From N-Triisopropylsilyl Pyrrole to an

Optically Active C-4 Substituted Pyroglutamic

Acid: Total Synthesis of Penmacric Acid

ESI

Christophe Berini, Nadia Pelloux-Léon*, Frédéric Minassian*, and Jean-Noël Denis Département de Chimie Moléculaire (SERCO) UMR-5250, ICMG FR-2607, Université Joseph Fourier, CNRS BP-53 - 38041 Grenoble Cedex 9 - France Frederic.Minassian@ujf-grenoble.fr, Nadia.Pelloux-Leon@ujf-grenoble.fr

Electronic Supporting Information

Tools, Reagents, Solvents and Procedures for the preparation of compounds 6, 7, 8, 9, 10a, 10b, 10c, 10d, 4a,b, 11, 12, 1 and 13 p 2-15

Copies of ¹H and ¹³C NMR spectra for compounds 6, 7, 8, 9, 10a, 10b, 10c, 10d, 4a,b, 11, 12, 1 and 13 pp 16-29

Tools, Reagents, Solvents and Procedures

Reactions were performed using oven-dried glassware under an atmosphere of dry argon. They were monitored by thin layer chromatography (TLC) using commercial aluminium-backed silica gel plates (Merck, Kieselgel 60 PF_{254}). TLC spots were viewed under ultraviolet light and by heating the plate after treatment with an appropriate revelatory (KMnO₄, TTC, phosphomolybdic acid, ninhydrine).

Solvents and reagents: Tetrahydrofuran was refluxed over sodium-benzophenone and then distilled. Dichloromethane was dried by refluxing over CaH₂ and then distilled. Methanol was refluxed over magnesium turnings and then distilled. Triethylamine and 2,6-lutidine were refluxed over KOH and then distilled. Trichloroacetyl chloride and benzoyl chloride were distilled over CaCl₂. Trifluoroacetic acid was refluxed in the presence of trifluoroacetic anhydride and then distilled. Unless otherwise noted, all reagent-grade chemicals and solvents were used as supplied (analytical or HPLC grade) without prior purification.

Purifications by column chromatography were performed using Kieselgel 60 silica (40-60 mesh).

Melting points were obtained on a Büchi B35 apparatus and are uncorrected.

Optical rotations were determined with a Perkin-Elmer 341 polarimeter operating at the sodium D-line with a water-jacketed 10 cm cell. Specific rotations are reported in 10^{-1} deg cm² g⁻¹ and concentrations in g per 100 mL.

Circular dichroisms were recorded on a JASCO J-810 spectropolarimeter.

Infrared spectra (IR) were recorded on a Nicolet Impact-400 Fourier transform infrared spectrometer (FTIR) either as thin films on NaCl plates (thin film) or KBr discs (KBr disc), as stated. The data are reported in reciprocal centimetres (cm^{-1}) .

¹H NMR Spectra (300 or 400 MHz) and ¹³C NMR spectra (75 or 100 MHz) were recorded on either a Bruker Advance300 or Advance400 spectrometers in the deuterated solvent as stated. The field was locked by external referencing to the relevant deuteron resonance. Chemical shifts are given in ppm (δ) and were referenced to the internal solvent signal or to TMS used as an internal standard. When ambiguous, proton and carbon assignments were

established using COSY, HMQC and/or DEPT experiments. Multiplicities are declared as follows: s (singlet), br s (broad singlet), d (doublet), t (triplet), dd (doublet of doublet), ddd (doublet of doublet), dt (doublet of triplet), m (multiplet). Coupling constants J are given in Hertz.

Low Resolution Mass Spectra (LRMS) were recorded on a Bruker Esquire 3000 plus (ESI) or a ThermoFinnigan PolarisQ ion-trap spectrometer, using DCI (ammonia/isobutane 63/37). Accurate Mass measurements (HRMS) were recorded on an Orbitrap apparatus (ESI) in the "Structure et Fonction de Molécules Bioactives" laboratory, Paris, France.

Elemental analysis were performed Service d'Analyse Elémentaire du Département de Chimie Moléculaire, Grenoble, France.

