Supporting Information-1

Rapid Synthesis of Abelson Tyrosine Kinase Inhibitors using Click Chemistry

Karunakaran A. Kalesh,^a Kai Liu^b and Shao Q. Yao,^{a,b,c,*}

Departments of Chemistry^a and Biological Sciences,^b NUS MedChem Program of the Life Sciences Institute,^c National University of Singapore, Singapore 117543

High Resolution Mass Spectrometry (HRMS) results of the selected click-inhibitors:

W1-SA9 [$C_{27}H_{24}FN_9O_3S$], (m/z)_{calculated} = 596.1599 [$C_{27}H_{24}FN_9O_3SNa$] (m/z)_{observed} = 596.1586 (ESI-HRMS)

W1-SA10 [$C_{27}H_{24}FN_9O_3S$], (m/z)_{calculated} = 596.1599 [$C_{27}H_{24}FN_9O_3SNa$] (m/z)_{observed} = 596.1590 (ESI-HRMS)

W1-SA17 [$C_{31}H_{27}N_9O_3S$], (m/z)_{calculated} = 606.2036 [$C_{31}H_{28}N_9O_3S$] (m/z)_{observed} = 606.2023 (ESI-HRMS)

W1-SA20 [$C_{28}H_{27}N_9O_3S$], (m/z)_{calculated} = 570.2036 [$C_{28}H_{28}N_9O_3S$] (m/z)_{observed} = 570.2031 (ESI-HRMS)

W1-SA22 $[C_{25}H_{23}N_9O_3S_2]$, $(m/z)_{calculated} = 584.1258 [C_{25}H_{23}N_9O_3S_2Na] (m/z)_{observed} = 584.1251 (ESI-HRMS)$

W2-SA3 [$C_{28}H_{26}ClN_9O_3S$], (m/z)_{calculated} = 626.1460 [$C_{28}H_{26}ClN_9O_3SNa$] (m/z)_{observed} = 626.1441 (ESI-HRMS)

W2-SA4 $[C_{26}H_{24}ClN_9O_3S_2]$, $(m/z)_{calculated} = 632.1024$ $[C_{26}H_{24}ClN_9O_3S_2Na]$ $(m/z)_{observed} = 632.0999$ (ESI-HRMS)

W2-SA7 [$C_{28}H_{25}F_2N_9O_3S$], (m/z)_{calculated} = 628.1661 [$C_{28}H_{25}F_2N_9O_3SNa$] (m/z)_{observed} = 628.1692 (ESI-HRMS)

W2-SA13 [$C_{29}H_{28}FN_9O_3S$], (m/z)_{calculated} = 624.1912 [$C_{29}H_{28}FN_9O_3SNa$] (m/z)_{observed} = 624.1939 (ESI-HRMS)

W2-SA17 [$C_{32}H_{29}N_9O_3S$], (m/z)_{calculated} = 642.2006 [$C_{32}H_{29}N_9O_3SNa$] (m/z)_{observed} = 642.2013 (ESI-HRMS)

W2-SA18 $[C_{32}H_{29}N_9O_3S]$, $(m/z)_{calculated} = 642.2006$ $[C_{32}H_{29}N_9O_3SNa]$ $(m/z)_{observed} = 642.2004$ (ESI-HRMS)

Figure S1. Chemical structures of the potent inhibitors of Abl kinase identified from the screening (Insets shows the structures of the corresponding azides)

IC₅₀ evaluation of the click-inhibitors against Abl/Src kinases

Concentration-dependent experiments were performed to confirm the potency of the identified initial hits (structures shown above in Figure S1). All the 11 hits were purified by Semi-Prep reverse-phase HPLC using water with 0.1% TFA and acetonitrile with 0.1% TFA as eluents on a Luna 5 μ C-18 (2) 100A column (50 × 30 mm, 5 micron) at a flow rate of 10 ml/min before subjecting to the detailed inhibition measurements. The dose-dependent inhibition assays were performed by varying the concentration of the inhibitors under fixed enzyme concentration of 50 nM as mentioned before. The IC₅₀ values for each inhibitor were calculated from the percentage activity vs. log [concentration of inhibitor] curves generated using the GraphPad Prism software.

