#### SUPPORTING INFORMATION

# $\alpha,\gamma$ -Cyclic Peptide Ensembles with a Functionalized Cavity

### César Reiriz, Manuel Amorín, Rebeca García-Fandiño, Luis Castedo and Juan R. Granja<sup>\*</sup>

Departamento de Química Orgánica, Laboratorios del CSIC, Facultade de Química,

Universidade de Santiago, 15782 Santiago de Compostela (Spain).

juanr.granja@usc.es

#### 1. General Methods, Instruments Details and Materials

General: Commercially available N-Boc-(D)-Leu-OH, 1-hydroxybenzotriazole (HOBt), O-(7azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), 2-(1Hbenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), O-(benzotriazol-1-yl)-N,N,N, N'-tetramethyluronium terafluoroborate (TBTU) were all used as obtained from GL Biochem (Shanghai), N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC·HCI), N-Boc-(D)-Tyr(Me)-OH was obtained from Aldrich. D- (+)- Xylose 98+% was acquired from Lancaster. All others reagents obtained from commercial suppliers were used without further purification unless otherwise noted. Dichloromethane (DCM) and piperidine were dried and distilled over calcium hydride.<sup>1,2</sup> Tetrahydrofuran (THF) was dried and distilled over sodium/benzophenone.<sup>1, 2</sup> N.N-Diisopropylethylamine (DIEA) was dried and distilled over calcium hydride, and the redistilled over ninhydrin.<sup>1,2</sup> Analytical thin-layer chromatography was performed on E. Merck silica gel 60 F<sub>254</sub> plates. Compound that were not UV-active were visualized by dipping the plates in a ninhydrin or cerium ammonium molybdate solution and heating. Silica gel Flash chromatography was performed using E. Merck silica gel (type 60SDS, 230-400 mesh). Solvent mixture for chromatography is reported as v/v ratios. High Performance Liquid Chromatography (HPLC) purification was carried out on PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm x 5  $\mu$ m) column and KROMASIL 100 SI (250 mm x 4.6 mm x 5  $\mu$ m) column. Proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectra were recorded on Bruker WM-250 MHz, Varian Mercury-300 MHz or Bruker AMX-500 MHz spectrometers. Chemical shifts were reported in parts per million (ppm,  $\delta$ ) relative to tetramethylsilane ( $\delta$  0.00), or deuterium chloroform ( $\delta$  7.26). <sup>1</sup>H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quadruplet (q) or pentuplet (p). All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (<sup>13</sup>C NMR) spectra were recorded on a Bruker WM-250 MHz spectrometer, Varian Mercury-300 MHz or Bruker AMX-500 MHz spectrometers. Carbon resonances were assigned using distortion less enhancement by polarization transfer (DEPT) spectra obtained with phase angles of 135. Chemical Ionization (CI) mass spectra were recorded on a Finnigan Trace mass spectrometer. Fast Atom Bombardement (FAB) mass spectra were recorded on a MS Micromass Autospec mass spectrometer. Electrospray (ESI-TOF) mass spectra were recorded on a Bruker BIOTOF II mass spectrometer.

<sup>&</sup>lt;sup>1</sup> Brown, H. C. "Organic Síntesis via Boranes", Ed. John Wiley & Sons, 1975

<sup>&</sup>lt;sup>2</sup> Perrin, D. D.; Armarego, W. I. F. "Purification of Laboratory Chemical", Ed. Pergamon Press, 1988

<sup>1</sup>**H NMR Assignments of Cyclic Peptide.** The signal of the <sup>1</sup>H NMR spectra of the peptide in CDCl<sub>3</sub> were identified from the corresponding double-quantum-filled 2D COSY (2QF-COSY), TOCSY and or NOESY and ROESY spectra acquired at the indicated concentrations and temperatures. Mixing times (~250 ms or 400 ms) were not optimized. Spectra were also obtained on a Bruker AMX-500 MHz spectrometer.

#### 2. Synthesis of 4-amine-3-hydroxycyclofurane-2-carboxilic acid (γ-Ahf-OH).

(2*R*,3*R*,4*S*)-4-azido-3-(benzyloxy)-2-(dimethoxymethyl)tetrahydrofuran (7): A solution of compound (2*R*,3*R*,4*S*)-4-azido-2-dimethoxymethyl-3-hydroxytetrahydrofuran (5)<sup>3</sup> (1.20 g, 5.91 mmol) in dry THF (60 mL), was treated with NaH (60% dispersion in mineral oil, 244 mg, 6.1 mmol). After stirring for 10 minutes, tetrabutylammonium iodide (1.13 g, 3.0 mmol) and benzyl bromide (0.76 mL, 6.3 mmol) were added and the mixture was stirred under Argon atmosphere for 3 h. After quenching with water, the THF was removed and the resulting aqueous solution was washed with Et<sub>2</sub>O, and CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> anhydrous, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (30% Ethyl acetate/hexanes), to give compound **7** as a beige oil. [1.30 g, 75%, R<sub>f</sub> = 58% (30% Ethyl acetate/hexanes)]}c. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.43 – 7.27 (m, 5H), 4.60 (d, *J* = 4.8 Hz, 1.6H), 4.35 (d, *J* = 6.2 Hz, 1H), 4.07 – 3.87 (m, 5H), 3.44 (d, *J* = 3.9 Hz, 6H). **MS (Cl<sup>+</sup>) [m/z(%)]**: 234 (27), 204 (8), 128 (39), 107 (89). **HRMS [MH]<sup>+</sup> calculated** for C<sub>12</sub>H<sub>16</sub>N<sub>3</sub>O<sub>2</sub> 234.12425, found 234.12471. **IR (Film)**: 2935, 2833, 2104, 1099 cm<sup>-1</sup>.

(2*R*,3*R*,4*S*)-4-azido-3-(benzyloxy)tetrahydrofuran-2-carbaldehyde: A solution of acetal **7** (10.71 g, 36.55 mmol) in a TFA-water mixture (9:1, 49 mL) was stirred at rt for 3 h. Water (100 mL) and dichloromethane (100 mL) were added, the organic phase was separated, and washed with NaHCO<sub>3</sub> (sat.) and brine. The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> anhydrous, filtered and concentrated under reduced pressure to give the wished aldehyde that was used without further purification. [9.02 g, 100%, R<sub>f</sub>= 39% (30% Ethyl acetate/hexanes)]. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>)  $\delta$ : 9.62 (d, *J* = 0.9 Hz, 1H), 7.52 – 7.17 (m, 8H), 4.75 – 4.40 (m, 3H), 4.35 (s, 1H), 4.27 – 3.80 (m, 7H). MS (Cl<sup>+</sup>) [m/z(%)]: 248 (7), 220 (46), 133 (22), 107 (100). HRMS [MH]<sup>+</sup> calculated for C<sub>12</sub>H<sub>14</sub>N<sub>3</sub>O<sub>3</sub> 248.10352, found 248.10408.

(2*R*,3*R*,4*S*)-methyl 4-azido-3-(benzyloxy)tetrahydrofuran-2-carboxylate (8): A solution of (2R,3R,4S)-4-azido-3-(benzyloxy)tetrahydrofuran-2-carbaldehyde (9.0 mg, 36.43 mmol) in acetonitrile (100 mL) was treated with *N*-bromosuccinimide (32.0 g, 182.1 mmol), K<sub>2</sub>CO<sub>3</sub> (25.0 g,

<sup>&</sup>lt;sup>3</sup> Moravková, J.; Capková, J.; Stanek, J. *Carbohydr. Res.* **1994**, 263, 61; Talekar, R. R.; Wightman, R. H. *Tetrahedron* **1997**, 53, 3831.

182.1 mmol) and MeOH (40 mL). The mixture was stirred in the dark for 24 h and then the yellow solution was treated with Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>. The acid **8** was extracted with a hexane/ether mixture (1:1) and the combined organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub> anhydrous, filtered and concentrated under reduced pressure to provide compound **8** after purification by flash chromatography (10% Ethyl acetate/hexanes) as a light beige oil. [9.10 g, 91%, R<sub>*t*</sub> = 37% (10% ethyl acetate/hexane)]. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>) δ: 7.45 – 7.27 (m, 5H), 4.66 (q, *J* = 11.8 Hz, 2H), 4.53 (d, *J* = 2.5 Hz, 1H), 4.28 – 4.11 (m, 2H), 4.10 – 4.00 (m, 2H), 3.79 (s, 3H). MS (FAB<sup>+</sup>) [m/z(%)]: 300 (MNa<sup>+</sup>), (25), 278 (MH<sup>+</sup>), (31), 154 (97), 137. HRMS [MH]<sup>+</sup> calculated for  $C_{13}H_{16}N_3O_4$  is 278.11408, found 278.11329.