www.rsc.org/obc | Organic & Biomolecular Chemistry

(S)-[Hydroxy-((R)-2-hydroxy-1-phenylethyl)amino]-(1-triisopropylsilanyl-1H-pyrrol-3-yl)acetic acid methyl ester (6). To a stirred solution of nitrone (S)-5 (0.96 g, 5.02 mmol) in anhydrous CH₂Cl₂ (25 mL) at -40 °C was added HCl (5.0 mL, 2.0 N in Et₂O, 10.0 mmol) and N-TIPS-pyrrole 2 (1.23 g, 5.51 mmol). The resulting mixture was slowly warmed to -20 °C and then stirred at this temperature for 12 hours where'upon anhydrous MeOH (25 mL) was added. It was then allowed to run at 0 °C for 24 hours. The mixture was then treated with a saturated aqueous NaHCO₃ solution until pH 8-9. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 7/3) to afford pure *N*-hydroxylamine **6** (1.48 g, 66%) as a pale pink solid; mp 50-51 °C; $[\alpha]_{D}^{20}$ +119.3 (c 1.00 in CHCl₃); v_{MAX}/cm⁻¹ (KBr disc) 3550-3350 (broad, OH × 2), 1752 (CO); $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.09-1.13 (18H, m, ((CH₃)₂CH)₃Si), 1.38-1.50 (3H, m, ((CH₃)₂CH)₃Si), 3.54-3.58 (1H, m, C(2')H₂), 3.63 (3H, s, OCH₃), 4.00 (1H, dd, J = 9.7and 3.8 Hz, C(1')H), 4.23 (1H, br s, OH), 4.33-4.38 (1H, m, C(2')H₂), 4.39 (1H, s, C(2)H), 6.42 (1H, dd, *J* = 2.4 and 1.2 Hz, pyrr*H*), 6.57 (1H, s, O*H*), 6.70 (1H, s, pyrr*H*), 6.76 (1H, t, J = 2.4 Hz, pyrrH), 7.30-7.32 (5H, m, ArH); δ_{C} (75 MHz; CDCl₃; Me₄Si) 11.7 (((CH₃)₂CH)₃Si)), 17.8 (((CH₃)₂CH)₃Si)), 52.2 (OCH₃), 63.4 (C(2')H₂), 66.6 (C(2)H), 67.6 (*C*(1')H), 110.5 (pyrr*C*H), 117.8 (pyrr*C*), 124.5 (pyrr*C*H), 124.9 (pyrr*C*H), 127.8 (Ar*C*H), 127.9 (ArCH), 130.2 (ArCH), 140.2 (ArC), 174.0 (C=O); m/z (DCI, NH₃-isobutane) 447 $([M+H]^+)$, 431, 399, 294 (100%); Elemental analysis, calcd (%) for C₂₄H₃₈N₂O₄Si: C, 64.54; H, 8.58; N, 6.28. Found: C, 64.36; H, 8.73; N, 6.38.

www.rsc.org/obc | Organic & Biomolecular Chemistry

ESI

(*S*)-Amino-(1-triisopropylsilanyl-1*H*-pyrrol-3-yl)acetic acid methyl ester (7). To a stirred solution of hydroxylamine **6** (466 mg, 1.04 mmol) in anhydrous MeOH/formic acid (36 mL) was added palladium black (0.63 g, 6.00 mmol). The resulting mixture was stirred for 1 hour. It was then filtered through celite pad and methanol was removed under vaccum. The residue was then dissolved in CH₂Cl₂ and NaHCO₃ was added. After filtration, the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 1/1 to 0/1) to afford α-amino methyl ester 7 (144 mg, 0.46 mmol, 45%) as a yellow oil: $[α]_D^{20}$ +59.0 (*c* 1.00 in CHCl₃); v_{MAX}/cm⁻¹ (thin film) 3388 (NH₂), 1740 (CO); δ_H (300 MHz; CDCl₃; Me₄Si) 1.11 (18H, app. d, *J* = 7.6 Hz, ((CH₃)₂CH)₃Si), 1.35-1.50 (3H, m, ((CH₃)₂CH)₃Si), 1.85 (2H, br s, NH₂), 3.72 (3H, s, OCH₃), 4.60 (1H, s, C(2)H), 6.27-6.28 (1H, m, pyrrH), 6.70-6.71 (1H, m, pyrrH), 6.74 (1H, s, pyrrH); δ_C (75 MHz; CDCl₃; Me₄Si) 11.6 (((CH₃)₂CH)₃Si), 17.7 (((CH₃)₂CH)₃Si), 52.0 (OCH₃), 52.7 (C(2)H), 108.8 (pyrrCH), 121.4 (pyrrCH), 124.5 (pyrrCH), 125.0 (pyrrC), 175.5 (*C*=O); *m*/*z* (DCI, NH₃-isobutane) 294 ([M+H–NH₃]⁺) (100%); Elemental analysis, calcd (%) for C₁₆H₃₀N₂O₂Si: C, 61.90; H, 9.74; N, 9.03. Found: C, 61.85; H, 9.50; N, 9.14.

