Organocatalytic Peroxy-Asymmetric Allylic Alkylation

Xin Feng, ${ }^{a}$ Yu-Qing Yuan, ${ }^{b}$ Hai-Lei Cui, ${ }^{a}$ Kun Jiang, ${ }^{a}$ and Ying-Chun Chen* ${ }^{a}$
${ }^{a}$ Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Fax: 8628 85502609;
E-mail: ycchenhuaxi@yahoo.com.cn.
${ }^{b}$ The Third Hospital of Chengdu, Chengdu, China.

Supplementary Information

Table of Contents

1. General methods

2 Synthesis of hydroperoxyalkane 1b
3. General procedure for the peroxy-AAA reaction
4. Procedure for the reduction of peroxides 3
5. NMR spectra and HPLC chromatograms

1. General methods

NMR data were obtained for ${ }^{1} \mathrm{H}$ at 400 MHz and for ${ }^{13} \mathrm{C}$ at 50 or 100 MHz . Chemical shifts were given in parts per million (δ) from tetramethylsilane with the solvent resonance as the internal standard in CDCl_{3} solution. ESI HRMS was recorded on a Bruker Apex-2. In each case, enantiomeric ratio was determined by HPLC analysis on chiral column in comparison with authentic racemates, using a Daicel Chiralpak IC Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak OD Column ($250 \times 4.6 \mathrm{~mm}$) or Chiralpak AD Column ($250 \times 4.6 \mathrm{~mm}$). UV detection was monitored at 220 nm or 254 nm . Optical rotation data were examined in CHCl_{3} or MeOH solution at $20^{\circ} \mathrm{C}$. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I_{2} were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. THF, ethyl acetate, petroleum ether, methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ were distilled before use.

2 Synthesis of hydroperoxyalkane 1b

To a mixture of Mg ($3.4 \mathrm{~g}, 142 \mathrm{mmol}$) in 20 mL dry THF was added dropwise bromobenzene $(15 \mathrm{~mL}, 142 \mathrm{mmol})$ in dry THF (60 mL) under argon atmosphere. The mixture was heated at 50 ${ }^{\circ} \mathrm{C}$ for 3 h . Then a solution of 3-pentanone ($5 \mathrm{~mL}, 47 \mathrm{mmol}$) in dry THF (30 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After 30 min the mixture was warmed to rt and stirred overnight. The solution was quenched with aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted three times with ethyl acetate. The organic layers were combined and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Flash chromatography on silica gel (ethyl acetate/petroleum ether) gave the 3-phenylpentan-3-ol as colorless oil ($4.7 \mathrm{~g}, 61 \%$ yield).

A solution of 3-phenylpentan-3-ol ($328 \mathrm{mg}, 2 \mathrm{mmol}$) was added dropwise to the stirred mixture of 30% hydrogen peroxide $(150 \mathrm{~mL})$ and $2.5 \%(\mathrm{w} / \mathrm{v})$ sulfuric acid (15 mL). After stirring for 4 h at room temperature, the reaction mixture was extracted with $\operatorname{DCM}(3 \times 50 \mathrm{~mL})$, washed with water,
dried over sodium sulfate, filtered, and concentrated. Flash chromatography on silica gel (ethyl acetate/petroleum ether) gave the product $\mathbf{1 b}$ as yellow oil ($300 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.90(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.2$ Hz, 6H).

3. General procedure for the peroxy-AAA reaction

Hydroperoxyalkane 1b ($22 \mathrm{mg}, 0.12 \mathrm{mmol}$), MBH carbonate 2 (0.1 mmol), catalyst (DHQD$)_{2} \mathrm{PHAL}(7.8 \mathrm{mg}, 0.01 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(0.4 \mathrm{~mL})$ were stirred at $35^{\circ} \mathrm{C}$. After completion the solvent was removed and flash chromatography on silica gel (EtOAc/petroleum ether) gave the peroxide 3.

4. General procedure for the reduction of compound 3

Compound 3 (0.1 mmol) and zinc powder ($260 \mathrm{mg}, 4 \mathrm{mmol}$) were stirred in a mixture solvents of $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ at $25{ }^{\circ} \mathrm{C}$ for 3 h under argon atmosphere. Then the solid was filtered and the filtrate was extracted with DCM three times. The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. Concentration and flash chromatography on silica gel (ethyl acetate/petroleum ether) gave α-methylene- β-hydroxy ester 4.