Cell culture and Proliferation Assay

Human leukemic cell lines K-562 (p-210 Bcr-Abl expressing chronic myelogenous leukemia) were maintained in RPMI-1640 medium supplemented with L-glutamine and 10% FBS. The cells (0.2-0.4 \times 10⁶ per mL) were plated in duplicate in 96-well plates containing two different concentrations (50 and 10 µM) of the 11 inhibitor hits identified against recombinant Abl from the in-vitro assay. After incubation at 37 °C in 5% CO₂ for 48 h, the effect of the compounds on the cell proliferation was determined by the XTT (sodium 3' - [1-(phenylaminocarbonyl)-3, 4tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate) colorimetric dye reduction method. Briefly, the procedure for the assay was as follows. The XTT was dissolved in hot RPMI media (37 °C) at a concentration of 1 mg/mL. Immediately before use, the electron coupling reagent PMS (N-methyl dibenzopyrazine methyl sulfate) was added to the XTT solution giving a PMS concentration of 125 µM (The PMS was stored as 100 mM stock solution in saline at 4 °C). 25 µL of this XTT/PMS solution was added to each well in the 96-well plate containing ~ 100 μ L per well culture giving a final concentration of 0.2 mg/mL XTT and 25 μ M PMS. After incubation at 37 °C in 5% CO₂ for 2-6 h the absorbance of each well was measured at a wavelength of 450 nm using Tecan microplate reader and effect of the compounds on the cell proliferation was determined by comparing with the DMSO (no inhibitor) controls. The compounds, unfortunately, did not show significant effect on the cell viability. Even the best inhibitor identified in the cell-based assay (W2-SA17, $IC_{50} = 1608$ nM in in-vitro assay) shows only 60% inhibition of the cell proliferation at 50 µM concentration (All other compounds including the best inhibitor W1-SA20 from the in-vitro assay were found to be less potent with less than 50% inhibition of cell proliferation at 50 µM concentration. The exact reason for the lack of cellular potency of the compounds is not clear at the moment although we speculate that it could most likely be due either to the poor solubility of the compounds in the assay medium or the cell-impermeability of the compounds. We are currently working on these aspects.

Figure S2. Antiproliferation assay of K-562 cells in the presence of the 11 click-inhibitors at two different concentrations (50 μ M and 10 μ M). The Y axis represents the cell proliferation

normalized with respect to the no inhibitor control (DMSO alone). Shorter column heights indicate stronger antiproliferative property.

Azide library used for the synthesis of the Imatinib analogue click-library

The azides were synthesized via a highly efficient traceless solid-phase method we recently developed.¹ The synthetic details and characterizations are reported therein.

Entry	Compounds	Identity
1	Exact Mass: 268.06	SA-1
2	Ph Exact Mass: 302.08	SA-2
3	CI Exact Mass: 260.01	SA-3
4	$CI \xrightarrow{S} S \xrightarrow{N_3} N_3$ Exact Mass: 265.97	SA-4
5	O O N ₃ Exact Mass: 240.07	SA-5
6	F O O N ₃ F Exact Mass: 262.03	SA-6
7	F F Exact Mass: 262.03	SA-7

8	O O S N H Exact Mass: 254.08	SA-8
9	F O O S N H Exact Mass: 244.04	SA-9
10	F Exact Mass: 244.04	SA-10
11	F Exact Mass: 244.04	SA-11
12	F Exact Mass: 258.06	SA-12
13	F Exact Mass: 258.06	SA-13
14	O O O N ₃ S N H N ₃ Exact Mass: 268.10	SA-14
15	MeO Exact Mass: 256.06	SA-15
16	HOOC K Exact mass: 270.04	SA-16

17	Exact Mass: 276.07	SA-17
18	Exact Mass: 276.07	SA-18
19	$ \begin{array}{c} $	SA-19
20	Exact Mass: 240.07	SA-20
21	Exact Mass: 282.12	SA-21
22	$ \begin{array}{c} $	SA22
23	$O_2 N$ Exact Mass: 271.04	SA-23
24	CI O N H Exact Mass: 224.05	SA-24
25	Exact mass: 220.09	A-25

26	HN F Exact mass: 212.05	A-26
27	HN HN F Exact mass: 208.07	A-27
28	HN HN Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl	A-28
29	HN HN C Exact mass: 210.03	A-29
30	HN HN C C Exact mass: 236.09	A-30
31	HN HN O O O Exact mass: 266.10	A-31

32	HN HN Exact mass: 234.11	A-32
33	HN S Exact mass: 222.05	A-33
34	HN HN F ₃ C Exact mass: 260.05	A-34
35	HN HN O Exact mass: 206.08	A-35
36	HN HN O O Exact mass: 236.09	A-36

37	HN HN C C Exact mass: 268.09	A-37
38	$HN \qquad \qquad$	A-38
39	HN Exact mass: 204.10	A-39
40	HN HN Exact mass: 232.13	A-40
41	HN Exact mass: 226.08	A-41
42	HN HN Exact mass: 216.10	A-42