(2*R*,3*R*,4*S*)-4-azido-3-(benzyloxy)tetrahydrofuran-2-carboxylic acid (9): A solution of ester 8 (79.0 mg, 0.28 mmol) in a methanol/water mixture (3:1, 8 mL) was treated with LiOH·H<sub>2</sub>O (60.0 mg, 1.43 mmol) at 0°C. The solution was stirred at this temperature for 10 min and then at rt for 5 h. After removal of the solvent, the residue was diluted with water, washed with CH<sub>2</sub>Cl<sub>2</sub>, and the aqueous solution was acidified to pH 3. The residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> anhydrous and concentrated under reduced pressure, to gave the acid 9 as a light yellow oil. [73 mg, 100%, R<sub>f</sub> = 10% (30% Ethyl acetate/hexanes)]. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.38 – 7.25 (m, 5H), 4.67 (d, *J* = 11.9 Hz, 1H), 4.57 (d, *J* = 11.9 Hz, 1H), 4.47 (d, *J* = 2.0 Hz, 1H), 4.12 (dd, *J* = 4.7 Hz, 9.0, 1H), 3.96 (s, 1H), 3.84 (dd, *J* = 2.5 Hz, 9.0, 1H), 3.76 (s, 3H), 3.49 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  172.11(CO), 137.51 (C), 128.61 (CH), 128.06 (CH), 127.88 (CH), 89.86 (CH), 81.94 (CH), 75.59 (CH<sub>2</sub>), 71.86 (CH<sub>2</sub>), 57.31 (CH), 52.46 (CH<sub>3</sub>). MS (ESI-TOF<sup>+</sup>) [m/z(%)]: 286.18 (MNa<sup>+</sup>), 69.23 (MH<sup>+</sup>). HRMS [MH]<sup>+</sup> calculated for C<sub>12</sub>H<sub>13</sub>N<sub>3</sub>O<sub>4</sub> 286.0796, found 286.0798. IR (Film): 2924, 2106, 1626, 1412, 1263, 1092 cm<sup>-1</sup>.

(2*R*,3*R*,4*S*)-methyl 4-amino-3-(benzyloxy)tetrahydrofuran-2-carboxylate: A solution of methyl ester **8** (5.08 g, 18.33 mmol) in dry THF (50 mL) was treated with triphenylphosphine (6.70 g, 25.67 mmol) and the resulting mixture was stirred during 3 h. After the addition of water (5.6 mL) the resulting mixture was refluxed for 1h. The solvent was concentrated under reduced pressure and the residue was purified by flash chromatography (4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>) to give 1.88 g of the wished amine. [1.88 g, 41%, R<sub>f</sub> = 29% (4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>)]. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 7.38 – 7.25 (m, 5H), 4.67 (d, *J* = 11.9 Hz, 1H), 4.57 (d, *J* = 11.9 Hz, 1H), 4.47 (d, *J* = 2.0 Hz, 1H), 4.12 (dd, *J* = 4.7 Hz, 9.0 Hz, 1H), 3.96 (s, 1H), 3.84 (dd, *J* = 2.5 Hz, 9.0 Hz, 1H), 3.76 (s, 3H), 3.49 (s, 1H). MS (ESI-TOF<sup>+</sup>) [m/z(%)]: 374 (MNa<sup>+</sup>), 355 (MH<sup>+</sup>). HRMS [MH]<sup>+</sup> calculated for C<sub>13</sub>H<sub>18</sub>N<sub>1</sub>Na<sub>1</sub>O<sub>4</sub> 374.1586, found 374.1574. IR (Film): 3367, 2945, 2833, 1670, 1541, 1456, 1271, 1219, 1095, 1028 cm<sup>-1</sup>.

#### (2R,3R,4S)-methyl-3-(benzyloxy)-4-(tert-butoxycarbonylamino)tetrahydrofuran-2-

**carboxylate** (4): To a solution of (2*R*,3*R*,4*S*)-methyl-4-amino-3-(benzyloxy)tetrahydrofuran-2carboxylate (0.337 mg, 1.34 mmol) in dry dioxane (50 mL) was added DIEA (0.26 mL, 1.5 mmol), under argon. After 20 minutes, a solution of Boc<sub>2</sub>O (0.33 mg, 1.5 mmol) in dry dioxane (10 mL) was added drop wise to the stirred solution. After completing the addition of Boc<sub>2</sub>O, the solution was stirred for 2 h and the solvent concentrated under reduced pressure. The resulting residue was dissolved in dichloromethane and the solution washed with water and brine, dried over Na<sub>2</sub>SO<sub>4</sub> anhydrous, filtered and concentrated under reduced pressure to give a residue that was purified by flash chromatography (60% Ethyl acetate/hexanes) to provide 320 mg of the compound **4** as a white foam. [320 mg, 68%, R<sub>f</sub> = 77% (60% Ethyl acetate/hexanes)]. <sup>1</sup>H NMR (250,13 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.61 (d, *J* = 8.7 Hz, 1H), 7.47 – 7.17 (m, 13H), 5.25 (br, 1H), 4.94 – 4.54 (m, 7H), 4.53 – 3.91 (m, 12H), 3.78 (d, *J* = 12.3 Hz, 3H), 1.53 – 1.19 (m, 13H). MS (ESI-TOF<sup>+</sup>) [m/z(%)]: 374 (MNa<sup>+</sup>), 352 (MH<sup>+</sup>). HRMS [MH]<sup>+</sup> calculated for C<sub>18</sub>H<sub>25</sub>N<sub>1</sub>Na<sub>1</sub>O<sub>6</sub> 351.1586, found 374.1574. IR (Film): 3390, 2956, 2925, 2854, 1716, 1674, 1520, 1456, 1367, 1265, 1095 cm<sup>-1</sup>.

(2*R*,3*R*,4*S*)-3-(benzyloxy)-4-(*tert*-butoxycarbonylamino)tetrahydrofuran-2-carboxylic acid: A solution of **4** (320.0 mg, 0.91 mmol) in a methanol/water mixture (3:1, 8 mL) was treated with LiOH·H<sub>2</sub>O (191.0 mg, 4.56 mmol) at 0°C. The solution was stirred 10 min at this temperature and then at rt 5 h. After removal of the solvent, the residue was diluted with water, washed with CH<sub>2</sub>Cl<sub>2</sub> and the resulting aqueous solution was acidified to pH 3. The acid was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> anhydrous and concentrated under reduced pressure, to give wished acid as a light yellow oil. [211 mg, 71%, R<sub>f</sub> = 60% (4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>)]. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.56 – 7.19 (m, 5H), 7.10 (d, *J* = 5.3 Hz, 0.5 H), 6.30 (d, J = 6.6 Hz, 0.5 H), 4.86 – 4.55 (m, 2H), 4.32 (t, *J* = 8.3 Hz, 2H), 4.08 (m, 2H), 1.48 (s, 4H). MS (FAB<sup>+</sup>) [m/z(%)]: 337 (MH<sup>+</sup>). HRMS [MH]<sup>+</sup> calculated for C<sub>17</sub>H<sub>23</sub>N<sub>1</sub>Na<sub>1</sub>O<sub>6</sub> is 360.1424, found 360.1418.

#### 3. Cyclic Peptide Synthesis.

**Boc-***D***-Leu-***L*-*γ***-Ahf(Bn)-OMe (10a):** A 0°C cooled solution of Boc-*D*-Leu-OH (321.0 mg, 1.39 mmol) in dry THF (5 mL) was treated with HOBt (58.0 mg, 0.43 mmol) and DIC (0.068 mL, 0.43 mmol). After 10 min., a solution of the azide **9** (100.0 mg, 0.36 mmol) in dry THF (5mL) was added dropwise to the resulting stirred solution. The solution was cooled at -78°C, stirred for 10 minutes at this temperature and then PBu<sub>3</sub> (0.090 mL, 0.36 mmol) was added. After stirring at this temperature for 5 h, the solution was concentrated under reduced pressure, and the residue dissolved with  $CH_2Cl_2$ , poured into a separation funnel and washed with HCl (5%). The organic layer was dried over  $Na_2SO_4$  anhydrous, filtered and concentrated under reduced pressure. The resulting yellow oil was purified by flash chromatography (6% MeOH/ $CH_2Cl_2$ ) to give 164 mg of compound **10a**. [164 mg, 98%,  $R_f = 53\%$  (4% MeOH/ $CH_2Cl_2$ )]. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>) δ: 7.31 (m, 5H), 6.81 (d, *J* = 6.9 Hz, 0.5H), 4.90 (d, *J* = 7.0 Hz, 0.5H), 4.78 (d, *J* = 11.8 Hz, 1H), 4.68 (d, *J* = 11.8 Hz, 1H), 4.48 (s, 2H), 4.26 – 3.91 (m, 3H), 3.77 (s, 2H), 1.80 – 1.06 (m, 13H), 0.91 (d,

J = 0.93 Hz, 6H). **MS (ESI-TOF<sup>+</sup>) [m/z(%)]:** 487 (MNa<sup>+</sup>), 465 (MH<sup>+</sup>), 409, 338. **HRMS [MH]<sup>+</sup>** calculated for C<sub>24</sub>H<sub>37</sub>N<sub>2</sub>O<sub>7</sub> 465.2595, found 465.2595.

**Boc-***D***-Leu**-*L*-*γ***-Ahf(Bn)-OH (10b):** A 0°C cooled solution of Boc-*D*-Leu-*L*-γ-Ahf(Bn)-OMe (**10a**) (250 mg, 0.583 mmol) in MeOH:H<sub>2</sub>O (3:1) (8 mL) was treated with LiOH (115 mg, 2.74 mmol) and the solution was stirred at rt for 5 h. After the removal of the solvent, the residue was dissolved in water, the solution was washed with CH<sub>2</sub>Cl<sub>2</sub> and then the aqueous solution was acidified to pH 3 with HCl (5%), and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure to give compound **10b** as white foam that was not further purified. [200.0 mg, 83%, R<sub>f</sub>= 49% (20% MeOH/CH<sub>2</sub>Cl<sub>2</sub>)]. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>) δ: 7.25 (m, 5H), 5.40-3.40 (m, 6H), 2.56 (m, 1H), 1.70-1.00 (m, 12H), 0.86 (m, 6H). MS (ESI-TOF<sup>+</sup>) [m/z(%)]: 473 (MNa<sup>+</sup>), 452 (MH<sup>+</sup>), 395, 351. HRMS [MH]<sup>+</sup> calculated for C<sub>23</sub>H<sub>35</sub>N<sub>2</sub>O<sub>7</sub> 452.2425, found 452.2439. IR (Film): 3388, 2945, 2835, 1653, 1456, 1415, 1267, 1217, 1024 cm<sup>-1</sup>.