(S)-tert-Butoxycarbonylamino-(1-triisopropylsilanyl-1*H*-pyrrol-3-yl)acetic acid methyl ester (8). To a stirred solution of α -amino methyl ester 7 (1.60 g, 5.15 mmol) in anhydrous CH₂Cl₂ (20 mL) at 0 °C was added anhydrous NEt₃ (0.90 mL, 6.38 mmol) and Boc₂O (1.28 g, 5.86 mmol). The resulting mixture was warmed to room temperature and stirred for 2 hours. Water was then added and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash

5

ESI

chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 7/3) to afford α-amino methyl ester **8** (1.84 g, 4.48 mmol, 87%) as a yellow oil: $[α]_D^{20}$ +71.9 (*c* 1.00 in CHCl₃); v_{MAX}/cm^{-1} (thin film) 3450-3350 (broad, NH), 1756 (CO), 1718 (CO); δ_H (300 MHz; CDCl₃; Me₄Si) 1.07 (18H, d, *J* = 7.4 Hz, ((*CH*₃)₂CH)₃Si), 1.36-1.45 (12H, m, ((*CH*₃)₂*CH*)₃Si and C(*CH*₃)₃), 3.73 (3H, s, OC*H*₃), 5.18-5.28 (2H, m, C(2)*H* and N*H*), 6.24 (1H, dd, *J* = 2.7 and 1.5 Hz, pyrr*H*), 6.68-6.70 (1H, m, pyrr*H*), 6.72-6.73 (1H, m, pyrr*H*); δ_C (75 MHz; CDCl₃; Me₄Si) 11.5 (((*CH*₃)₂*CH*)₃Si), 17.7 (((*CH*₃)₂*CH*)₃Si), 28.3 (*C*(*CH*₃)₃), 51.8 (*C*(2)H), 52.2 (OCH₃), 79.7 (*C*(CH₃)₃), 109.1 (pyrr*C*H), 120.7 (pyrr*C*), 122.3 (pyrr*C*H), 124.8 (pyrr*C*H), 155.1 (*C*=O), 172.6 (*C*=O); *m*/*z* (DCI, NH₃-isobutane) 409 ([M–H]⁻, 100%), 335; Elemental analysis, calcd (%) for C₂₁H₃₈N₂O₄Si: C, 61.43; H, 9.33; N, 6.83. Found: C, 61.65; H, 9.41; N, 6.62.

(S)-tert-Butoxycarbonylamino-(1H-pyrrol-3-yl)acetic acid methyl ester (9). To a stirred solution of N-TIPS-pyrrole 8 (1.76 g, 4.28 mmol) in anhydrous THF (43 mL) was added acetic acid (1.50 mL, 25.7 mmol). TBAF (9.80 mL, 1.0 M solution in THF, 9.80 mmol) was then added dropwise and the mixture was stirred at room temperature for 15 minutes. The mixture was then treated with a saturated aqueous NH₄Cl solution. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous MgSO₄ and concentrated. The crude product was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 1/1) to afford α -amino methyl ester 9 (1.05 g, 4.13 mmol, 96%) as a brown oil: $[\alpha]_D^{20}$ +83.3 (*c* 0.90 in CHCl₃); v_{MAX}/cm^{-1} (thin film) 3400-3250 (broad, NH), 1752 (CO), 1697 (CO); δ_H (400 MHz; CDCl₃; Me₄Si) 1.45 (9H, s, C(CH₃)₃), 3.74 (3H, s, OCH₃), 4.91-5.30 (2H, m, C(2)H and NH), 6.20 (1H, dd, J = 4.2 and 2.6 Hz, pyrrH), 6.74 (1H, dd, J = 4.9 and 2.6 Hz, pyrrH), 6.79-6.80 (1H, m, pyrr*H*), 8.25 (1H, br s, N*H*); δ_C (75 MHz; CDCl₃; Me₄Si) 28.3 (C(CH₃)₃), 51.7 (C(2)H), 52.3 (OCH₃), 79.9 (C(CH₃)₃), 107.0 (pyrrCH), 116.3 (pyrrCH), 118.6 (pyrrCH), 118.8 (pyrrC), 155.1 (C=O), 172.6 (C=O); *m*/*z* (DCI, NH₃-isobutane) 255 ([M+H]⁺), 216, 155 (100%); HRMS (ESI⁺) C₁₂H₁₈N₂O₄Na ([M+Na]⁺) requires 277.11588 found 277.11585.