43	HN F Exact mass: 208.07	A-43
44	HN CN Exact mass: 201.06	A-44
45	$V_{HN} N_3$ $V_{C_7H_{15}}$ Exact mass: 274.17	A-45

Azide library used for the ADP-alkyne click library

Azide Position in heat- map	Unique ID	Structure	Azide Position in heat- map	Unique ID	Structure
1	A1-2C	O HN F Mol. Wt.: 194,17	173	G6-4C	H O Mol. Wt.: 260,33
2	A2-2C	O HN F Mol. Wt.: 194,17	174	G7-4C	H N O Nol. Wt.: 232,28

3	A3-2C	F Mol. Wt.: 212,16	175	G8-4C	H 0 Mol. Wt.: 274,36
4	A4-2C	HN F Mol. Wt.: 212.16	176	G9-4C	EtOOC Mol. Wt.: 276,29
5	A5-2C	H N O F Mol. Wt.: 208,19	177	G10- 4C	H O COOEt Mol. Wt.: 276,29
6	A6-2C	HN HN F Mol. Wt.: 208.19	178	G11- 4C	H N O Mol. Wt.: 302,41
7	A7-2C	O HN CI CI Mol. Wt.: 245,07	179	G12- 4C	H 0 Mol. Wt.: 254,29
8	A8-2C	HN HN CI Mol. Wt.: 210,62	180	H1-4C	Mol. Wt.: 304,35
9	A9-2C	N ₃ HN Cl Mol. Wt.: 224,65	181	H2-4C	H N O N3 Mol. Wt.: 258,32
10	A10-2C	O HN CI CI Mol. Wt.: 245,07	182	H3-4C	HN COOMe Mol. Wt.: 306,32

11	A11-2C	HN HN OMe CI Mol. Wt.: 240,65	183	H4-4C	Mol. Wt.: 254,29
12	A12-2C	O HN OEt Mol. Wt.: 220,23	184	H5-4C	H N O Mol. Wt.: 306,36
13	B1-2C	Mol. Wt.: 268,27	185	H7-4C	H ₃ CO O H N ₃ O CI Mol. Wt.: 296,71
14	B2-2C	MeO Mol. Wt.: 236,23	186	H8-4C	H ₃ CO NH O NH O O O O O O O O O O O O O O O
15	B3-2C	O HN OEt Mol. Wt.: 220,23	187	E1-4S	Exact Mass: 296.09
16	B4-2C	Mol. Wt.: 206,20	188	E2-4S	Ph Exact Mass: 330.12
17	B5-2C	MeO OMe OMe Mol. Wt.: 266,25	189	E3-4S	CI Exact Mass: 288.04
18	B6-2C	B6 O HN N ₃ U O Mol. Wt.: 234,25	190	E4-4S	$CI \xrightarrow{S} S \xrightarrow{N} N_{3}$ Exact Mass: 294.00

19	B7-2C	HN HN SCH ₃ Mol. Wt.: 222,27	191	E5-4S	O O S'N H Exact Mass: 268.10
20	B8-2C	O HN N3 U OCF3 Mol. Wt.: 260,17	192	E6-4S	F Exact Mass: 290.06
21	B9-2C	Me. Wt.: 206,20	193	E7-4S	F F F F F F F F
22	B10-2C	O HN OCH ₃ OCH ₃ Mol. Wt.: 236,23	194	E8-4S	O, O N N H Exact Mass: 282.12
23	B11-2C	O HN N ₃ OPh Mol. Wt.: 268,27	195	E9-4S	F O O N ₃ Exact Mass: 272.07
24	B12-2C	B12 O HN N ₃ O OCH ₃ Mol. Wt.: 206,20	196	E10-4S	F Exact Mass: 272.07
25	C1-2C	$ \begin{array}{c} $	197	E11-4S	F Exact Mass: 272.07
26	C2-2C	HN HN CI Mol. Wt.: 302,72	198	E12-4S	F Exact Mass: 286.09

27	C3-2C	O HN OCF ₃ Mol. Wt.: 260,17	199	F1-4S	F Exact Mass: 286.09
28	C4-2C	Mol. Wt.: 204,23	200	F2-4S	Exact Mass: 296.13
29	C5-2C	Mol. Wt.: 204,23	201	F3-4S	MeO Exact Mass: 284.09
30	C6-2C	O HN N3 Mol. Wt.: 232,28	202	F5-4S	Exact Mass: 304.10
31	C7-2C	Mol. Wt.: 204,23	203	F6-4S	O O S N H Exact Mass: 304.10
32	C8-2C	0 HN C ₅ H ₁₁ Mol. Wt.: 246,31	204	F7-4S	O_2N O_2N N_3 Exact Mass: 299.07
33	C9-2C	O HN COOEt Mol. Wt.: 248,24	205	F8-4S	O_2N Exact Mass: 299.07
34	C10-2C	HN HN COOEt Mol. Wt.: 248,24	206	F9-4S	Exact Mass: 310.15