3a, 76% yield; $[\alpha]_{D}{ }^{20}=+31.0\left(c=0.40\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 91 \%$ ee, determined by HPLC analysis [Daicel chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}$ (major) $=5.69 \mathrm{~min}, \mathrm{t}($ minor $)=6.60 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 4 \mathrm{H})$, 7.18-7.15 (m, 2H), $6.47(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, 1.59-1.57 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.1,145.3,138.6,137.2,128.3,128.2$, 127.9, 127.0, 126.8, 125.6, 83.3, 51.8, 26.7, 26.5; ESI-HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{Na} 349.1416$, found 349.1386.

3b, 79% yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+64.8\left(c=0.25\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 93 \%$ ee, determined by HPLC analysis [Daicel chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}, \mathrm{t}($ major $)=4.78 \mathrm{~min}, \mathrm{t}($ minor $)=6.80 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H})$, $6.50(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 2.01-1.91 (m, 3H), 1.89-1.82 (m, 1H), $0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.2,142.9,138.8,137.3,128.3,128.2,128.2,127.7,126.9,126.6$, 126.2, 88.3, 82.9, 51.8, 28.5, 28.1, 7.9; ESI-HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{Na} 377.1729$, found 377.1729 .

3c, 69% yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+33.2(c=0.75 \text { in } \mathrm{MeOH})^{1} ; 90 \%$ ee, determined by HPLC analysis after converted to the corresponding α-methylene- β-hydroxy ester [Daicel chiralpak OD, n-hexane $/ i-\mathrm{PrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (major) $=30.65 \mathrm{~min}, \mathrm{t}($ minor $)=27.27 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.33-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H})$, $6.95(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 4 \mathrm{H})$, $0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.0$, $165.1,160.2,142.9,138.6,133.2,130.0,129.8,127.7,126.7,126.6,126.1,115.3,114.9,88.4$, 82.2, 51.8, 28.4, 27.8, 7.8, 7.7; ESI-HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FO}_{4}+\mathrm{Na} 395.1635$, found 395.1624.

3d, 71% yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+25.4(c=1.00 \text { in } \mathrm{MeOH})^{1} ; 89 \%$ ee, determined by HPLC analysis after converted to the corresponding α-methylene- β-hydroxy ester [Daicel chiralpak OD, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (major) $=30.41 \mathrm{~min}, \mathrm{t}$ (minor) $=27.05 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta(\mathrm{ppm}) 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 4 \mathrm{H}), 0.76(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.70(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.0,142.8,138.5,136.0$, 134.1, 129.5, 128.4, 127.8, 127.0, 126.7, 126.1, 88.5, 82.2, 51.9, 28.3, 27.8, 7.9, 7.8; ESI-HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ClO}_{4}+\mathrm{Na} 411.1339$, found 411.1387 .

3e, 71% yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+26.9(c=0.70 \text { in MeOH })^{1} ; 83 \%$ ee, determined by HPLC analysis after converted to the corresponding α-methylene- β-hydroxy ester [Daicel chiralcel OD, n-hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm, t (major) $=9.62 \mathrm{~min}, \mathrm{t}$ (minor) $=8.92 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$
$(\mathrm{s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $0.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.9$, $142.8,139.6,138.2,134.1,129.4,128.4,128.1,127.8,127.4,126.7,126.3,126.1,88.5,82.1,51.9$, 28.3, 27.7, 7.8, 7.7; ESI-HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ClO}_{4}+\mathrm{Na} 411.1339$, found 411.1312 .

3f, 73% yield; $[\alpha]_{D}{ }^{20}=+32.4(c=0.90 \text { in } \mathrm{MeOH})^{1} ; 88 \%$ ee, determined by HPLC analysis after converted to the corresponding α-methylene- β-hydroxy ester [Daicel chiralpak IC, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, $\mathrm{t}($ major $)=11.84 \mathrm{~min}, \mathrm{t}($ minor $)=16.80 \mathrm{~min}] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.36-7.26 (m, 6H), 7.20 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=2.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H})$, $5.97(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 165.7$, 142.7, 137.9, 132.3, 130.2, 129.9, 127.8, 127.4, 127.3, 126.8, 126.1, 88.6, 81.6, 52.0, 28.2, 27.4, 7.8, 7.7; ESI-HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{4}+\mathrm{Na} 445.0949$, found 445.0922.