**Boc-***D***-Leu-***L***·***γ***-Ahf(Bn)-OMe (10a):** A solution of compound **4** (321.0 mg, 1.28 mmol) in TFA/CH<sub>2</sub>Cl<sub>2</sub> (1:1, 30 mL) was stirred at rt for 15 min. After removal the solvent, the residue was dried under high vacuum for 3 h. The result TFA salt was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was successively treated with Boc-*D*-Leu-OH (323.0 mg, 1.40 mmol), HATU (0.53 g, 1.4 mmol) and DIEA (0.9 mL, 5.11 mmol). After 2 h stirring at rt, the solution was poured into a separation funnel and washed with HCl (5%) and NaHCO<sub>3</sub> (sat. sol.). The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure, to provide a yellow oil that was purified by flash chromatography (2-4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>) to give 534 mg of compound **10a** as a white foam. [534.0 mg, 90%, R<sub>f</sub> = 79% (4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>)]. <sup>1</sup>**H NMR** (250.13 MHz, CDCl<sub>3</sub>) δ: 7.31 (m, 5H), 6.81 (d, *J* = 6.9 Hz, 0.5H), 4.90 (d, *J* = 7.0 Hz, 0.5H), 4.78 (d, *J* = 11.8 Hz, 1H), 4.68 (d, *J* = 11.8 Hz, 1H), 4.48 (s, 2H), 4.26 – 3.91 (m, 3H), 3.77 (s, 2H), 1.80 – 1.06 (m, 13H), 0.91 (d, *J* = 0.93 Hz, 6H). **MS (ESI-TOF<sup>+</sup>) [m/z(%)]:** 487 (MNa<sup>+</sup>), 465 (MH<sup>+</sup>), 409, 338. **HRMS [MH]<sup>+</sup> calculated** for C<sub>24</sub>H<sub>37</sub>N<sub>2</sub>O<sub>7</sub> 465.2595, found 465.2595.

**Boc-***D***-Tyr(Me)***-L*- $\gamma$ -<sup>*Me*</sup>**N**-**Acp-OFm (11):** A solution of (1*R*,3*S*)-(9*H*-fluoren-9-yl)methyl-3-(*tert*-butoxycarbonyl(methyl)aminocyclopentanecarboxylate [ $\gamma$ -**Boc**-*L*-<sup>*Me*</sup>**N**-**Acp-OH**]<sup>4</sup> (355 g, 0.82 mmol) in a TFA/CH<sub>2</sub>Cl<sub>2</sub> mixture (1:1, 20 mL) was stirred at rt for 15 min. After removal the solvent, the residue was dried under high vacuum for 3 h. The resulting TFA salt was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (30 mL), and Boc-*D*-Tyr(Me)-OH (260.0 mg, 0.90 mmol), HATU (0.34 g, 1.1 mmol) and DIEA (0.6 mL, 3.26 mmol) were successively added. After 2 h stirring at rt, the solution was poured into a separation funnel and washed with HCl (5%) and NaHCO<sub>3</sub> (sat.). The organic

<sup>&</sup>lt;sup>4</sup> For *D*-Boc-γ-<sup>Me</sup>N-Acp-OH synthesis, see: a) Brea, R. J.; Amorín, M.; Castedo, L.; Granja, J. R. *Angew. Chem. Int. Ed.* **2005**, *44*, 5710-5713. b) Reiriz, C.; Castedo, L.; Granja, J. R. *J. Pept. Sci.* **2008**, *14*, 241-249.

layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure, to provide yellow oil that was purified by flash chromatography (2-4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>) to give 132 mg of compound **11** as a white foam. [132.0 mg, 28%, R<sub>f</sub> = 74% (4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>)]. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>) δ: 7.86 – 7.49 (m, 4H), 7.49 – 7.22 (m, 6H), 7.08 (t, J = 7.5 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 5.37 (t, J = 8.7 Hz, 8.7 Hz, 1H), 5.10 – 4.59 (m, 1H), 4.59 – 4.32 (m, 2H), 4.28 – 3.90 (m, 2H), 3.85 – 3.59 (m, 3H), 3.11 – 2.28 (m, 5H), 2.23 – 0.62 (m, 23H). MS (ESI-TOF<sup>+</sup>) [m/z(%)]: 1219, 917, 621 (MNa<sup>+</sup>), 599 (MH<sup>+</sup>), 543, 291. HRMS [MH]<sup>+</sup> calculated for C<sub>36</sub>H<sub>43</sub>N<sub>2</sub>O<sub>6</sub> 599.3115, found 599.3116. IR (Film): 3421, 3053, 2956, 2927, 2850, 1732, 1712, 1637, 1512, 1450, 1265, 1171 cm<sup>-1</sup>.

**Boc-D-Leu-***L*-*γ***-Ahf(Bn)-***D***-Tyr(Me)***-L*-*γ*-<sup>*Me*</sup>*N***-Acp-OFm (13):** A solution of the dipeptide **11** (133 mg, 0.22 mmol) in of TFA/ CH<sub>2</sub>Cl<sub>2</sub> (1:1, 30 mL) was stirred at rt for 15 min. After removal the solvent, the residue was dried under high vacuum for 3 h. The resulting TFA salt was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (25 mL), and dipeptide **10b** (98.0 mg, 0.22 mmol), HATU (91 mg, 0.24 mmol) and DIEA (0.33 mL, 1.95 mmol) were successively added. After 5 h stirring at rt, the solution was poured into a separation funnel and washed with HCl (5%) and NaHCO<sub>3</sub> (sat.). The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure, to provide a yellow oil that was purified by flash chromatography (1-2% MeOH/CH<sub>2</sub>Cl<sub>2</sub>) to give 187 mg of tetrapeptide **13** as a white foam. [187.0 mg, 93%, R<sub>*I*</sub> = 56% (4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>)]. <sup>1</sup>H NMR (250.13 MHz, CDCl<sub>3</sub>) δ: 7.76 (t, *J* = 6.0 Hz, 2H), 7.56 (d, *J* = 7.1 Hz, 3H), 7.48 – 7.20 (m, 16H), 7.09 (t, *J* = 8.4 Hz, 2H), 6.88 – 6.71 (m, 3H), 5.22 – 4.58 (m, 8H), 4.57 – 4.36 (m, 4H), 4.30 (dd, *J* = 2.5 Hz, 6.7 Hz, 2H), 4.25 – 3.57 (m, 13H), 3.20 – 2.09 (m, 12H), 2.09 – 0.53 (m, 49H). MS (ESI-TOF<sup>+</sup>) [m/z(%)]: 953 (MNa<sup>+</sup>), 931 (MH<sup>+</sup>), 734, 435. HRMS [MH]<sup>+</sup> calculated for C<sub>54</sub>H<sub>67</sub>N<sub>4</sub>O<sub>10</sub> 931.4848, found 931.4852. **IR (Film):** 3570, 3496, 2937, 2856, 2796, 1730, 1448, 1367, 1244, 1209, 1113 cm<sup>-1</sup>.

**cyclo[***D***-Leu**-*L*-*γ***-Ahf(Bn)**-*D***-Tyr(Me)**-*L*-*γ*-<sup>*Me*</sup>*N*-**Acp**-] (15): A solution of Boc-*D*-Leu-*γ*-Ahf(Bn)-*D*-Tyr(Me)-*γ*-*L*-<sup>*Me*</sup>*N*-Acp-OFm (13) (12.0 mg, 0.013 mmol) and piperidine (1mL) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) was stirred at rt for 20 min. After removal of the solvent, the residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and the solution was washed with HCl (5%), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated. The resulting residue was dissolved in a TFA/CH<sub>2</sub>Cl<sub>2</sub> mixture (1:1, 4 mL) and stirred at rt for 20 min. After removal of the solvent, the residue was dried under high vacuum for 3 h and used without further purification. The linear peptide was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (8.5 mL) and treated with TBTU (6.26 mg, 0.019 mmol) and DIEA (13 μL, 0.078 mmol). The resulting mixture was stirred at rt staring material was not detected on ht MS. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub>, poured into a separation funnel and washed with HCl (5%) and NaHCO<sub>3</sub> (sat. sol.). The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure, and the crude was purified by HPLC (1-4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>, 30 min, silica gel) to give 8 mg of cyclic peptide **15** as a white solid. [6.7 mg, 81%,  $R_f$  = 14% (1% MeOH/CH<sub>2</sub>Cl<sub>2</sub>)]. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.54 – 7.09 (m, 13H), 7.00 (d, *J* = 7.8 Hz, 2H), 6.74 (d, *J* = 7.9 Hz, 2H), 6.05 (d, *J* = 7.2 Hz, 1H), 5.74 (d, *J* = 8.6 Hz, 1H), 5.28 (s, 1H), 5.05 (s, 1H), 4.90 (m, 1H), 4.80 (d, *J* = 11.5 Hz, 1H), 4.57 (d, *J* = 11.5 Hz, 1H), 4.46 (s, 1H), 4.32 (d, *J* = 7.5 Hz, 1H), 4.28 – 4.07 (m, 4H), 3.96 (d, *J* = 9.1 Hz, 1H), 3.73 (d, *J* = 13.0 Hz, 5H), 2.91 (t, *J* = 29.7 Hz, 1H), 2.84 – 2.67 (m, 4H), 2.61 (s, 1H), 2.36 – 2.07 (m, 3H), 2.05 – 1.81 (m, 6H), 1.81 – 1.35 (m, 26H), 1.34 – 1.06 (m, 21H), 0.94 – 0.71 (m, 14H). **MS (ESI-TOF<sup>+</sup>) [m/z(%)]:** 657 (MNa<sup>+</sup>), 635 (MH<sup>+</sup>), 323 (M2H<sup>+2</sup>), **HRMS [MH]<sup>+</sup> calculated** for C<sub>35</sub>H<sub>47</sub>N<sub>4</sub>O<sub>7</sub> 635.3435, found 635.3439. **IR (Film):** 3466, 3386, 3293, 2955, 1651, 1624, 1535, 1513, 1248, 1106 cm<sup>-1</sup>.