35	C11-2C	Mol. Wt.: 226,23	207	F10-4S	$ \begin{array}{c} $
36	C12-2C	Mol. Wt.: 276,29	208	F11-4S	Exact Mass: 268.10
37	D1-2C	Mol. Wt.: 230,27	209	F12-4S	CI O N H Exact Mass: 252.08
38	D2-2C	MeOOC N H OH Mol. Wt.: 278,26	210	A1-5C	F Mol. Wt.: 236,25
39	D3-2C	H N N N N N 3 Mol. Wt.: 240,26	211	A2-5C	H N O F Mol. Wt.: 236,25
40	D4-2C	H N N N N N 3 Mol. Wt.: 240,26	212	A3-5C	F F F O Mol. Wt.: 254,24
41	A1-2S	O O N H Exact Mass: 268.06	213	A4-5C	F Mol. Wt.: 254,24
42	A2-2S	Ph Exact Mass: 302.08	214	A5-5C	F N N N N N N N N N N N N N N N N N N N
43	A3-2S	CI Exact Mass: 260.01	215	A6-5C	H N O F Mol. Wt.: 250,27
44	A4-2S	$CI \underbrace{ \begin{array}{c} O \\ S \end{array}}_{K} S \underbrace{ \begin{array}{c} O \\ N \end{array}}_{H} S \underbrace{ \begin{array}{c} O \\ N \end{array}}_{H} N_{3}$ Exact Mass: 265.97	216	A7-5C	CI Mol. Wt.: 252,70

45	A5-2S	O, O S H Exact Mass: 240.07	217	A8-5C	CI Mol. Wt.: 252,70
46	A6-2S	F O O N F Exact Mass: 262.03	218	A9-5C	CI H N O Mol. Wt.: 266,73
47	A7-2S	F Exact Mass: 262.03	219	A10-5C	Cl H N O Mol. Wt.: 287,14
48	A8-2S	Exact Mass: 254.08	220	A11-5C	OMe H N CI Mol. Wt.: 282,73
49	A9-2S	F O O S N N ₃ Exact Mass: 244.04	221	A12-5C	OEt H N O Mol. Wt.: 262,31
50	A10-2S	F Exact Mass: 244.04	222	B1-5C	OPh H N O Mol. Wt.: 324,38
51	A11-2S	F Exact Mass: 244.04	223	B2-5C	MeO Me H N ₃ MeO Mol. Wt.: 278,31
52	A12-28	CONTRACTOR NOT	224	B3-5C	H N O Mol. Wt.: 262,31
53	B1-2S	F Exact Mass: 258.06	225	B3-5C	H N O Mol. Wt.: 262,31
54	B2-2S	Exact Mass: 268.10	226	B4-5C	OMe H N O Nol. Wt.: 248,28

55	B3-2S	MeO Exact Mass: 256.06	227	B5-5C	MeO MeO OMe Mol. Wt.: 308,33
56	C2-2S	HOOC Nol. Wt.: 270,27	228	B6-5C	H N ₃ O Mol. Wt.: 276,33
57	B5-2S	O O N ₃ H Exact Mass: 276.07	229	B7-5C	MeS Mol. Wt.: 264,35
58	B6-2S	Exact Mass: 276.07	230	B8-5C	H N O F ₃ CO Mol. Wt.: 302,25
59	B7-2S	O ₂ N S N N ₃ Exact Mass: 271.04	231	B9-5C	MeO Mol. Wt.: 248,28
60	B8-2S	O_2N Exact Mass: 271.04	232	B10-5C	MeO MeO Mol. Wt.: 278,31
61	B9-2S	Exact Mass: 282.12	233	B11-5C	PhO Mol. Wt.: 310,35
62	B10-2S	$ \begin{array}{c} $	234	B12-5C	MeO Mol. Wt.: 248,28
63	B11-2S	Exact Mass: 240.07	235	C1-5C	Mol. Wt.: 304,39
64	B12-2S	CI O N H Exact Mass: 224.05	236	C2-5C	OPh H N O Cl Mol. Wt.: 344,80
65	C1-2S	Exact Mass: 220.10	237	C3-5C	OCF _{3H} N O Mol. Wt.: 302,25