$3 \mathrm{~g}, 65 \%$ yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+18.3(c=0.40 \text { in } \mathrm{MeOH})^{1} ; 86 \%$ ee, determined by HPLC analysis after converted to the corresponding α-methylene- β-hydroxy ester [Daicel chiralpak AD, n-hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, $\mathrm{t}($ major $)=19.65 \mathrm{~min}, \mathrm{t}($ minor $)=20.87 \mathrm{~min}] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm}) 7.31-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H})$, $6.07(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 0.77(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.3,142.9,138.8$, 138.1, 134.2, 128.9, 128.2, 127.7, 126.5, 126.2, 88.3, 82.8, 51.8, 28.5, 28.0, 21.2, 7.9; ESI-HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{Na} 391.1885$, found 391.1894.

3h, 67% yield; $[\alpha]_{D}{ }^{20}=+16.0\left(c=0.25\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 92 \%$ ee, determined by HPLC analysis [Daicel chiralcel OD, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}, \mathrm{t}$ (major) $=4.99 \mathrm{~min}, \mathrm{t}($ minor $)=5.79 \mathrm{~min}] ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.31-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}$, $1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H})$, $0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.3$, $143.0,138.8,137.8,137.1,129.1,128.9,128.1,127.7,126.8,126.6,126.2,125.3,88.3,83.0,51.8$, 28.5, 27.9, 21.4, 7.9, 7.8; ESI-HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4}+\mathrm{Na} 391.1885$, found 391.1894.

3i, 73% yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+25.8\left(c=0.40\right.$ in CHCl_{3}); 93% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane $/ i-\mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=7.28 \mathrm{~min}, \mathrm{t}($ minor $)=6.77 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{~Hz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.32-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d} J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.3,159.7,143.0,138.9,129.6$, 127.7, 126.6, 126.3, 126.2, 125.5, 113.6, 88.2, 82.6, 55.2, 51.8, 28.5, 27.9, 7.9, 7.8; ESI-HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{5}+\mathrm{Na} 407.1834$, found 407.1835.

$3 \mathbf{j}, 50 \%$ yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+13\left(c=0.90\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; 89 \%$ ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane $/ i-\mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=8.90 \mathrm{~min}, \mathrm{t}$ (minor) $=7.79 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.23(\mathrm{~m}$, $1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 1.99-1.98 (m, 4H), $0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.2,147.5,142.9,138.7,130.9,128.3,127.7,126.6,126.4,126.2,122.1,108.7,108.0$, 101.1, 88.3, 82.7, 51.8, 28.4, 27.8, 7.9, 7.8; ESI-HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na} 421.1627$, found 421.1632 .

$3 \mathbf{k}, 53 \%$ yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+35.8(c=0.50 \text { in } \mathrm{MeOH})^{1} ; 92 \%$ ee, determined by HPLC analysis after converted to the corresponding α-methylene- β-hydroxy ester [Daicel chiralpak IC, n-hexane $/ i-\operatorname{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=22.18 \mathrm{~min}, \mathrm{t}($ minor $)=32.73 \mathrm{~min}] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 7.35-7.30 (m, 4H), 7.27-7.23 (m, 2H), 6.92 (dd, $J=3.6 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.85(\mathrm{~m}, 4 \mathrm{H}), 0.80-0.73(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.0,142.8,140.1,138.8,127.8,127.1,126.8,126.6,126.5$, 126.1, 88.5, 77.8, 51.9, 28.4, 28.1, 7.8; ESI-HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}+\mathrm{Na} 383.1293$, found 383.1310 .

31, 62% yield; $[\alpha]_{D}{ }^{20}=+29.3\left(c=0.30\right.$ in CHCl_{3}); 91% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane $/ i-\operatorname{PrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, $\mathrm{t}($ major $)=7.28 \mathrm{~min}, \mathrm{t}($ minor $)=9.09 \mathrm{~min}] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
(ppm) 7.38-7.37 (m, 1H), 7.31-7.28 (m, 4H), 7.26-7.21 (m, 1H), $6.53(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=2.0 \mathrm{~Hz}$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.78-0.72(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $165.9,150.5,143.1,142.7,136.6,127.7,127.5,126.5,126.0,110.4,110.1,88.6,76.0,51.9,28.7$, 28.4, 7.8; ESI-HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}+\mathrm{Na} 367.1521$, found 367.1539.