**cyclo**[*D*-Leu-*L*-*γ*-**Ahf**-*D*-**Tyr**(**Me**)-*L*-*γ*-<sup>**Me**</sup>**N**-**Acp**-] (16): A solution of cyclic peptide 15 (50 mg, 0.079 mmol) in MeOH (20 mL) was treated with Pd(OH)<sub>2</sub> (20% Pd/C) (200 mg), under H<sub>2</sub>(g) atmosphere and the resulting suspension was stirred for 2 days. The mixture was filtered through a celite path, and the organic layers were concentrated under reduced pressure. The resulting crude was purified on reverse phase HPLC (10-30% ACN/H<sub>2</sub>O, 0.1% TFA) to provide 28.2 mg of cyclic peptide 16 (66%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 8.02 (s, 1H), 7.42 (s, 1H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.73 (d, *J* = 8.5 Hz, 2H), 6.53 (brs, 1H), 4.98 (d, *J* = 7.9 Hz, 1H), 4.32 (d, *J* = 14.9 Hz, 2H), 4.15 (m, 3H), 4.03 (m, 2H), 3.68 (s, 3H), 2.90 (dd, *J* = 22.5 and 7.7 Hz, 1H), 2.80 (dd, *J* = 13.2 and 7.7 Hz, 1H), 2.72 (s, 1H), 2.69 (s, 3H), 2.29 (m, 1H), 2.16 (m, 1H), 0.81 (overlapped d, *J* = 6.0 Hz, 6H). MS (ESI-TOF<sup>+</sup>) [m/z(%)]: 1111 (2MNa<sup>+</sup>), 1089 (2MH<sup>+</sup>), 567 (MNa<sup>+</sup>), 567 (MH<sup>+</sup>), 457. HRMS [MH]<sup>+</sup> calculated for C<sub>28</sub>H<sub>41</sub>N<sub>4</sub>O<sub>7</sub> 545.2967, found 545.2970. IR (Film): 3409, 3288, 3052, 1651, 1539, 1265 cm<sup>-1</sup>.

#### 3. Van't Hoff Analysis of Dimerization.

The HPLC-purified cyclic peptide **16** was dissolved in dry CDCl<sub>3</sub> at concentration of 6.204, 3.490, 2.320, 1.320, 1.01, 0.700, 0.47 mM. <sup>1</sup>H-NMR spectra of the resulting samples were acquired at intervals of 10 K in the temperature range of 313-253 K. Single point determinations of Ka were estimated at each temperature as described previously.<sup>5</sup> Analysis of a plot of 1/T (K) *vs* ln K<sub>a</sub> afforded the values  $\Delta H^{o}_{298}$ = 39.03 KJ mol<sup>-1</sup> and  $\Delta S^{o}_{298}$ = -53.38 JK<sup>-1</sup> mol<sup>-1</sup>.



<sup>&</sup>lt;sup>5</sup> Sanchez-Quesada J, Kim HS, Ghadiri MR. Angew. Chem. Int. Ed. 2001; 40: 2503-2506.



PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm, micron) column. Gradient: 0% to 5% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 30 min, 1.0 mL/min.



PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm, micron) column. Gradient: 0% to 5% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 30 min, 1.0 mL/min.



(8)





PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm, micron) column. Gradient: 0% to 5% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 30 min, 1.0 mL/min.



PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm, micron) column. Gradient: 0% to 5% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 30 min, 1.0 mL/min.



(8)

PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm, micron) column. Gradient: 0% to 5% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 30 min, 1.0 mL/min.



Boc-*D*-Leu-γ-Ahf(Bn)-OMe (10a)



Boc-*D*-Tyr(Me)-γ-*L*-<sup>Me</sup>N-Acp-OFm (11)





PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm, micron) column. Gradient: 0% to 5% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 30 min, 1.0 mL/min.

Boc-*D*-Leu-γ-Ahf(Bn)-*D*-Tyr(Me)-γ(*L*-<sup>Me</sup>N-Acp-OFm (13)





PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm, micron) column. Gradient: 0% to 5% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 30 min, 1.0 mL/min.







#### ROESY (CDCl3, 500 MHz):



KROMASIL 100 SI (250 mm x 4.6 mm x 5  $\mu$ m) column. Gradient: 1% to 3% in 10 min, 3% to 5% in 10 min and 5% to 7% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 10 min, 1.0 mL/min.





#### NOESY (CH<sub>2</sub>Cl<sub>2</sub>, 500 MHz):





PHENOMENEX CUROSIL B 5u (250 mm x 4.6 mm, micron) column. Gradient: 1% to 10% MeOH/CH<sub>2</sub>Cl<sub>2</sub> in 30 min, 1.0 mL/min.

## Atomic Cartesian coordinates for the stationary points calculated with basis set [B3LYP/6-31G(d)]

#### **D**<sub>c-16</sub>

| Center | Atomic | Atomic | Coord     | dinates (Ang | stroms)   |
|--------|--------|--------|-----------|--------------|-----------|
| Number | Number | Туре   | Х         | Y            | Z         |
|        |        |        |           |              |           |
| 1      |        | Ø      | -4.066598 | -1.239830    | -0.96//69 |
| 2      | 6      | 0      | -4.619480 | -1./45055    | 0.296386  |
| 3      | 6      | 0      | -5.120096 | -3.1833/4    | 0.163/89  |
| 4      | 6      | 0      | -3.488963 | -1.621469    | 1.343594  |
| 5      | 8      | 0      | -2.493135 | -2.349201    | 1.208834  |
| 6      | 1      | 0      | -3.5/0393 | -0.653251    | 2.298614  |
| /      | 6      | 0      | -4.749808 | 0.218479     | 2.426314  |
| 8      | 6      | 0      | -2.276191 | -0.219063    | 2.881423  |
| 9      | 6      | 0      | -1.5/1209 | 0.761913     | 1.903151  |
| 10     | 6      | 0      | -1.028776 | 1.941586     | 2.750699  |
| 11     | 6      | 0      | -2.025938 | 2.012497     | 3.922225  |
| 12     | 6      | 0      | -2.336913 | 0.535179     | 4.237313  |
| 13     | 6      | 0      | -1.025086 | 3.163029     | 1.841525  |
| 14     | 8      | 0      | -2.079353 | 3.742509     | 1.547013  |
| 15     | 7      | 0      | 0.165089  | 3.483735     | 1.269337  |
| 16     | 6      | 0      | 0.190984  | 4.383458     | 0.109501  |
| 17     | 6      | 0      | 1.520698  | 5.113146     | -0.028496 |
| 18     | 6      | 0      | -0.138950 | 3.545169     | -1.151780 |
| 19     | 8      | 0      | 0.736185  | 3.107360     | -1.898428 |
| 20     | 7      | 0      | -1.471022 | 3.311156     | -1.324674 |
| 21     | 6      | 0      | -2.005677 | 2.481938     | -2.392239 |
| 22     | 6      | 0      | -2.002157 | 0.947119     | -2.145854 |
| 23     | 6      | 0      | -3.430726 | 0.498078     | -2.582952 |
| 24     | 8      | 0      | -4.021747 | 1.604712     | -3.238777 |
| 25     | 6      | 0      | -3.487479 | 2.795173     | -2.668613 |
| 26     | 6      | 0      | -4.263001 | 0.057780     | -1.363815 |
| 27     | 8      | 0      | -5.019575 | 0.832604     | -0.786802 |
| 28     | 8      | 0      | -0.984497 | 0.360046     | -2.943772 |
| 29     | 1      | 0      | -3.295069 | -1.762342    | -1.376026 |
| 30     | 1      | 0      | -5.456516 | -1.088034    | 0.520887  |
| 31     | 1      | 0      | -4.299570 | -3.872918    | -0.049207 |
| 32     | 1      | 0      | -5.859171 | -3.249230    | -0.639995 |
| 33     | 1      | 0      | -5.592959 | -3.506386    | 1.098232  |
| 34     | 1      | 0      | -5.643152 | -0.381980    | 2.621815  |
| 35     | 1      | 0      | -4.610276 | 0.874523     | 3.283471  |
| 36     | 1      | 0      | -4.916592 | 0.829871     | 1.534987  |
| 37     | 1      | 0      | -1.701586 | -1.137494    | 2.990787  |