66	C2-2S	HOOC	238	C4-5C	H N O Mol. Wt.: 246,31
67	C3-2S	HO Mol. Wt.: 242,26	239	C5-5C	H N O Mol. Wt.: 246,31
68	A3- 3C(am)	H F F O Mol. Wt.: 226,18	240	C6-5C	H N O Mol. Wt.: 274,36
69	A4- 3C(am)	H F F O Mol. Wt.: 226,18	241	C7-5C	H N O Mol. Wt.: 246,31
70	A5- 3C(am)	F H Mol. Wt.: 222,22	242	C8-5C	H N O Mol. Wt.: 288,39
71	A6- 3C(am)	H N O F Mol. Wt.: 222,22	243	C9-5C	EtOOC Mol. Wt.: 290,32
72	A7- 3C(am)	CI H N ₃ CI N N ₃ O Mol. Wt.: 259,09	244	C10- 5C	H N O COOEt Mol. Wt.: 290,32
73	A8- 3C(am)	H N O N3 O Mol. Wt.: 224,65	245	C11- 5C	H N O Mol. Wt.: 316,44
74	A9- 3C(am)	CI H N O Mol. Wt.: 238,67	246	C12- 5C	H N O Mol. Wt.: 268,31
75	A10- 3C(am)	CI H N3 Mol. Wt.: 259,09	247	D1-5C	H O Nol. Wt.: 318,37
76	A11- 3C(am)	OMe H N CI Mol. Wt.: 254,67	248	D2-5C	H N O Mol. Wt.: 272,35

77	B1- 3C(am)	OPh H N N O Mol. Wt.: 282,30	249	D3-5C	HN COOMe OH Mol. Wt.: 320,34
78	B2- 3C(am)	MeO Mol. Wt.: 250,25	250	D4-5C	Mol. Wt.: 268,31
79	A12- 3C(am)	OEt H N N O Mol. Wt.: 234,25	251	D5-5C	H N Mol. Wt.: 320,39
80	D1- 3C(am)	H N N N N N N N N S N S N S N S	252	D6-5C	HN N S Mol. Wt.: 225,27
81	D2- 3C(am)	H N N N N N N N 3 Mol. Wt.: 244,29	253	D7-5C	0 0 0 0 Mol. Wt.: 290,32
82	D3- 3C(am)	HN HN COOMe Mol. Wt.: 292,29 OH	254	D8-5C	HN HN HO COOCH ₃ Mol. Wt.: 306,32
83	D4- 3C(am)	Mol. Wt.: 240,26	255	A1-5S	O, O N H Exact Mass: 310.11
84	D5- 3C(am)	Mol. Wt.: 294,31	256	A2-5S	Ph Exact Mass: 344.13
85	D6- 3C(am)	O HN COOCH ₃ H Mol. Wt.: 315,33	257	A3-5S	O O CI Exact Mass: 302.06

86	D7- 3C(am)	HN HN HO COOEt Mol. Wt.: 292,29	258	A4-5S	$CI \xrightarrow{S} X \xrightarrow{S} N \xrightarrow{N_3} N_3$ Exact Mass: 308.02
87	E1-3C	$ \begin{array}{c} H \\ O \\ N \\ F \\ Mol. Wt.: 253,19 \end{array} $	259	A5-5S	Exact Mass: 282.12
88	E2-3C	H Cl F F Mol. Wt.: 260,63	260	A6-5S	F O O H N ₃ Exact Mass: 304.08
89	E3-3C	H N N N N N N N N N N N N N	261	A7-5S	F Exact Mass: 304.08
90	E4-3C	F + F = F Mol. Wt.: 262,16	262	A8-5S	O O S N H Exact Mass: 296.13
91	E5-3C	H N ₃ MeO F F Mol. Wt.: 274,20	263	A9-5S	F O O N N ₃ Exact Mass: 286.09
92	E6-3C	H N N N N N N N S H N S N S H N S S H N S S H N S S H N S S S S	264	A10-5S	F S N N ₃ Exact Mass: 286.09
93	E7-3C	H N N Cl Mol. Wt.: 238,67	265	A11-5S	F Exact Mass: 286.09

94	E8-3C	H N N N N N N 3 Mol. Wt.: 248,24	266	A12-5S	F Exact Mass: 300.11
95	E9-3C	H N N N N N N 3 Mol. Wt.: 248,24	267	B1-5S	F Exact Mass: 300.11
96	E10-3C	H N ₃ Mol. Wt.: 218,26	268	B2-5S	O, O H Exact Mass: 310.15
97	E11-3C	H N3 Mol. Wt.: 218,26	269	B3-5S	MeO Exact Mass: 298.11
98	E12-3C	H N N N N N N N Mol. Wt.: 215,21	270	B4-5S	O O N H Exact Mass: 282.12
99	F1-3C	H N N N N N Mol. Wt.: 215,21	271	B5-5S	O, O S, N H Exact Mass: 318.12
100	F2-3C	H N N N N Mol. Wt.: 215,21	272	B6-5S	O O S N Exact Mass: 318.12
101	F3-3C	Mol. Wt.: 240,26	273	B7-5S	O_2N O_2N N_3 Exact Mass: 313.08
102	F4-3C	H N N N N N 3 Mol. Wt.: 240,26	274	B8-5S	$O_2 N$ Exact Mass: 313.08