4b, 93% yield; $[\alpha]_{\mathrm{D}}{ }^{20}=+82.9(c=0.6$ in MeOH $)\left\{\right.$ lit. $::^{2}[\alpha]_{\mathrm{D}}{ }^{22}=+85.5(\mathrm{c}=$ 1.11 in $\mathrm{MeOH}, 84 \%$ ee) $\}$; 93% ee, determined by HPLC analysis [Daicel chiralpak IC, n-hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}$ (major) $=$ $19.96 \mathrm{~min}, \mathrm{t}($ minor $)=35.15 \mathrm{~min}] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.38-7.32(\mathrm{~m}, 4 \mathrm{H})$, 7.29-7.25 (m, 1H), $6.33(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 166.8,142.0,141.3,128.4,127.8,126.6,126.1$, 73.2, 51.9.

Notes and references

(1) The optical rotation was related to the corresponding α-methylene- β-hydroxy ester.
(2) J.-N. Kim, H.-J. Lee, J.-H. Gong, Tetrahedron Lett., 2002, 43, 9141.
5. NMR and HPLC spectra

	RT (mir)	Area $(\mu \mathrm{V} *$ sec $)$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	4.823	2312065	50.24	148412	51.80
2	6.763	2290118	49.76	138082	48.20

	RT (mir)	Area $(\mu \mathrm{V}$ sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	4.782	4302909	96.64	246153	96.24
2	6.793	149467	3.36	9610	3.76

```
Exp-347-CiLiL3-6: &v09-S-4
```

Pulse Sequen.... s2pul

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	25.862	5947863	49.04	135301	51.99
2	28.968	6180173	50.96	124935	48.01

	$R T$ $(\mathrm{~min})$	Area $\left(\mathrm{V}{ }^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	27.269	2197050	5.70	48433	6.68
2	30.649	36362805	94.30	676620	93.32

-

Exp-346-CDCL3-H1-2009-s
Pulse Sequence: 52 ru .

i

> ×x.-o-cucls-C13-2009-3-4 \therefore se Sequence: s 2 pul

	RT (min)	Area $\left(\mathrm{V}^{*}\right.$ sec $)$	\% Area	Height (V)	\% Height
1	27.392	30803596	48.82	648975	52.05
2	30.744	32286911	51.18	597867	47.95

	RT $($ mir $)$	Area $(\mu \mathrm{V}$ *sec)	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	27.051	1554152	5.60	35677	6.58
2	30.413	26199785	94.40	506235	93.42

exp-345 H1 COC13 <609-
Pulse Sequence: s2pul

$3 e$

츨

3 e

EXP-345-CDL3-C13-2009-3-
ag

कฟ

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	$\%$ Height
1	8.923	2706691	8.59	168623	9.25
2	9.624	28808307	91.41	1654973	90.75

exp-355 H1 coci3 2ros-3-1
Pulse sequence: cs.0.4

$3 f$

$\underset{ }{*}$

$3 f$

	RT (min)	Area $(\mathrm{V}$ *sec) $)$	\% Area	Height (V)	$\%$ Height
1	19.604	12719341	49.36	523463	51.52
2	20.819	13047153	50.64	492508	48.48

	RT (mir)	Area $(\mu \mathrm{V}$ "sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	19.649	9796908	93.39	409485	93.08
2	20.874	693127	6.61	30429	6.92

Pulse Sequence: saph

exp-295-cocl3-c13-2009-1-1,
Pulse Sequence: s2pul

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	4.986	3072903	96.41	228857	95.75
2	5.792	114538	3.59	10149	4.25

axp-355 11 CDC13 2009-2-25
Pulse Sequence: s2pul

	Peak Name	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	Peak1	6.785	5952573	45.08	480851	48.64
2	Peak2	7.289	7250455	54.92	507766	51.36

	RT (mir)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	6.767	460228	3.81	45689	4.62
2	7.282	11629229	96.19	943574	95.38

	RT (min)	Area $(\mathrm{V}$ sec $)$	\% Area	Height (V)	\% Height
1	21.954	17801245	49.94	527413	57.24
2	32.455	17843605	50.06	393924	42.76

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	22.180	34046554	95.95	975496	96.43
2	32.734	1436131	4.05	36092	3.57

	$R T$ $(\mathrm{~min})$	Area $\left(V^{*} \mathrm{sec}\right)$	$\%$ Area	Height (V)	\% Height
1	7.287	1101077	95.20	104583	95.18
2	9.097	55474	4.80	5301	4.82

	RT (mir)	Area $(\mu \mathrm{V}$ "sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	19.964	7524568	96.72	267156	97.69
2	35.148	254857	3.28	6305	2.31

exp-239 $\mathrm{H1}$ COC13 2009-6-16
Pulse Sequence: s2pul

