Magnesium-mediated intramolecular reductive coupling: A stereoselective synthesis of C₂-symmetric 3,4-bis-silyl-substituted adipic acid derivatives

Pintu K. Kundu and Sunil K. Ghosh*

Bio-Organic Division, Bhabha Atomic Research Centre

Trombay, Mumbai 400085, India

E-mail: ghsunil@barc.gov.in

Table of Contents

Entry	Description	Page
1	Figure-S1. ¹ H NMR Spectrum of 2a	3
2	Figure-S2. ¹³ C NMR Spectrum of 2a	4
3	Figure-S3. ¹ H NMR Spectrum of <i>trans</i> -1a	5
4	Figure-S4. ¹³ C NMR Spectrum of <i>trans</i> -1a	6
5	Figure-S5. ¹ H NMR Spectrum of <i>cis</i> -1a	7
6	Figure-S6. ¹³ C NMR Spectrum of <i>cis</i> -1a	8
7	Figure-S7. ¹ H NMR Spectrum of 5a	9
8	Figure-S8. ¹³ C NMR Spectrum of 5a	10
9	Figure-S9. ¹ H NMR Spectrum of 9a	11
10	Figure-S10. ¹ H NMR Spectrum of 13a	12
11	Figure-S11. ¹³ C NMR Spectrum of 11a	13
12	Figure-S12. ¹ H NMR Spectrum of 11b	14
13	Figure-S13. ¹³ C NMR Spectrum of 11b	15
14	Figure-S14. ¹ H NMR Spectrum of 10a	16
15	Figure-S15. ¹³ C NMR Spectrum of 10a	17
16	Figure-S16. ¹ H NMR Spectrum of 13a	18
17	Figure-S17. ¹³ C NMR Spectrum of 13a	19
18	Figure-S18. ¹ H NMR Spectrum of <i>trans</i> -14a	20
19	Figure-S19. ¹³ C NMR Spectrum of <i>trans</i> -14a	21
20	Figure-S20. ¹ H NMR Spectrum of <i>trans</i> -15a	22
21	Figure-S21. ¹³ C NMR Spectrum of <i>trans</i> -15a	23
22	Figure-S22. ¹ H NMR Spectrum of <i>cis</i> -14a	24
23	Figure-S23. ¹³ C NMR Spectrum of <i>cis</i> -14a	25
24	Figure-S24. ¹ H NMR Spectrum of 10b	26
25	Figure-S25. ¹³ C NMR Spectrum of 10b	27
26	Figure-S26. ¹ H NMR Spectrum of 13b	28
27	Figure-S27. ¹³ C NMR Spectrum of 13b	29
28	Figure-S28. ¹ H NMR Spectrum of <i>trans</i> -15b	30

29	Figure-S29. ¹³ C NMR Spectrum of <i>trans</i> -15b	31
30	Figure-S30. ¹ H NMR Spectrum of 10c	32
31	Figure-S31. ¹³ C NMR Spectrum of 10c	33
32	Figure-S32. ¹ H NMR Spectrum of 13c	34
33	Figure-S33. ¹³ C NMR Spectrum of 13c	35
34	Figure-S34. ¹ H NMR Spectrum of <i>trans</i> -14c	36
35	Figure-S35. ¹ H NMR Spectrum of <i>trans</i> -15c	37
36	Figure-S36. ¹³ C NMR Spectrum of <i>trans</i> -15c	38
37	Figure-S37. ¹ H NMR Spectrum of (-)- 16	39
38	Figure-S38. ¹³ C NMR Spectrum of (-)- 16	40
39	Figure-S39. View of crystals of (a) trans-14a; (b) trans-15a	41

Figure-S1. ¹H NMR of **2a**

Figure-S2. ¹³C NMR of 2a

Figure-S3. ¹H NMR of *trans*-1a

Figure-S4. ¹³C NMR of *trans*-1a

Figure-S5. ¹H NMR of *cis-***1**a

Figure-S6. ¹³C NMR of *cis*-1a

Figure-S7. ¹H NMR of **5a**

Figure-S8. ¹³C NMR of **5a**

Figure-S9. ¹H NMR of **9a**

Figure-S10. ¹H NMR of **11a**

Figure-S12. ¹H NMR of **11b**

Figure-S14. ¹H NMR of **10a**

Figure-S15. ¹³C NMR of **10a**

Figure-S16. ¹H NMR of **13a**

Figure-S17. ¹³C NMR of **13a**

Figure-S18. ¹H NMR of trans-14a

Figure-S19. ¹³C NMR of *trans*-14a

Figure-S20. ¹H NMR of trans-15a

Figure-S21. ¹³C NMR of *trans*-15a

Figure-S22. ¹H NMR of *cis*-14a

Figure-S23. ¹³C NMR of *cis*-14a

Figure-S24. ¹H NMR of **10b**

Figure-S25. ¹³C NMR of **10b**

Figure-S26. ¹H NMR of **13b**

Figure-S27. ¹³C NMR of **13b**

Figure-S28. ¹H NMR of *trans*-15b

Figure-S29. ¹³C NMR of *trans*-15b

Figure-S30. ¹H NMR of **10c**

Figure-S31. ¹³C NMR of **10c**

Figure-S32. ¹H NMR of **13c**

Figure-S33. ¹³C NMR of **13c**

Figure-S34. ¹H NMR of *trans*-14c

0

Figure-S35. ¹H NMR of *trans*-15c

Figure-S36. ¹³C NMR of *trans*-15c

Figure-S37. ¹H NMR of (-)-**16**

Figure-S38. ¹³C NMR of (-)-16

Figure-S39. View of crystals of (a) *trans*-14a; (b) *trans*-15a

(a) *trans*-14a

(b) *trans*-15a