www.rsc.org/obc | Organic & Biomolecular Chemistry

4-[(S)-tert-Butoxycarbonylamino-methoxycarbonyl-methyl]-1H-pyrrole-2-carboxylic acid methyl ester (3). To a stirred solution of compound 9 (1.03 g, 4.05 mmol) in anhydrous THF (32 mL) at 0 °C was added 2,6-lutidine (1.20 mL, 10.3 mmol). Freshly distilled trichloroacetyl chloride (1.20 mL, 10.3 mmol) was added dropwise and the mixture was allowed to warm to room temperature. After being stirred for 12 hours, the reaction mixture was quenched with water. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NaHCO₃ solution, brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The resulting crude product was dissolved in anhydrous MeOH (81 mL) and placed at 0 °C. Sodium methoxide (1.00 g, 18.5 mmol) was added and the mixture was stirred at 0 °C for 15 minutes. It was then acidified with 3.0 N aqueous HCl to pH 3-4. After removal of the solvent under reduced pressure, the residue was dissolved in CH₂Cl₂. Water was added and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous MgSO4 and concentrated. The crude product was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 7/3) to afford 3 (1.14 g, 90% over two steps) as a white solid: mp 40-41 °C; $[\alpha]_D^{20}$ +86.8 (c 1.00 in CHCl₃); v_{MAX}/cm^{-1} (KBr disc) 3400-3200 (broad, NH), 1735 (CO), 1693 (CO); δ_H (400 MHz; CDCl₃; Me₄Si) 1.44 (9H, s, C(CH₃)₃), 3.76 (3H, s, OCH₃), 3.84 (3H, s, OCH₃), 5.11-5.33 (2H, m, C(2)H and NH), 6.86-6.87 (1H, m, pyrr*H*), 6.96-6.97 (1H, m, pyrr*H*), 9.07 (1H, br s, N*H*); δ_C (75 MHz; CDCl₃; Me₄Si) 28.2 (C(CH₃)₃), 51.3 (C(2)H), 51.5 (OCH₃), 52.5 (OCH₃), 80.1 (C(CH₃)₃), 113.4 (pyrrCH), 121.3 (pyrrC), 121.4 (pyrrCH), 123.0 (pyrrC), 155.0 (C=O), 161.4 (C=O), 171.2 (C=O); *m/z* (DCI, NH₃/isobutane) 313 ([M+H]⁺), 274, 213, 196 (100%); Elemental analysis, calcd (%) for C₁₄H₂₀N₂O₆: C, 53.84; H, 6.46; N, 8.97. Found: C, 53.95; H, 6.73;

ESI

N, 8.98.

www.rsc.org/obc | Organic & Biomolecular Chemistry

rac-4-(tert-Butoxycarbonylamino-methoxycarbonyl-methyl-1-methyl-1H-pyrrole-2-carboxylic acid methyl ester (10a). To a stirred solution of pyrrole 3 (78 mg, 0.25 mmol) in anhydrous DMF (4.2 mL) at 0 °C was added sodium hydride (60% dispersion in mineral oil, 11 mg, 0.27 mmol). The mixture was stirred 15 minutes at room temperature, where'upon iodomethane (17 µL, 0.27 mmol) was added at 0 °C. The resulting mixture was allowed to warm slowly to room temperature, and stirred for 12 hours. Water was added and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed with water, brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 1/1) to afford *N*-methyl-pyrrole **10a** (65 mg, 0.20 mmol, 80%) as a yellow oil: v_{MAX}/cm^{-1} (thin film) 3500-3300 (broad, NH), 1752 (CO), 1710 (broad, CO); $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.44-1.46 (9H, m, C(CH₃)₃), 3.75 (3H, s, OCH₃), 3.80 (3H, s, OCH₃), 3.88 (3H, s, NCH₃), 4.94-5.31 (2H, m, C(2)H and NH), 6.81 (1H, s, pyrrH), 6.89 (1H, s, pyrrH); δ_{C} (100 MHz; CDCl₃; Me₄Si) 28.3 (C(CH₃)₃), 36.9 (NCH₃), 51.1 (OCH₃), 51.1 (C(2)H), 52.6 (OCH₃), 80.1 (C(CH₃)₃), 115.7 (pyrrCH), 118.7 (pyrrC), 122.8 (pyrrC), 127.6 (pyrrC), 154.9 (C=O), 161.3 (C=O), 171.8 (C=O); m/z (DCI, NH₃/isobutane) 327 ([M+H]⁺), 288, 210 (100%); Elemental analysis, calcd (%) for C₁₅H₂₂N₂O₆: C, 55.21; H, 6.80; N, 8.59. Found: C, 54.78; H, 6.87; N, 8.43.

