2:1	CB[7] host-guest complexes in aqueous solution (calculated
values give	en in parentheses).	

Guest	$\left[M\bulletCB[7]\text{-}2Br\right]^{2+}$	$[M\bullet 2CB[7]-2Br]^{2+}$
BPE ²⁺	$674.2286 (674.2291 \text{ for } C_{54}H_{56}N_{30}O_{14}^{2+})$	not observed
BAPE ²⁺	717.2748 (717.2723 for $C_{58}H_{66}N_{32}O_{14}^{2+}$)	1298.4761 (1298.4431 for
		$C_{104}H_{116}N_{60}O_{28}^{2+})$
BBPE ²⁺	730.2947 (730.2927 for $C_{62}H_{72}N_{30}O_{14}^{2+}$)	1311.4967 (1311.4635 for
		$C_{104}H_{114}N_{58}O_{28}^{2+})*$
BPH ²⁺	702.2599 (702.2603 for $C_{58}H_{64}N_{30}O_{14}^{2+}$)	1283.4428 (1283.4321 for
		$C_{100}H_{106}N_{58}O_{28}^{2+})$
B2PH ²⁺	716.40959 (716.2760 for $C_{60}H_{68}N_{30}O_{14}^{2^+}$)	1298.2939 (1297.4478 for
		$C_{102}H_{110}N_{58}O_{28}^{2+})$
B3PH ²⁺	716.2784 (716.2760 for $C_{60}H_{68}N_{30}O_{14}^{2+}$)	1297.4906 (1297.4478 for
		$C_{102}H_{110}N_{58}O_{28}^{2+})$
BAPH ²⁺	745.3032 (745.3025 for $C_{62}H_{74}N_{32}O_{14}^{2+}$)	1326.5051 (1326.4743 for
		$C_{104}H_{116}N_{60}O_{28}^{2+})$
BBPH ²⁺	758.3227 (758.3229 for $C_{66}H_{80}N_{30}O_{14}^{2+}$)	1339.5195 (1139.4947 for
		$C_{108}H_{122}N_{58}O_{28}^{2+})$
BBPX ²⁺	768.3064 (768.3131 for $C_{68}H_{76}N_{30}O_{14}^{2+}$)	1349.5275 (1349.4792 for
		$C_{110}H_{118}N_{58}O_{28}^{2+})$

*881.9857 (881.9721 for $[M \cdot 2CB[7] - 2Br + Na]^{3+}$)