103	F5-3C	H O O H N O H Mol. Wt.: 256,26	275	B9-5S	O, O S, N H Exact Mass: 324.16
104	F6-3C	H O O H Mol. Wt.: 220,23	276	B10-5S	$ \begin{array}{c} S \\ S \\ S \\ N \\ H \\ Exact Mass: 274.06 \end{array} $
105	F7-3C	H O H N O H Mol. Wt.: 220,23	277	B11-5S	O, O S, N Exact Mass: 282.12
106	F8-3C	H O O H O H O H C I Mol. Wt.: 240,65	278	B12-5S	CI O N H Exact Mass: 266.09
107	F9-3C	H O O H O H Mol. Wt.: 220,23	279	C1-5S	Exact Mass: 262.14
108	F10-3C	Mol. Wt.: 216,24	280	E1-6C	F Exact Mass: 250,12
109	F11-3C	H N N Mol. Wt.: 216,24	281	E2-6C	H O F Mol. Wt.: 250,27
110	F12-3C	H N ₃ Mol. Wt.: 218,26	282	E3-6C	F O F O Mol. Wt.: 268,26
111	G1-3C	H N N N Mol. Wt.: 190,20	283	E4-6C	F Mol. Wt.: 268,26

112	G2-3C	H N N N N N Mol. Wt.: 208,19	284	E5-6C	F N H Mol. Wt.: 264,30
113	G3-3C	H N N ₃ F F Mol. Wt.: 226,18	285	E6-6C	H O Mol. Wt.: 264,30
114	G4-3C	H N N N N N N N N S N S N S N S N S N S	286	E7-6C	CI H O Mol. Wt.: 301,17
115	G5-3C	H N N ₃ F CF ₃ F Mol. Wt.: 276,19	287	E8-6C	H O O Mol. Wt.: 266,73
116	G6-3C	H N N N N N 3 F Mol. Wt.: 222,22	288	E9-6C	CI H N O Mol. Wt.: 280,75
117	G7-3C	H O N N N N M N M M M M M M M M M M M M M	289	E10-6C	$CI \xrightarrow{CI} H \xrightarrow{N_3} O$ Mol. Wt.: 301,17
118	G8-3C	H N N N N N N N 3 Mol. Wt.: 208,19	290	E11-6C	CI Exact Mass: 296,10
119	G9-3C	F = F Mol. Wt.: 305,08	291	E12-6C	OEt H N O Exact Mass: 276,16

120	G10-3C	Mol. Wt.: 218,26	292	F1-6C	OPh H N O Nol. Wt.: 338,40
121	G1-3S	N3 S-NH O Mol. Wt.: 282,32	293	F2-6C	MeO Mol. Wt.: 292,33
122	G2-3S	Ph Mol. Wt.: 316,38	294	F3-6C	Eto Exact Mass: 309,19
123	G3-3S	O S NH O Nol. Wt.: 274,73	295	F4-6C	OMe H N O Exact Mass: 306,18
124	G4-3S	CI S NH O Exact Mass: 279,99	296	F5-6C	MeO MeO OMe Exact Mass: 377,21
125	G5-3S	Mol. Wt.: 254,31	297	F6-6C	H N N N N N N N 3 Mol. Wt.: 290,36
126	G6-3S	F Wol. Wt.: 276,26	298	F7-6C	MeS Mol. Wt.: 278,37
127	G7-3S	G S-NH F Mol. Wt.: 276,26	299	F8-6C	F ₃ CO H Mol. Wt.: 316,28
128	G8-3S	O S S Mol. Wt.: 153,20	300	F9-6C	MeO Mol. Wt.: 262,31
129	G9-3S	F O N ₃ S-NH O Mol. Wt.: 258,27	301	F10-6C	MeO MeO Exact Mass: 292,15

130	G10-3S	O S-NH O F Mol. Wt.: 258,27	302	F11-6C	PhO Exact Mass: 324,16
131	G11-3S	F Mol. Wt.: 258,27	303	F12-6C	MeO Mol. Wt.: 262,31
132	G12-3S	P Mol. Wt.: 272,30	304	G1-6C	Mol. Wt.: 304,39
133	H1-3S	O S NH O Mol. Wt.: 268,34	305	G2-6C	OPh H N O Cl Mol. Wt.: 344,80
134	H2-3S	O S-NH O Mol. Wt.: 282,36	306	G3-6C	OCF ₃ H N O Mol. Wt.: 302,25
135	H3-3S	MeO Mol. Wt.: 270,31	307	G4-6C	H N O Mol. Wt.: 246,31
136	H4-3S	0 S NH 0 Mol. Wt.: 254,31	308	G5-6C	H O Mol. Wt.: 246,31
137	H5-3S	O S S Mol. Wt.: 290,34	309	G6-6C	H 0 Mol. Wt.: 274,36
138	H6-3S	O S-NH O Mol. Wt.: 290,34	310	G7-6C	Mol. Wt.: 246,31
139	H7-3S	O ₂ N S NH O Mol. Wt.: 285,28	311	G8-6C	Mol. Wt.: 288,39