| 38 | 1 | 0      | -0.800477 | 0.281692  | 1.296853  |
|----|---|--------|-----------|-----------|-----------|
| 39 | 1 | 0      | -2.328708 | 1.160923  | 1.220501  |
| 40 | 1 | 0      | -0.014970 | 1.722149  | 3.104821  |
| 41 | 1 | 0      | -1.628481 | 2.552268  | 4.788117  |
| 42 | 1 | 0      | -2.919172 | 2.546148  | 3.578725  |
| 43 | 1 | 0      | -3.275698 | 0.387972  | 4.780007  |
| 44 | 1 | 0      | -1.547538 | 0.127646  | 4.880535  |
| 45 | 1 | 0      | 0.984054  | 2.902515  | 1.456034  |
| 46 | 1 | 0      | -0.613548 | 5.104517  | 0.274281  |
| 47 | 1 | 0      | 2.328250  | 4.426696  | -0.292127 |
| 48 | 1 | 0      | 1.769267  | 5.623231  | 0.907201  |
| 49 | 1 | 0      | 1.456183  | 5.859454  | -0.826584 |
| 50 | 1 | 0      | -2.083990 | 3.589509  | -0.559951 |
| 51 | 1 | 0      | -1.396473 | 2.647805  | -3.284265 |
| 52 | 1 | 0      | -1.822552 | 0.728695  | -1.085102 |
| 53 | 1 | 0      | -3.364257 | -0.321125 | -3.306988 |
| 54 | 1 | 0      | -4.018133 | 3.049769  | -1.740673 |
| 55 | 1 | 0      | -3.627602 | 3.601304  | -3.392875 |
| 56 | 1 | 0      | -1.020268 | -0.618759 | -2.815541 |
| 57 | 7 | 0      | 0.028471  | -3.699129 | 0.338800  |
| 58 | 6 | 0      | -0.193797 | -4.189391 | -1.026702 |
| 59 | 6 | 0      | -1.549798 | -4.872082 | -1.146196 |
| 60 | 6 | 0      | -0.041793 | -3.003373 | -2.003072 |
| 61 | 8 | 0      | -1.019700 | -2.332927 | -2.372181 |
| 62 | 7 | 0      | 1.242460  | -2.782588 | -2.372036 |
| 63 | 6 | 0      | 1.718851  | -1.537503 | -2.952697 |
| 64 | 6 | 0      | 2.125146  | -0.518422 | -1.868506 |
| 65 | 6 | 0      | 3.112501  | 0.406184  | -2.637681 |
| 66 | 8 | 0      | 3.564430  | -0.330078 | -3.765959 |
| 67 | 6 | 0      | 3.039285  | -1.657677 | -3.725700 |
| 68 | 6 | 0      | 4.232433  | 0.740131  | -1.652299 |
| 69 | 8 | 0      | 5.296359  | 0.134483  | -1.617578 |
| 70 | 7 | 0      | 3.846045  | 1.667800  | -0.715545 |
| 71 | 6 | 0      | 4.464266  | 1.694499  | 0.613511  |
| 72 | 6 | 0      | 4.779586  | 3.115115  | 1.085083  |
| 73 | 6 | 0      | 3.482890  | 1.004982  | 1.591481  |
| 74 | 8 | 0      | 2.510163  | 1.657984  | 2.005751  |
| 75 | 7 | 0      | 3.675546  | -0.293501 | 1.961706  |
| 76 | 6 | 0      | 4,664434  | -1.201635 | 1.370935  |
| 77 | 6 | 0      | 2,668755  | -0.849553 | 2.897811  |
| 78 | 6 | 0      | 1.382162  | -1.342674 | 2.180170  |
| 79 | 6 | 0      | 1.365591  | -2.909790 | 2.231345  |
| 80 | 6 | 0      | 2.656417  | -3.327598 | 2.978872  |
| 81 | 6 | 0      | 3.132417  | -2,067449 | 3.727390  |
| 82 | 6 | e<br>Q | 1.282228  | -3,498208 | 0.823931  |
| 83 | 8 | e<br>e | 2,295036  | -3.749985 | 0.153177  |
| 05 | 5 | 0      | 2.275050  | 5.7-5505  | 0.1001//  |

| 84  | 8 | 0 | 1.098175  | 0.136617  | -1.177539 |
|-----|---|---|-----------|-----------|-----------|
| 85  | 1 | 0 | -0.776084 | -3.298110 | 0.821063  |
| 86  | 1 | 0 | 0.605704  | -4.907557 | -1.231022 |
| 87  | 1 | 0 | -1.708743 | -5.227736 | -2.168668 |
| 88  | 1 | 0 | -2.350681 | -4.175249 | -0.894732 |
| 89  | 1 | 0 | -1.599303 | -5.726563 | -0.464549 |
| 90  | 1 | 0 | 1.921851  | -3.287182 | -1.798844 |
| 91  | 1 | 0 | 0.943480  | -1.126044 | -3.601504 |
| 92  | 1 | 0 | 2.681983  | -1.078799 | -1.107751 |
| 93  | 1 | 0 | 2.593881  | 1.312931  | -2.973917 |
| 94  | 1 | 0 | 3.734279  | -2.337743 | -3.207710 |
| 95  | 1 | 0 | 2.914561  | -2.003793 | -4.755049 |
| 96  | 1 | 0 | 2.888198  | 2.005311  | -0.779308 |
| 97  | 1 | 0 | 5.400621  | 1.149622  | 0.512787  |
| 98  | 1 | 0 | 3.867529  | 3.698120  | 1.226401  |
| 99  | 1 | 0 | 5.415569  | 3.612105  | 0.346804  |
| 100 | 1 | 0 | 5.311572  | 3.087510  | 2.042915  |
| 101 | 1 | 0 | 5.397810  | -1.522919 | 2.118921  |
| 102 | 1 | 0 | 4.160209  | -2.086138 | 0.970315  |
| 103 | 1 | 0 | 5.189960  | -0.734848 | 0.540936  |
| 104 | 1 | 0 | 2.419095  | -0.017406 | 3.555860  |
| 105 | 1 | 0 | 0.510503  | -0.958906 | 2.713998  |
| 106 | 1 | 0 | 1.323688  | -0.948658 | 1.162023  |
| 107 | 1 | 0 | 0.481043  | -3.235727 | 2.789221  |
| 108 | 1 | 0 | 3.397014  | -3.662743 | 2.248713  |
| 109 | 1 | 0 | 2.475928  | -4.164826 | 3.661147  |
| 110 | 1 | 0 | 4.205247  | -2.070014 | 3.941974  |
| 111 | 1 | 0 | 2.623203  | -2.003442 | 4.697046  |
| 112 | 1 | 0 | 0.488135  | 0.529844  | -1.843001 |

**D**<sub>t-16</sub>

| Center | Atomic | Atomic | Coord    | linates (Angs | troms)   |
|--------|--------|--------|----------|---------------|----------|
| Number | Number | Туре   | х        | Y             | Z        |
|        |        |        |          |               |          |
| 1      | 7      | 0      | 2.539527 | 2.836760      | 0.470591 |
| 2      | 6      | 0      | 2.529128 | 2.856785      | 1.930665 |
| 3      | 6      | 0      | 2.196139 | 4.240116      | 2.487894 |
| 4      | 6      | 0      | 1.567219 | 1.793996      | 2.512548 |
| 5      | 8      | 0      | 0.377132 | 2.032790      | 2.740755 |
| 6      | 7      | 0      | 2.163135 | 0.605836      | 2.792955 |
| 7      | 6      | 0      | 1.527271 | -0.469216     | 3.545401 |
| 8      | 6      | 0      | 0.713482 | -1.493733     | 2.711718 |
| 9      | 6      | 0      | 1.609406 | -2.758940     | 2.744036 |
| 10     | 8      | 0      | 2.315490 | -2.694595     | 3.963489 |

| 11 | 6 | 0 | 2.597236  | -1.331745 | 4.265850  |
|----|---|---|-----------|-----------|-----------|
| 12 | 6 | 0 | 2.541929  | -2.827234 | 1.529730  |
| 13 | 8 | 0 | 3.730998  | -2.526438 | 1.582301  |
| 14 | 7 | 0 | 1.916557  | -3.239667 | 0.385878  |
| 15 | 6 | 0 | 2.600409  | -3.297373 | -0.902053 |
| 16 | 6 | 0 | 2.065083  | -4.462964 | -1.741292 |
| 17 | 6 | 0 | 2.392717  | -1.973940 | -1.668971 |
| 18 | 8 | 0 | 1.245017  | -1.743126 | -2.112577 |
| 19 | 7 | 0 | 3.423614  | -1.127622 | -1.877835 |
| 20 | 6 | 0 | 4.749445  | -1.303395 | -1.262256 |
| 21 | 6 | 0 | 3.177492  | -0.014021 | -2.838272 |
| 22 | 6 | 0 | 2.370701  | 1.168793  | -2.261778 |
| 23 | 6 | 0 | 3.392090  | 2.213717  | -1.729240 |
| 24 | 6 | 0 | 4.730722  | 1.888334  | -2.444101 |
| 25 | 6 | 0 | 4.452593  | 0.675674  | -3.368656 |
| 26 | 6 | 0 | 3.495154  | 2.135144  | -0.202686 |
| 27 | 8 | 0 | 4.366161  | 1.482595  | 0.381794  |
| 28 | 8 | 0 | -0.502376 | -1.750783 | 3.383167  |
| 29 | 1 | 0 | 1.748491  | 3.224695  | -0.045128 |
| 30 | 1 | 0 | 3.547274  | 2.589310  | 2.222050  |
| 31 | 1 | 0 | 1.150927  | 4.500439  | 2.309210  |
| 32 | 1 | 0 | 2.841283  | 4.995265  | 2.028939  |
| 33 | 1 | 0 | 2.355076  | 4.257466  | 3.571367  |
| 34 | 1 | 0 | 0.828415  | -0.003854 | 4.243452  |
| 35 | 1 | 0 | 0.534841  | -1.120133 | 1.695949  |
| 36 | 1 | 0 | 0.984876  | -3.658122 | 2.769865  |
| 37 | 1 | 0 | 3.605781  | -1.068455 | 3.920389  |
| 38 | 1 | 0 | 2.560739  | -1.222617 | 5.353459  |
| 39 | 1 | 0 | 0.906554  | -3.337735 | 0.393364  |
| 40 | 1 | 0 | 3.650732  | -3.470939 | -0.677803 |
| 41 | 1 | 0 | 1.005665  | -4.322666 | -1.974641 |
| 42 | 1 | 0 | 2.193568  | -5.401509 | -1.193964 |
| 43 | 1 | 0 | 2.608464  | -4.535467 | -2.689364 |
| 44 | 1 | 0 | 5.432778  | -1.845303 | -1.927611 |
| 45 | 1 | 0 | 5.160921  | -0.324618 | -1.025492 |
| 46 | 1 | 0 | 4.655669  | -1.825248 | -0.311151 |
| 47 | 1 | 0 | 2.613829  | -0.470313 | -3.656150 |
| 48 | 1 | 0 | 1.812087  | 1.620658  | -3.088241 |
| 49 | 1 | 0 | 1.637527  | 0.881240  | -1.510518 |
| 50 | 1 | 0 | 3.033032  | 3.214828  | -1.984144 |
| 51 | 1 | 0 | 5.492821  | 1.657643  | -1.695468 |
| 52 | 1 | 0 | 5.093410  | 2.745273  | -3.020088 |
| 53 | 1 | 0 | 5.308690  | 0.002974  | -3.469813 |
| 54 | 1 | 0 | 4.216218  | 1.029342  | -4.379094 |
| 55 | 1 | 0 | -1.059799 | -2.230714 | 2.733256  |
| 56 | 1 | 0 | 3.105701  | 0.463095  | 2.443419  |
|    |   |   |           |           |           |

