Supporting Information for

A Concise and and Fully Selective Synthesis of the Ant Venom Alkaloid (3S,5R,8S,9S)-3-Butyl-5-propyl-8-hydroxyindolizidine

Geng-Jie Lin,^{*a*} Pei-Qiang Huang^{**a,b*}

 ^a Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China; ^b State Key Laboratory of Bioorganic and Natural Products Chemistry, 354 Fenglin Lu, Shanghai 200032, P. R. China E-mail: (pqhuang@xmu.edu.cn)

Contents (21 pages):

- ¹H and ¹³C NMR spectra of compounds **4~6**, **8~12**, **2** (pp. 2-20).
- Variable-temperature NMR studies on compound **6** (pp. 5).
- HSQC spectra of compound 9 (pp. 11).
- Table1. Comparison of the NMR data between our synthetic product **2** and those reported. (pp. 21).

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

<u>S8</u>

bpm 91.0 ----0 9 ÷Τ +1-1.1 D-D 20 16 87 58° 96 30 τs 67 Ì. 50 \$ 88"56 -21.05 20 89199 09 $<_{22,31}^{65,23}$ 2 16°34 11°52 31 22 80 15°11 6 100 110 45'TIT ------120 95.521 — 130 41.961-----140 150 26.\$21 -----160 170 180 190 LGJ1237-C13 CDC13 200 0 210 Boc ω P.B."

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

	mdd
	0
77' bT —	10
80° LT	20
88'5Z Z0'6Z S8'6Z	 30
60'52 60'52	40
	20
₽0°2S	00
08:53 00:53 08:53	0,
	 100
8I'E8	
	00
	10
06'0TT	11
	12
	0 13
	0 14
₽₽'SSI	0 15
	0 16
~	171
- 43	18(
	19(
	200
90 (DC13 2009 (D-13) 2009 (D-13)	210

0.0 ∃ 3:18 5.01 3.47 6.93 3.45 ⊐- 1.00 3:85 5.0 ∃= 1:8§ n-Bunn h

₹nª-″

$\delta_{\rm H}$ (our synthetic product)	$\delta_{\rm H}$	(Toyooka's	synthetic	δ_{C}	(our	(Toyooka's
	product) ¹		product)		product) ¹	
0.90 (3H, t, <i>J</i> = 7.2 Hz)	0.90	(3H, t, J = 7.2)	Hz)	14.3		14.3
0.92 (3H, t, <i>J</i> = 7.3 Hz)	0.91 (3H, t, <i>J</i> = 7.2 Hz)		14.6		14.5	
1.14-1.53 (12H, br m)	1.17-1.49 (11H, brm)		19.3		19.2	
1.54-1.66 (3H, m)	1.53-1.62 (4H, m)		23.1		23.0	
1.68-1.88 (3H, m)	1.68-1.86 (3H, m)		26.0		25.9	
2.27 (1H, apparent t, $J = 9.7$	2.25	(1H, t-like, <i>J</i> =	9.8 Hz)	26.7		26.7
Hz) (NCH)						
2.42 (1H, dd, <i>J</i> = 4.5, 10.7 Hz)	2.40	(1H, m)		28.9)	28.8
(NCH)						
2.76 (1H, apparent t, $J = 8.1$	2.75	(1H, t-like, <i>J</i> =	8.5 Hz)	29.1		29.0
Hz) (NCH)						
3.05 (1H, br, D_2O	3.03	(1H, d, J = 10.2)	3 Hz)	32.3		32.2
exchangeable) (OH)						
3.75 (1H, br) (CHOH)	3.74	(1H, d, J = 9.8)	Hz)	37.9)	37.8
				39.5		39.4
				60.7		60.4
				64.4		64.1
				65.6		65.5
				70.4		70.1

Table1. Comparison of the NMR data between our synthetic product 2 and those reported.

Reference:

N. Toyooka, D. J. Zhou, H. Nemoto, Y. Tezuka, S. Kadota, T. H. Jones, H. M. Garraffo, T. F. Spande and J. W. Daly, *Synlett*, 2008, 1894-1896.