140	H8-3S	O ₂ N Mol. Wt.: 285,28	312	G9-6C	EtOOC Mol. Wt.: 290,32
141	H9-3S	0 N N N N N N N N N N N N N	313	G10- 6C	H O COOEt Mol. Wt.: 304,34
142	H10-3S	N ₃ NH NH NH NH NH NI NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ	314	G11- 6C	Mol. Wt.: 316,44
143	H11-3S		315	G12- 6C	H N O Mol. Wt.: 268,31
144	E1-4C	Hol. Wt.: 222,22	316	H1-6C	H N N N N 3 Mol. Wt.: 318,37
145	E2-4C	H N O F Mol. Wt.: 222,22	317	H2-6C	H O Mol. Wt.: 272,35
146	E3-4C	F O F O Mol. Wt.: 240,21	318	H3-6C	N3 HN COOMe Mol. Wt.: 320,34
147	E4-4C	F O Mol. Wt.: 240,21	319	H4-6C	H4 O HN N3 Mol. Wt.: 268,31
148	E5-4C	F N N3 H Mol. Wt.: 236,25	320	E1-6S	Exact Mass: 324.13
149	E6-4C	H N N N N N N S N S	321	E2-6S	Ph Exact Mass: 358.15

150	E7-4C	CI H O Mol. Wt.: 273,12	322	E3-6S	CI Exact Mass: 316.08
151	E8-4C	H N O N3 O Mol. Wt.: 238,67	323	E4-6S	Cl S S N Exact Mass: 322.03
152	E9-4C	CI H N O Nol. Wt.: 252.70	324	E5-6S	N ₃ Exact Mass: 296.13
153	E10-4C	CI H O Mol. Wt.: 273,12	325	E6-6S	F O O F S N H Exact Mass: 318.10
154	E11-4C	OMe H N CI N Mol. Wt.: 268,70	326	E7-6S	F F Exact Mass: 318.10
155	E12-4C	OEt H N O Nol. Wt.: 248,28	327	E8-6S	N ₃
156	F1-4C	OPh H N O No Mol. Wt.: 296,32	328	E9-6S	F O O H Exact Mass: 300.11
157	F2-4C	Meo Mol. Wt.: 264,28	329	E10-6S	P S N H Exact Mass: 300.11
158	F3-4C	H N O Mol. Wt.: 248,28	330	E11-6S	F Exact Mass: 300.11
159	F4-4C	OMe H O N O Nol. Wt.: 234,25	331	E12-6S	F K K K K K K K K K K K K K
160	F5-4C	MeO MeO OMe Mol. Wt.: 294,31	332	F1-6S	F Exact Mass: 314.12

161	F6-4C	H N N N N N N N N N N N N N N N	333	F2-6S	O O N ₃ H Exact Mass: 324.16
162	F7-4C	MeS Mol. Wt.: 250,32	334	F3-6S	MeO Exact Mass: 312.13
163	F8-4C	F ₃ CO Mol. Wt.: 288,23	335	F4-6S	OON N H Exact Mass: 296.13
164	F9-4C	MeO Mol. Wt.: 234,25	336	F5-6S	Exact Mass: 332.13
165	F10-4C	MeO MeO Mol. Wt.: 264,28	337	F6-6S	Q, Q S N H Exact Mass: 332.13
166	F11-4C	PhO N ₃ Mol. Wt.: 296,32	338	F7-6S	O ₂ N S ^N H Exact Mass: 327.10
167	F12-4C	MeO N ₃ Mol. Wt.: 234,25	339	F8-6S	$O_2 N$ Exact Mass: 327.10
168	G1-4C	H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	340	F9-6S	N ₃ Exact Mass: 338.18
169	G2-4C	OPh H N O Cl Mol. Wt.: 330,77	341	F10-6S	S S H Exact Mass: 288.07
170	G3-4C	OCF _{3H} N N N N N N N N S N N S N S	342	F11-6S	O O N ₃ N H Exact Mass: 296.13
171	G4-4C	Mol. Wt.: 232,28	343	F12-6S	CI O N H Exact Mass: 280.11

172	G5-4C	H N N N N N 3 Mol. Wt.: 232.28	344	G1-6S	$\mathbb{I}^{\mathcal{O}}_{H} \mathbb{N}^{\mathcal{O}}_{H} \mathbb{N}^{\mathcal{O}}_{H}$
					Exact Mass: 276.16