| 57       | 7      | 0      | -2.046200   | 3.319563              | 1.062348  |
|----------|--------|--------|-------------|-----------------------|-----------|
| 58       | 6      | 0      | -1.765679   | 4.245542              | -0.044175 |
| 59       | 6      | 0      | -0.990825   | 5.473162              | 0.416630  |
| 60       | 6      | 0      | -1.036824   | 3.476560              | -1.171378 |
| 61       | 8      | 0      | 0.189680    | 3.494040              | -1.305914 |
| 62       | 7      | 0      | -1.891920   | 2.775493              | -1.964158 |
| 63       | 6      | 0      | -1.473290   | 1.666284              | -2.802119 |
| 64       | 6      | 0      | -1.605157   | 0.310536              | -2.077904 |
| 65       | 6      | 0      | -1.723868   | -0.691822             | -3.256425 |
| 66       | 8      | 0      | -2.184700   | 0.048673              | -4.374653 |
| 67       | 6      | 0      | -2.382676   | 1.419860              | -4.014965 |
| 68       | 6      | 0      | -2.693857   | -1.787441             | -2.805477 |
| 69       | 8      | 0      | -3.877073   | -1.815227             | -3.114381 |
| 70       | 7      | 0      | -2.115361   | -2.641493             | -1.896308 |
| 71       | 6      | 0      | -2.903697   | -3.370233             | -0.899067 |
| 72       | 6      | 0      | -2.431123   | -4.818801             | -0.764104 |
| 73       | 6      | 0      | -2.764562   | -2.621544             | 0.453108  |
| 74       | 8      | 0      | -1.762928   | -2.886027             | 1.148810  |
| 75       | 7      | 0      | -3.687144   | -1.698827             | 0.828795  |
| 76       | 6      | 0      | -4.772644   | -1.204213             | -0.024681 |
| 77       | 6      | 0      | -3.434246   | -0.976818             | 2.105111  |
| 78       | 6      | 0      | -2.474471   | 0.232351              | 1.927103  |
| 79       | 6      | 0      | -3.296568   | 1.539155              | 2.191357  |
| 80       | 6      | 0      | -4.762297   | 1.094868              | 2.405640  |
| 81       | 6      | 0      | -4.686513   | -0.391905             | 2.798308  |
| 82       | 6      | 0      | -3.140045   | 2.506729              | 1.024020  |
| 83       | 8      | 0      | -3.940774   | 2.534267              | 0.076653  |
| 84       | 8      | 0      | -0.636438   | -0.004329             | -1.109795 |
| 85       | 1      | 0      | -1.290706   | 3.092887              | 1.710312  |
| 86       | 1      | 0      | -2.745244   | 4.554092              | -0.419726 |
| 87       | 1      | 0      | -0.916467   | 6.195709              | -0.402364 |
| 88       | 1      | 0      | 0.026529    | 5.215772              | 0.717255  |
| 89       | 1      | 0      | -1.503945   | 5,950397              | 1.256941  |
| 90       | 1      | 0      | -2.845846   | 2,726298              | -1.600234 |
| 91       | -      | 0      | -0.440561   | 1.840318              | -3.109254 |
| 92       | 1      | 0      | -2.562034   | 0.342660              | -1.540907 |
| 93       | -<br>1 | 0      | -0 740359   | -1 122613             | -3 486979 |
| 94       | 1      | õ      | -3 436560   | 1 600029              | -3 752013 |
| 95       | -      | 0      | -2 132530   | 2 037743              | -4 881725 |
| 96       | 1      | 0      | -1 146779   | -2.057745             | -1 649541 |
| 97       | 1      | 0      | -3 929160   | -3 366632             | -1 265152 |
| رد<br>مع | 1      | ø      | -1 3022/10  | -4 863959             | -0 407007 |
| 20       | ±<br>1 | ø      | -2 516380   | -5 3202/7             | -1 732/5/ |
| 100      | 1<br>1 | a      | -2.310300   | -5.52024/             | -1.132434 |
| 101      | 1      | ø      | -5 7/7//2   | -1 /20070             | 0 120754  |
| 101      | 1      | e<br>e | - J. /4/442 | -1.4207/9<br>0 110005 | 0.420/00  |
| TOT      | T      | 0      | -4.0042/8   | -0.110072             | -0.133/45 |

| 103 | 1 | 0 | -4.734970 | -1.633808 | -1.022780 |
|-----|---|---|-----------|-----------|-----------|
| 104 | 1 | 0 | -2.982850 | -1.717595 | 2.760908  |
| 105 | 1 | 0 | -1.656292 | 0.161368  | 2.642922  |
| 106 | 1 | 0 | -2.017065 | 0.218323  | 0.934115  |
| 107 | 1 | 0 | -2.906064 | 2.019861  | 3.094561  |
| 108 | 1 | 0 | -5.316919 | 1.236471  | 1.474677  |
| 109 | 1 | 0 | -5.262749 | 1.695943  | 3.172198  |
| 110 | 1 | 0 | -5.606043 | -0.946527 | 2.587395  |
| 111 | 1 | 0 | -4.514954 | -0.476988 | 3.878068  |
| 112 | 1 | 0 | 0.121817  | -0.458091 | -1.538144 |

#### **D**<sub>c-16</sub> (dehydroxylated)

| Center | Atomic | Atomic | Coord     | dinates (Ang | stroms)   |
|--------|--------|--------|-----------|--------------|-----------|
| Number | Number | Туре   | Х         | Υ            | Z         |
|        |        |        |           |              |           |
| 1      | /      | 0      | -3.414985 | -2.050150    | -0.836020 |
| 2      | 6      | 0      | -3.890547 | -2.354118    | 0.518374  |
| 3      | 6      | 0      | -3.911654 | -3.856270    | 0.802726  |
| 4      | 6      | 0      | -2.955260 | -1.6191/5    | 1.505585  |
| 5      | 8      | 0      | -1.782388 | -2.021620    | 1.613243  |
| 6      | 7      | 0      | -3.400992 | -0.518247    | 2.165386  |
| 7      | 6      | 0      | -4.774862 | -0.005429    | 2.037774  |
| 8      | 6      | 0      | -2.369389 | 0.270270     | 2.890159  |
| 9      | 6      | 0      | -1.562204 | 1.150824     | 1.891201  |
| 10     | 6      | 0      | -1.619447 | 2.617890     | 2.403931  |
| 11     | 6      | 0      | -2.863285 | 2.661347     | 3.306333  |
| 12     | 6      | 0      | -2.904866 | 1.262988     | 3.954283  |
| 13     | 6      | 0      | -1.690394 | 3.517609     | 1.176472  |
| 14     | 8      | 0      | -2.766622 | 3.843066     | 0.664265  |
| 15     | 7      | 0      | -0.486962 | 3.837787     | 0.615507  |
| 16     | 6      | 0      | -0.455766 | 4.404197     | -0.737544 |
| 17     | 6      | 0      | 0.748385  | 5.309705     | -0.967986 |
| 18     | 6      | 0      | -0.505173 | 3.237388     | -1.750888 |
| 19     | 8      | 0      | 0.517980  | 2.726772     | -2.219688 |
| 20     | 7      | 0      | -1.762762 | 2.814703     | -2.038910 |
| 21     | 6      | 0      | -2.059141 | 1.672884     | -2.896076 |
| 22     | 6      | 0      | -1.845048 | 0.277965     | -2.255838 |
| 23     | 6      | 0      | -3.066951 | -0.555018    | -2.737586 |
| 24     | 8      | 0      | -3.800188 | 0.275725     | -3.626977 |
| 25     | 6      | 0      | -3.550171 | 1.630290     | -3.283850 |
| 26     | 6      | 0      | -3.911696 | -0.974501    | -1.525585 |
| 27     | 8      | 0      | -4.910442 | -0.349801    | -1.180250 |
| 28     | 1      | 0      | -2.501540 | -2.408375    | -1.113220 |
| 29     | 1      | 0      | -4.907930 | -1.972693    | 0.560994  |