www.rsc.org/obc | Organic & Biomolecular Chemistry

ESI

rac-1-Benzoyl-4-(tert-butoxycarbonylamino-methoxycarbonyl-methyl)-

1H-pyrrole-2-carboxylic acid methyl ester (10b). To a stirred solution of pyrrole 3 (78 mg, 0.25 mmol) in anhydrous CH₂Cl₂ (2.5 mL) at 0 °C was added NEt₃ (70 µL, 0.50 mmol), DMAP (3 mg, 0.02 mmol) and freshly distilled benzovl chloride (43 µL, 0.37 mmol). The temperature was allowed to warm to room temperature, and stirred for 3 hours. Water was added and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with saturated aqueous NaHCO₃, brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 7/1) to afford N-benzoyl-pyrrole **10b** (96 mg, 0.23 mmol, 92%) as a yellow oil: v_{MAX}/cm^{-1} (thin film) 3500-3300 (broad, NH), 1714 (broad, CO); δ_H (300 MHz; CDCl₃; Me₄Si) 1.45 (9H, s, C(CH₃)₃), 3.59 (3H, s, OCH₃), 3.79 (3H, s, OCH₃), 5.30-5.42 (2H, m, C(2)H and NH), 7.04-7.05 (1H, m, pyrrH), 7.23 (1H, s, pyrrH), 7.46-7.51 (2H, m, ArH), 7.60-7.65 (1H, m, ArH), 7.73-7.75 (2H, m, ArH); δ_C (100 MHz; CDCl₃; Me₄Si) 28.2 (C(CH₃)₃), 50.9 (C(2)H), 51.7 (OCH₃), 52.8 (OCH₃), 80.4 (C(CH₃)₃), 119.3 (pyrrCH), 121.9 (pyrrC), 125.3 (pyrrCH), 126.5 (pyrrC), 128.7 (ArCH), 129.9 (ArCH), 132.9 (ArC), 133.8 (ArCH), 154.8 (C=O), 160.3 (C=O), 168.0 (C=O), 171.0 (C=O); m/z (DCI, NH₃/isobutane) 434 ([M+NH₄]⁺), 417 ([M+H]⁺), 378, 361 (100%); Elemental analysis, calcd (%) for C₂₁H₂₄N₂O₇: C, 60.57; H, 5.81; N, 6.73. Found: C, 60.35; H, 5.93; N, 6.72.

www.rsc.org/obc | Organic & Biomolecular Chemistry

4-[(S)-tert-Butoxycarbonylamino-methoxycarbonyl-methyl]-pyrrole-

1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (10c). To a stirred solution of pyrrole **3** (1.08 g, 3.46 mmol) in anhydrous CH₂Cl₂ (28 mL) at 0 °C was added anhydrous NEt₃ (1.00 mL, 7.17 mmol), DMAP (35 mg, 0.35 mmol) and Boc₂O (1.13 g, 5.18 mmol). The resulting mixture was stirred at 0 °C for 1 hour. Water was then added and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were washed with water, brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 7/3) to afford *N*-Boc-pyrrole **10c** (1.39 g, 3.37 mmol, 97%) as a yellow oil: $[\alpha]_D^{20}$ +66.5 (c 1.00 in CHCl₃); v_{MAX}/cm⁻¹ (thin film) 3400-3250 (broad, NH), 1753 (CO), 1727 (broad, CO), 1702 (CO); $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.44 (9H, s, C(CH₃)₃), 1.57 (9H, s, C(CH₃)₃), 3.76 (3H, s, OCH₃), 3.83 (3H, s, OCH₃), 5.27-5.41 (2H, m, C(2)H and NH), 6.80 (1H, d, J = 2.1 Hz, pyrrH), 6.72 (1H, d, J = 2.1 Hz, pyrrH); $\delta_{\rm C}$ (75 MHz; CDCl₃; Me₄Si) 27.6 (C(CH₃)₃), 28.2 (C(CH₃)₃), 50.9 (C(2)H), 51.9 (OCH₃), 52.7 (OCH₃), 80.3 (C(CH₃)₃), 85.2 (C(CH₃)₃), 118.7 (pyrrCH), 121.3 (pyrrC), 124.1 (pyrrCH), 125.7 (pyrrC), 147.8 (C=O), 154.8 (C=O), 160.8 (C=O), 171.0 (C=O); m/z (DCI, NH₃/isobutane) 413 ([M+H]⁺), 313, 274, 213, 196 (100%); Elemental analysis, calcd (%) for C₁₉H₂₈N₂O₈: C, 55.34; H, 6.85; N, 6.80. Found: C, 55.74; H, 7.13; N, 6.62.