References

1. Srinivasan, R.; Tan, L. P.; Wu, H.; Yang, P. -Y.; Kalesh, K. A.; Yao, S. Q. Org. Biol. Chem. 2009, 7, 1821-1828.

Supporting Information-2

Rapid Synthesis of Abelson Tyrosine Kinase Inhibitors using Click Chemistry

Karunakaran A. Kalesh,^a Kai Liu^b and Shao Q. Yao,^{a,b,c,*}

Departments of Chemistry^a and Biological Sciences,^b NUS MedChem Program of the Life Sciences Institute,^c National University of Singapore, Singapore 117543

Contents:

- 1. LC-MS profiles
- 2. ¹H and ¹³C NMR spectra

1. 1. LC-MS profiles of the purified click-inhibitors from the Imatinib analogue library

Gradient : 20 to 100% ACN in 10 min, 100 to 100 till 13 min, to 20 in 13.5 min; C-18 column

W1-SA20

W2-SA13

1. 2. LC-MS profiles of the click-library of ADP- alkyne and the traceless azides

A1-5C

B7-2C

B9-2C

B10-2C

B11-2C

B12-2C

C1-2C

C4-2C

C6-2C

C7-2C

C10-2C

A1-6C

C6-4C

D4-2C

D4-4C

D5-4C

D7-4C

D8-4C

A5-4C

A6-4C

A3-5C

A5-5C

A8-5C

A10-5C

A11-5C

B1-5C

S2-35

B2-5C

B4-5C

B7-5C

B9-5C

m/z

B12-5C

C2-5C

C3-5C

C7-5C

SA-A1-2C

SA-B1-2C

SA-B1-5C

SA-B2-2C

SA-B2-5C

SA-B5-2C

SA-B6-2C

SA-B6-5C

SA-B7-2C

SA-B7-5C

SA-B10-5C

SA-B11-2C

SA-B1-4C

SA-B1-6C

SA-B2-6C

SA-B3-4C

SA-B3-6C

SA-B5-4C

SA-B6-4C

S2-60

SA-B6-6C

SA-B7-4C

SA-B7-6C

mAU(x100) 7.5-<mark>254nm.4</mark>0 NH₂ O P Q 0 Q Ś _/O óн ÓН 5.0-NN NH нó юн O₂N 2.5-0.0-2.5 5.0 7.5 12.5 10.0 15.0 17.5 22.5 25.0 0.0 20.0 27.5 min Inten.(x100,000) 2.0 765.1130 1.0-453.3393 186.2216 588.4351 340.2650 0.0 900 300 400 600 700 200 500 800 m/z 100 Inten.(x100,000) - 226.β912 7.5-763.1181 5.0-112.9868 2.5-0.0 200 300 400 500 600 700 800 900 100 m/z

SA-B8-4C

SA-B8-6C

SA-B10-4C

SA-B10-6C

SA-B11-4C

SA-A1-4C

SA-A3-4C

SA-A3-6C

SA-A4-4C

SA-A4-6C

SA-A5-6C

SA-A6-4C

SA-A6-6C

SA-A7-4C

SA-A7-6C

SA-A8-4C

SA-A9-4C

SA-A9-6C

SA-A10-4C

SA-A10-6C

SA-A12-4C

1. 3. LC-MS profiles of the click-library of Imatinib analogue and the traceless azides

W1-SA2

W1-SA3

W1-SA8

W1-SA13

W1-A31

W1-A32

W1-A41

W2-A31

W2-A41

W2-SA14

W2-SA10

2. NMR Spectra

1H normal range AV300, 106 4.7202 4.3548 4.3466 4.313 5756 3225 2830 25578 25578 2557 1647 1647 1647 1647 1633 11565 11334 11334 11334 1033 0924 009280 009280 2.7655 2.7573 2.7491 2.7481 0<u>-</u>P = ¯q H₂Ń Integral 2.0000 6.0 5.6 5.2 4.8 (ppm) 10.8 10.4 10.0 9.6 9.2 8.8 0.0 8.4 8.0 7.2 6.8 6.4 4.0 0.4 7.6 31P AV300 1767 (ppm)

1H normal range AV300, 106, water elution

13C Standard AC300, Propa.Phos(Pyr),slow, 5%

1H normal range AC300

13C Standard AC300

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2009

1H Water suppression

13C Standard AC300

1H normal range AC300, 256

13C Standard AC300, 256

1H normal range AC300

13C Standard AC300

1H normal range AC300, B3-217

13C Standard AC300, W1

1H normal range AC300

13C Standard AC300

1H normal range AC300

1H normal range AC300, W2

13C Standard AC300, W2

1H normal range AC300, W1-SA20

1H normal range AC300, W2-SA13