| 30 | 1      | 0      | -2.901481 | -4.270701            | 0.829524  |
|----|--------|--------|-----------|----------------------|-----------|
| 31 | 1      | 0      | -4.492120 | -4.374100            | 0.033433  |
| 32 | 1      | 0      | -4.376496 | -4.048488            | 1.776357  |
| 33 | 1      | 0      | -5.468405 | -0.561003            | 2.681166  |
| 34 | 1      | 0      | -4.794560 | 1.038161             | 2.345292  |
| 35 | 1      | 0      | -5.116242 | -0.042086            | 1.002420  |
| 36 | 1      | 0      | -1.719133 | -0.470512            | 3.356031  |
| 37 | 1      | 0      | -0.529522 | 0.828251             | 1.767282  |
| 38 | 1      | 0      | -2.047144 | 1.087408             | 0.912332  |
| 39 | 1      | 0      | -0.711796 | 2.835697             | 2.978313  |
| 40 | 1      | 0      | -2.819534 | 3.464721             | 4.049288  |
| 41 | 1      | 0      | -3.740501 | 2.848226             | 2.677238  |
| 42 | 1      | 0      | -3.886695 | 0.990673             | 4.353094  |
| 43 | 1      | 0      | -2.210535 | 1.238322             | 4.803138  |
| 44 | 1      | 0      | 0.348092  | 3.352012             | 0.949477  |
| 45 | 1      | 0      | -1.373916 | 4.988379             | -0.829620 |
| 46 | 1      | 0      | 1.682828  | 4.744869             | -0.978067 |
| 47 | 1      | 0      | 0.798602  | 6.073177             | -0.185755 |
| 48 | 1      | 0      | 0.659830  | 5.809904             | -1.937989 |
| 49 | 1      | 0      | -2.507442 | 3.188896             | -1.454298 |
| 50 | 1      | 0      | -1.438820 | 1.764657             | -3.791546 |
| 51 | 1      | 0      | -1.811208 | 0.363388             | -1.166059 |
| 52 | 1      | 0      | -2.752412 | -1.440918            | -3.297181 |
| 53 | 1      | 0      | -4.180164 | 1.940599             | -2.436388 |
| 54 | 1      | 0      | -3.793695 | 2.245853             | -4.153870 |
| 55 | 1      | 0      | 0.944275  | 0.189457             | -2.668815 |
| 56 | 7      | 0      | 0.486351  | -3.826145            | 0.632520  |
| 57 | 6      | 0      | 0.466975  | -4.399367            | -0.717548 |
| 58 | 6      | 0      | -0.734826 | -5.306928            | -0.952693 |
| 59 | 6      | 0      | 0.524361  | -3.239489            | -1.738471 |
| 60 | 8      | 0      | -0.495315 | -2.735045            | -2.221518 |
| 61 | 7      | 0      | 1.783320  | -2.815955            | -2.017842 |
| 62 | 6      | 0      | 2.086003  | -1.691688            | -2.896000 |
| 63 | 6      | 0      | 1.849762  | -0.281758            | -2.295402 |
| 64 | 6      | 0      | 3.094387  | 0.537938             | -2.740245 |
| 65 | 8      | 0      | 3,839853  | -0.300027            | -3.611868 |
| 66 | 6      | 0      | 3 583696  | -1 651163            | -3 259456 |
| 67 | 6      | 0      | 3 915760  | 0 948524             | -1 508706 |
| 68 | 8      | 0      | 4 903758  | 0.316669             | -1 145292 |
| 69 | 7      | a      | 3,416425  | 2.029311             | -0.829837 |
| 70 | ,<br>6 | a      | 3,885268  | 2.342391             | 0.524653  |
| 71 | 6      | a      | 3 914732  | 3 846881             | 0 795710  |
| 72 | 6      | a      | 2 910789  | 1 6221/15            | 1 512202  |
| 73 | Q      | õ      | 1 767570  | 1.022143<br>2 027021 | 1 606806  |
| 74 | 7      | 0      | 3 380707  | 0 52021024           | 2 100610  |
| 74 | r<br>C | U<br>Q | 1 757201  | 0.020040             | 2.130043  |
| /5 | 0      | 0      | 4./3/201  | 0.019430             | 2.000000  |

| 76  | 6 | 0 | 2.341133  | -0.249851 | 2.913570  |
|-----|---|---|-----------|-----------|-----------|
| 77  | 6 | 0 | 1.535859  | -1.133025 | 1.914983  |
| 78  | 6 | 0 | 1.600216  | -2.600470 | 2.427408  |
| 79  | 6 | 0 | 2.837389  | -2.637324 | 3.339088  |
| 80  | 6 | 0 | 2.864860  | -1.238537 | 3.986307  |
| 81  | 6 | 0 | 1.684454  | -3.500785 | 1.201630  |
| 82  | 8 | 0 | 2.765486  | -3.823848 | 0.698173  |
| 83  | 1 | 0 | -0.352940 | -3.343455 | 0.960021  |
| 84  | 1 | 0 | 1.386094  | -4.983730 | -0.798573 |
| 85  | 1 | 0 | -0.638856 | -5.811624 | -1.919610 |
| 86  | 1 | 0 | -1.669797 | -4.743140 | -0.972286 |
| 87  | 1 | 0 | -0.790090 | -6.066726 | -0.167215 |
| 88  | 1 | 0 | 2.524591  | -3.184569 | -1.425497 |
| 89  | 1 | 0 | 1.480813  | -1.809305 | -3.798771 |
| 90  | 1 | 0 | 1.760969  | -0.339067 | -1.206821 |
| 91  | 1 | 0 | 2.806361  | 1.428598  | -3.306491 |
| 92  | 1 | 0 | 4.199796  | -1.952567 | -2.398900 |
| 93  | 1 | 0 | 3.841656  | -2.274963 | -4.119375 |
| 94  | 1 | 0 | 2.509023  | 2.393848  | -1.119129 |
| 95  | 1 | 0 | 4.899671  | 1.954170  | 0.576456  |
| 96  | 1 | 0 | 2.907121  | 4.267897  | 0.814608  |
| 97  | 1 | 0 | 4.501702  | 4.354436  | 0.024517  |
| 98  | 1 | 0 | 4.376686  | 4.044744  | 1.769633  |
| 99  | 1 | 0 | 5.448811  | 0.604773  | 2.698648  |
| 100 | 1 | 0 | 4.783779  | -1.009864 | 2.430704  |
| 101 | 1 | 0 | 5.096505  | 0.017344  | 1.043034  |
| 102 | 1 | 0 | 1.691368  | 0.496810  | 3.370801  |
| 103 | 1 | 0 | 0.501036  | -0.815759 | 1.795808  |
| 104 | 1 | 0 | 2.016295  | -1.065192 | 0.934017  |
| 105 | 1 | 0 | 0.690017  | -2.823919 | 2.995579  |
| 106 | 1 | 0 | 3.720503  | -2.819429 | 2.716909  |
| 107 | 1 | 0 | 2.792054  | -3.440655 | 4.081995  |
| 108 | 1 | 0 | 3.838953  | -0.961489 | 4.400620  |
| 109 | 1 | 0 | 2.156893  | -1.215906 | 4.823957  |
| 110 | 1 | 0 | -0.921042 | -0.199136 | -2.571371 |

#### **D**<sub>*t*-16</sub> (dehydroxylated)

| Center | Atomic | Atomic | Coord     | inates (Angs | stroms)   |
|--------|--------|--------|-----------|--------------|-----------|
| Number | Number | Туре   | х         | Y            | Z         |
|        |        |        |           |              |           |
| 1      | 7      | 0      | -2.280505 | 3.297119     | 0.518332  |
| 2      | 6      | 0      | -2.339103 | 3.875664     | -0.829303 |
| 3      | 6      | 0      | -1.759794 | 5.283949     | -0.883543 |
| 4      | 6      | 0      | -1.630869 | 2.917334     | -1.813506 |