www.rsc.org/obc | Organic & Biomolecular Chemistry

ESI

4-[(S)-Amino-methoxycarbonyl-methyl]-1*H*-pyrrole-2-carboxylic acid methvl ester (10d). To a stirred solution of pyrrole 10c (124 mg, 0.31 mmol) in anhydrous CH₂Cl₂ (3.1 mL) at 0 °C was added anhydrous TFA (460 µL, 6.21 mmol). After being stirred for 2 hours at this temperature, solvents were evaporated under reduced pressure. The crude product was purified by flash chromatography on silica gel (eluent: EtOAc/MeOH, 1/0 to 9/1) to afford pyrrole **10d** (55 mg, 0.26 mmol, 83%) as a yellow oil. The enantiomeric ratio was determined by ¹H NMR spectrum in the presence of the chiral shift reagent, europium (III) tris-[3-heptafluoropropylhydroxymethylene)-(+)-camphorate] Eu(hfc)₃, and was 98:2. $[\alpha]_{D}^{20}$ +65.6 (c 1.00 in CHCl₃); v_{MAX} /cm⁻¹ (thin film) 3369 (NH₂), 1718 (CO), 1702 (CO); δ_{H} (300 MHz; CDCl₃; Me₄Si) 1.89 (2H, br s, NH₂), 3.74 (3H, s, OCH₃), 3.84 (3H, s, OCH₃), 4.59 (1H, s, C(2)*H*), 6.90-6.91 (1H, m, pyrr*H*), 6.97-6.98 (1H, m, pyrr*H*), 9.41 (1H, br s, N*H*); δ_C (100 MHz; CDCl₃; Me₄Si) 51.5 (C(2)H), 52.3 (OCH₃), 52.4 (OCH₃), 113.2 (pyrrCH), 120.1 (pyrrCH), 122.9 (pyrrC), 125.0 (pyrrC), 161.4 (C=O), 174.9 (C=O); m/z (ESI⁺) 235 $([M+Na]^+)$, 213 $([M+H]^+)$; HRMS (ESI^+) C₉H₁₂N₂O₄Na $([M+Na]^+)$ requires 235.06893, found 235.06876.

www.rsc.org/obc | Organic & Biomolecular Chemistry

(2S,4S)-4-[(S)-tert-Butoxycarbonylamino-methoxycarbonyl-methyl]-pyrrolidine-

1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (4a) and (2R,4R)-4-[(S)-tertbutoxycarbonylamino-methoxycarbonyl-methyl]-pyrrolidine-1,2-dicarboxylic acid 1-tert-butyl ester 2-methyl ester (4b). To a stirred solution of pyrrole 10c (1.00 g, 2.42 mmol) in anhydrous MeOH (12 mL) in pressure vessel, was added rhodium on alumina (200 mg, 5% in weight, 0.05 mmol). The reactor was magnetically stirred and the reaction was carried out under a pressure of 60 bars of hydrogen. After being stirred 2 hours, the mixture was filtered through a celite pad and the solvent was removed under reduced pressure. The product ratio was determined by ¹³C NMR of the crude mixture. The residue was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 1/1) to afford pyrrolidine **4a,b** in a mixture of diastereoisomers (0.94 g, 2.26 mmol, 93%, dr = 1:1) as a white foam: v_{MAX}/cm^{-1} (KBr disc) 3500-3300 (broad, NH), 1743 (CO), 1706 (broad, CO); $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.24-1.45 (m, 18H, 2 × C(CH₃)₃), 1.76-1.88 (1H, m, 1H of $C(3)H_2$, 2.27-2.58 (2H, m, 1H of $C(3)H_2$ and C(4)H, 3.21-3.30 (1H, m, 1H of $C(5)H_2$), 3.54-3.77 (7H, m, 1H of C(5) H_2 and 2 × OC H_3), 4.16-4.29 (2H, m, C(2)H and C(1')H), 5.11-5.17 (1H, m, NH); δ_C (100 MHz; CDCl₃; Me₄Si) 28.2 and 28.3 (C(CH₃)), 31.7 and 34.5 (C(3)H₂), 40.4 and 41.1 (C(4)H), 48.0 and 48.6 (C(5)H₂), 52.0 and 52.5 (OCH₃), 53.8 and 54.3 (C(1')H), 58.3 and 59.1 (C(2)H), 80.3 (C(CH₃)₃), 153.3 and 155.4 (C=O), 171.8 and 173.0 (C=O); m/z (DCI, NH₃/isobutane) 434 ([M+NH₄]⁺), 317 (100%); Elemental analysis, calcd (%) for C₁₉H₃₂N₂O₈: C, 54.80; H, 7.75; N, 6.73. Found: C, 54.79; H, 7.90; N, 6.76.

ESI

(2S,4R)-4-[(S)-tert-Butoxycarbonylamino-methoxycarbonyl-methyl]-5-oxo-

pyrrolidine-1,2-dicarboxylic acid 1-*tert*-butyl ester 2-methyl ester (11) and (2*R*,4*S*)-4-[(*S*)-*tert*-butoxycarbonylamino-methoxycarbonyl-methyl]-5-oxo-pyrrolidine-1,2-

dicarboxylic acid 1-tert-butyl ester 2-methyl ester (12). To a stirred solution of pyrrolidines **4a,b** (500 mg, 1.20 mmol) in a mixture of CCl₄, CH₃CN and H₂O (3/3/4, 24 mL) at 0 °C were sequentially added NaIO₄ (1.30 g, 6.06 mmol) and RuCl₃,3H₂O (50 mg, 0.24 mmol). The resulting mixture was slowly warmed to room temperature and then stirred at this temperature for 36 hours. The aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were dried over anhydrous MgSO4, filtered through a celite pad and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (eluent: pentane/EtOAc, 9/1 to 1/1) to afford pyrrolidinone 11 (cis-syn) (230 mg, 44%) as a white solid and pyrrolidinone 12 (cis-anti) (233 mg, 45%) as a white solid. **Data for compound 11** (*cis-syn*): mp 69-70 °C; $[\alpha]_D^{20}$ +15.1 (*c* 1.00 in CHCl₃); ν_{MAX}/cm⁻¹ (KBr disc) 3500-3300 (broad, NH), 1798 (CO), 1748 (CO), 1714 (CO); δ_H (300 MHz; CDCl₃; Me₄Si) 1.44 (9H, s, C(CH₃)₃), 1.46 (9H, s, C(CH₃)₃), 1.93 (1H, ddd, J = 13.3, 10.9 and 8.9 Hz, 1H of C(3) H_2), 2.55 (1H, ddd, J = 13.2, 9.7 and 8.2 Hz, 1H of $C(3)H_2$, 3.48 (1H, dt, J = 10.8, and 3.0 Hz, C(4)H), 3.76 (3H, s, OCH_3), 3.80 (3H, s, OCH_3), 4.50 (1H, dd, J = 10.7 and 8.5 Hz, C(2)H), 4.53 (1H, d, J = 8.9 Hz, C(1')H), 5.29 (1H, d, J = 8.7 Hz, NH); δ_{C} (100 MHz; CDCl₃; Me₄Si) 24.3 (C(3)H₂), 27.7 (C(CH₃)₃), 28.1 $(C(CH_3)_3)$, 45.7 (C(4)H), 52.4 $(2 \times OCH_3)$, 52.8 (C(1')H), 57.1 (C(2)H), 80.3 $(C(CH_3)_3)$, 84.0 (C(CH₃)₃), 148.7 (C=O), 156.1 (C=O), 170.3 (C=O), 171.1 (C=O), 171.8 (C=O); m/z (DCI, NH₃/isobutane) 448 ([M+NH₄]⁺), 376, 331, 231 (100%); Elemental analysis, calcd (%) for C₁₉H₃₀N₂O₉: C, 53.02; H, 7.03; N, 6.51. Found: C, 52.67; H, 7.18; N, 6.34; Data for **compound 12** (*cis-anti*): mp 50-51 °C; $[\alpha]_D^{20}$ +14.1 (*c* 1.00 in CHCl₃); v_{MAX}/cm^{-1} (KBr disc) 3500-3300 (broad, NH), 1790 (CO), 1752 (broad, CO), 1718 (CO); δ_H (300 MHz; CDCl₃; Me₄Si) 1.44 (9H, s, C(CH₃)₃), 1.49 (9H, s, C(CH₃)₃), 2.06-2.16 (1H, m, 1H of C(3)H₂), 2.49-2.60 (1H, m, 1H of C(3) H_2), 3.07 (1H, dt, J = 9.9 and 4.1 Hz, C(4)H), 3.76 (3H, s, OCH_3), 3.80 (3H, s, OCH_3), 4.52 (1H, dd, J = 8.8 and 7.7 Hz, C(2)H), 4.57 (1H, dd, J = 8.7

ESI

and 4.2 Hz, C(1')*H*), 5.64 (1H, br s, N*H*); δ_{C} (100 MHz; CDCl₃; Me₄Si) 24.0 (*C*(3)H₂), 27.8 (C(*C*H₃)₃), 28.1 (C(*C*H₃)₃), 45.4 (*C*(4)H), 52.5 (OCH₃), 52.6 (OCH₃), 52.9 (*C*(1')H), 57.0 (*C*(2)H), 80.3 (*C*(CH₃)₃), 84.0 (*C*(CH₃)₃), 148.9 (*C*=O), 155.2 (*C*=O), 170.5 (*C*=O), 171.3 (*C*=O), 172.1 (*C*=O); *m*/*z* (DCI, NH₃/isobutane) 448 ([M+NH₄]⁺), 376, 331, 231 (100%); Elemental analysis, calcd (%) for C₁₉H₃₀N₂O₉: C, 53.02; H, 7.03; N, 6.51. Found: C, 52.73; H, 7.09; N, 6.23.