| 5  | 8 | 0 | -0.424067 | 2.995203  | -2.068857 |
|----|---|---|-----------|-----------|-----------|
| 6  | 7 | 0 | -2.463760 | 1.977669  | -2.330977 |
| 7  | 6 | 0 | -1.991141 | 0.810632  | -3.060370 |
| 8  | 6 | 0 | -1.532347 | -0.342372 | -2.147415 |
| 9  | 6 | 0 | -1.883122 | -1.619296 | -2.957086 |
| 10 | 8 | 0 | -2.615954 | -1.193645 | -4.101045 |
| 11 | 6 | 0 | -3.100510 | 0.122665  | -3.876691 |
| 12 | 6 | 0 | -2.705275 | -2.519672 | -2.029404 |
| 13 | 8 | 0 | -3.931958 | -2.529688 | -2.039093 |
| 14 | 7 | 0 | -1.940668 | -3.181184 | -1.105303 |
| 15 | 6 | 0 | -2.517771 | -3.632679 | 0.162102  |
| 16 | 6 | 0 | -1.971131 | -4.996812 | 0.588844  |
| 17 | 6 | 0 | -2.190693 | -2.565750 | 1.235833  |
| 18 | 8 | 0 | -1.033964 | -2.535022 | 1.692846  |
| 19 | 7 | 0 | -3.139781 | -1.676876 | 1.644489  |
| 20 | 6 | 0 | -4.454011 | -1.503908 | 1.011896  |
| 21 | 6 | 0 | -2.732902 | -0.730923 | 2.715170  |
| 22 | 6 | 0 | -1.996508 | 0.525920  | 2.179238  |
| 23 | 6 | 0 | -2.970749 | 1.747337  | 2.281589  |
| 24 | 6 | 0 | -4.270290 | 1.206499  | 2.927005  |
| 25 | 6 | 0 | -3.892870 | -0.150842 | 3.555520  |
| 26 | 6 | 0 | -3.191717 | 2.357108  | 0.900347  |
| 27 | 8 | 0 | -4.112590 | 1.997056  | 0.154414  |
| 28 | 1 | 0 | -1.420454 | 3.399475  | 1.058885  |
| 29 | 1 | 0 | -3.400905 | 3.911156  | -1.085404 |
| 30 | 1 | 0 | -0.675401 | 5.273116  | -0.761816 |
| 31 | 1 | 0 | -2.205840 | 5.908666  | -0.103830 |
| 32 | 1 | 0 | -1.974942 | 5.736737  | -1.856963 |
| 33 | 1 | 0 | -3.356303 | 1.885771  | -1.846156 |
| 34 | 1 | 0 | -1.182384 | 1.134058  | -3.719999 |
| 35 | 1 | 0 | -2.115713 | -0.296859 | -1.221117 |
| 36 | 1 | 0 | -0.984519 | -2.138082 | -3.303947 |
| 37 | 1 | 0 | -4.043808 | 0.103815  | -3.308284 |
| 38 | 1 | 0 | -3.282542 | 0.585787  | -4.850277 |
| 39 | 1 | 0 | -0.929090 | -3.044622 | -1.141278 |
| 40 | 1 | 0 | -3.587287 | -3.725754 | -0.012768 |
| 41 | 1 | 0 | -0.897599 | -4.951039 | 0.786167  |
| 42 | 1 | 0 | -2.160950 | -5.729855 | -0.200718 |
| 43 | 1 | 0 | -2.464965 | -5.335882 | 1.506337  |
| 44 | 1 | 0 | -5.260744 | -1.812791 | 1.686343  |
| 45 | 1 | 0 | -4.595044 | -0.452564 | 0.747427  |
| 46 | 1 | 0 | -4.524476 | -2.068596 | 0.084970  |
| 47 | 1 | 0 | -2.055632 | -1.305655 | 3.347100  |
| 48 | 1 | 0 | -1.116698 | 0.733342  | 2.790143  |
| 49 | 1 | 0 | -1.637553 | 0.361176  | 1.159578  |
| 50 | 1 | 0 | -2.508200 | 2.506057  | 2.920480  |

| 51 | 1 | 0 | -5.033689 | 1.092237  | 2.153830  |
|----|---|---|-----------|-----------|-----------|
| 52 | 1 | 0 | -4.669861 | 1.901472  | 3.672814  |
| 53 | 1 | 0 | -4.742578 | -0.832208 | 3.658548  |
| 54 | 1 | 0 | -3.500165 | 0.010911  | 4.566834  |
| 55 | 1 | 0 | -0.478792 | -0.310167 | -1.881036 |
| 56 | 7 | 0 | 2.281161  | 3.296800  | -0.518410 |
| 57 | 6 | 0 | 2.339842  | 3.875380  | 0.829206  |
| 58 | 6 | 0 | 1.760893  | 5.283814  | 0.883376  |
| 59 | 6 | 0 | 1.631328  | 2.917254  | 1.813399  |
| 60 | 8 | 0 | 0.424516  | 2.995371  | 2.068627  |
| 61 | 7 | 0 | 2.463990  | 1.977455  | 2.331004  |
| 62 | 6 | 0 | 1.991034  | 0.810467  | 3.060258  |
| 63 | 6 | 0 | 1.532394  | -0.342451 | 2.147131  |
| 64 | 6 | 0 | 1.882581  | -1.619422 | 2.956966  |
| 65 | 8 | 0 | 2.615271  | -1.193917 | 4.101079  |
| 66 | 6 | 0 | 3.100068  | 0.122338  | 3.876893  |
| 67 | 6 | 0 | 2.704691  | -2.520037 | 2.029496  |
| 68 | 8 | 0 | 3.931374  | -2.530170 | 2.039272  |
| 69 | 7 | 0 | 1.940080  | -3.181563 | 1.105410  |
| 70 | 6 | 0 | 2.517210  | -3.633075 | -0.161976 |
| 71 | 6 | 0 | 1.970401  | -4.997109 | -0.588817 |
| 72 | 6 | 0 | 2.190332  | -2.566059 | -1.235678 |
| 73 | 8 | 0 | 1.033611  | -2.535101 | -1.692694 |
| 74 | 7 | 0 | 3.139581  | -1.677338 | -1.644276 |
| 75 | 6 | 0 | 4.454012  | -1.504990 | -1.011930 |
| 76 | 6 | 0 | 2.732968  | -0.731405 | -2.715081 |
| 77 | 6 | 0 | 1.996672  | 0.525587  | -2.179374 |
| 78 | 6 | 0 | 2.971106  | 1.746853  | -2.281631 |
| 79 | 6 | 0 | 4.270593  | 1.205852  | -2.927026 |
| 80 | 6 | 0 | 3.893125  | -0.151570 | -3.555349 |
| 81 | 6 | 0 | 3.192155  | 2.356544  | -0.900365 |
| 82 | 8 | 0 | 4.112899  | 1.996266  | -0.154390 |
| 83 | 1 | 0 | 1.421151  | 3.399311  | -1.058987 |
| 84 | 1 | 0 | 3.401643  | 3.910613  | 1.085348  |
| 85 | 1 | 0 | 1.976088  | 5.736562  | 1.856811  |
| 86 | 1 | 0 | 0.676505  | 5.273267  | 0.761569  |
| 87 | 1 | 0 | 2.207163  | 5.908404  | 0.103689  |
| 88 | 1 | 0 | 3.356541  | 1.885338  | 1.846228  |
| 89 | 1 | 0 | 1.182123  | 1.133985  | 3.719652  |
| 90 | 1 | 0 | 2.116184  | -0.297052 | 1.221093  |
| 91 | 1 | 0 | 0.983726  | -2.137912 | 3.303614  |
| 92 | 1 | 0 | 4.043537  | 0.103382  | 3.308774  |
| 93 | 1 | 0 | 3.281866  | 0.585420  | 4.850543  |
| 94 | 1 | 0 | 0.928516  | -3.044851 | 1.141312  |
| 95 | 1 | 0 | 3.586702  | -3.726298 | 0.012961  |
| 96 | 1 | 0 | 0.896861  | -4.951200 | -0.786070 |

| 97  | 1 | 0 | 2.160185 | -5.730251 | 0.200662  |
|-----|---|---|----------|-----------|-----------|
| 98  | 1 | 0 | 2.464138 | -5.336141 | -1.506370 |
| 99  | 1 | 0 | 5.260471 | -1.815080 | -1.686162 |
| 100 | 1 | 0 | 4.595910 | -0.453565 | -0.748302 |
| 101 | 1 | 0 | 4.524036 | -2.068981 | -0.084539 |
| 102 | 1 | 0 | 2.055685 | -1.306089 | -3.347048 |
| 103 | 1 | 0 | 1.117025 | 0.733106  | -2.790485 |
| 104 | 1 | 0 | 1.637468 | 0.360971  | -1.159783 |
| 105 | 1 | 0 | 2.508699 | 2.505680  | -2.920496 |
| 106 | 1 | 0 | 5.034026 | 1.091684  | -2.153870 |
| 107 | 1 | 0 | 4.670157 | 1.900703  | -3.672953 |
| 108 | 1 | 0 | 4.742790 | -0.833028 | -3.658109 |
| 109 | 1 | 0 | 3.500607 | 0.010031  | -4.566758 |
| 110 | 1 | 0 | 0.478952 | -0.310040 | 1.880298  |
|     |   |   |          |           |           |

#### Computed energies (atomic units) for the stationary points calculated with basis set [B3LYP or M05-2X/6-31G+(d, p)] at the B3LYP/6-31G(d) optimized geometries.

|                                                  | B3LYP         | M05-2X        |
|--------------------------------------------------|---------------|---------------|
| <b>D</b> <sub>c-16</sub>                         | -2746.5612213 | -2746.2017122 |
| <b>D</b> <sub>t-16</sub>                         | -2746.5587887 | -2746.1986349 |
| <b>D</b> <sub><i>c</i>-16</sub> (dehydroxylated) | -2596.1142363 | -2595.8374995 |
| <b>D</b> <sub><i>t</i>-16</sub> (dehydroxylated) | -2596.1167672 | -2595.8426094 |

### Interaction energies (in kcal/mol) for dimers D<sub>c-16</sub> and D<sub>t-16</sub> and the analogous dehydroxylated.<sup>a</sup>

| <b>D</b> <sub><i>c</i>-16</sub> | <b>D</b> <sub>t-16</sub> | <b>D</b> <sub><i>c</i>-16</sub> (dehydroxylated) | <b>D</b> <sub><i>t</i>-16</sub> (dehydroxylated) |
|---------------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|
| -43.0 (3.6)                     | -43.9 (3.5)              | -31.5 (2.6)                                      | -33.2 (2.7)                                      |

<sup>a</sup>Single point calculations with the M05-2X/6-31+G(d,p) basis set at the B3LYP/6-31G(d) optimized geometries. The energies were corrected for BSSE (values in parenthesis).