(2S,4R)-4-[(S)-Amino-carboxy-methyl]-5-oxo-pyrrolidine-2-carboxylic acid; Penmacric acid (1). To a stirred solution of pyrrolidinone 11 (186 mg, 0.43 mmol) in anhydrous CH₂Cl₂ (4.3 mL) at 0 °C was added anhydrous trifluoroacetic acid (640 µL, 8.64 mmol). After being stirred for 2 hours at this temperature, solvents were evaporated under reduced pressure. The resulting crude product was dissolved in a THF/H₂O mixture (3/1, 21 mL) at 0 °C. Lithium hydroxide monohydrate (72 mg, 1.72 mmol) was added and the resulting mixture was stirred for 2 hours at this temperature. It was then acidified with 0.2 N aqueous HCl to pH 3. After removal of the solvent in vacuo, the residue was passed through a column of Dowex 50W-X8 ion exchange resin (H⁺ form), eluted with water and then 0.5 N aqueous ammonia. Lyophilization afforded penmacric acid 1 (67 mg, 77% over two steps) as a white hygroscopic solid: mp 194-195 °C; $[\alpha]_D^{20}$ +33.6 (c 0.070 in 0.1 N HCl), lit.¹ $[\alpha]_{D}^{20}$ +35 (c 0.070 in 0.1 N HCl); v_{MAX}/cm^{-1} (KBr disc) 3600-2800 (broad, NH, NH₂ and OH), 1689 (broad, CO); $\delta_{\rm H}$ (300 MHz; D₂O) 1.96 (1H, dd, J = 22.2 and 10.8 Hz, 1H of $C(3)H_2$, 2.75 (1H, ddd, J = 13.1, 8.5 and 8.4 Hz, 1H of $C(3)H_2$), 3.10 (1H, dd, J = 18.1 and 8.4 Hz, C(4)*H*), 3.94 (1H, d, J = 7.3 Hz, C(1')*H*), 4.21 (1H, t, J = 8.3 Hz, C(2)*H*); $\delta_{\rm C}$ (100 MHz; D₂O) 29.3 (C(3)H₂), 41.7 (C(4)H), 55.0 (C(1')H), 56.1 (C(2)H), 172.0 (C=O), 177.7 (C=O), 178.9 (C=O); m/z (ESI⁺) 225 ([M+Na]⁺), 203 ([M+H]⁺); HRMS (ESI⁺) $C_7H_{11}N_2O_5$ ([M+H]⁺) requires 203.06625 found 203.06563.

¹ Welter, A.; Jadot, J.; Dardenne, G.; Marlier, M.; Casimir, J. *Phytochemistry* **1975**, *14*, 1347-1350.

www.rsc.org/obc | Organic & Biomolecular Chemistry

ESI

(2*R*,4*S*)-4-[(*S*)-Amino-carboxy-methyl]-5-oxo-pyrrolidine-2-carboxylic acid (13). The same procedure applied to pyrrolidinone 12 (220 mg, 0.51 mmol) afforded penmacric acid's stereoisomer 13 (91 mg, 89% over two steps) as a white hygroscopic solid: mp 137-138 °C (decomp.); $[\alpha]_D^{20}$ +32.4 (*c* 0.50 in 0.1N HCl); v_{MAX}/cm^{-1} (KBr disc) 3600-2800 (broad, NH, NH₂ and OH), 1680 (broad, CO); δ_H (300 MHz; D₂O) 1.93 (1H, ddd, *J* = 13.5, 10.0 and 8.4 Hz, 1H of C(3)*H*₂), 2.65 (1H, ddd, *J* = 14.1, 11.4 and 8.8 Hz, 1H of C(3)*H*₂), 3.47 (1H, dt, *J* = 10.0 and 3.3 Hz, C(4)*H*), 4.19 (1H, d, *J* = 3.0 Hz, C(1')*H*), 4.24 (1H, t, *J* = 8.1 Hz, C(2)*H*); δ_C (100 MHz; D₂O) 25.9 (*C*(3)H₂), 42.7 (*C*(4)H), 52.8 (*C*(1')H), 56.0 (*C*(2)H), 172.6 (*C*=O), 177.2 (*C*=O), 179.2 (*C*=O); *m/z* (ESI⁺) 225 ([M+Na]⁺), 203 ([M+H]⁺); HRMS (ESI⁺) C₇H₁₁N₂O₅ ([M+H]⁺) requires 203.06625 found 203.06561.

15

www.rsc.org/obc | Organic & Biomolecular Chemistry

