
Evaluation of stereochemically dense morpholine-based scaffolds as proline surrogates in β -turn peptides

Filippo Sladojevich, Antonio Guarna, and Andrea Trabocchi*

Department of Organic Chemistry "Ugo Schiff", University of Florence, Polo Scientifico e Tecnologico, Via della Lastruccia 13, I-50019 Sesto Fiorentino (FI), Italy. Fax: +39 055 4573531; Tel: +39 055 4573507; E-mail: andrea.trabocchi@unifi.it

ELECTRONIC SUPPLEMENTARY INFORMATION

Fig. S1: NOe irradiation of H-6 of compound 1a at 4.44 ppm	S2
Experimental procedures and characterization data for H-Gly-D-Leu-D-Val-OMe, 9a-c and 10a-c	S2-S6
Table S1 : ¹ H chemical shift data for peptides $I - IV$ in CDCl ₃ and CD ₃ CN	S7
Table S2 : ¹³ C chemical shift data for peptides $I - IV$ in CDCl ₃ and CD ₃ CN	S8
Table S3 : ROESY data in CD ₃ CN for compounds $I - IV$	S9
¹ H and ¹³ C NMR spectra of compounds $1 - 11$	S10-S26
¹ H in CD ₃ CN, ¹ H in CDCl ₃ , TOCSY, ROESY and gHSQC spectra of peptides $I - IV$	S27-S42
Computational data for model scaffolds I-IV	S43-S45

Fig. S1 NOe irradiation of H-6 of compound **1a** at 4.44 ppm (NOESY1D, mixing time of 500 ms): the nOe correlations between H-6 and H-2 are not present.

H-Gly-D-Leu-D-Val-OMe. Peptide H-Gly-D-Leu-D-Val-OMe was prepared using standard protocols for solution phase peptide synthesis using Boc-glycine Boc-D-leucine and D-valine methyl ester hydrochlorides as starting materials. $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 8.47 (d, J = 8.0 Hz, 1H, NH), 8.32 (d, J = 8.0 Hz, 1 H, NH), 8.02 (br, 3 H), 4.49 (q, J = 8.0 Hz, 1 H, D-Leu H- α), 4.11 (t, J = 7.2 Hz, 1 H, D-Val H- α), 3.59 (s, 3 H, OCH₃), 2.60 (m, 2 H, Gly H- α), 2.01 (septet, J = 7.2 Hz, 1 H, D-Val H- β), 1.59 (septet, J = 6.8 Hz, 1 H, D-Leu H- γ), 1.41 (t, J = 6.8 Hz, 2 H, D-Leu H- β), 0.88-0.84 (m, 12 H, D-Leu H- δ and D-Val H- γ).

H-Mor-Gly-D-Leu-D-Val-OMe (9a). Tripeptide H-Gly-D-Leu-D-Val-OMe (125 mg, 0.30 mmol) was suspended in CH₂Cl₂ (3 mL) and DIPEA (177 μ L, 1.10 mmol) was added. The mixture was stirred until a clear solution was obtained, and Fmoc-amino acid **8** (100 mg, 0.27 mmol) and TBTU (96 mg, 0.30 mmol) were sequentially added. The reaction mixture was stirred 4 hours at room temperature and then CH₂Cl₂ was evaporated. The resultant oil was dissolved in EtOAc, washed with 1M HCl, 5% Na₂CO₃, brine and dried over anhydrous Na₂SO₄. The solution was filtered and concentrated to dryness to yield a solid that was treated with a 30% Et₂NH in CH₃CN (3 mL). The Fmoc deprotection was monitored by

TLC. When complete conversion was obtained, volatiles were removed under reduced pressure and the residue was eluted over silica gel (Et₂O/MeOH 30:1 to pure MeOH) to yield amine **9a** as a white solid (110 mg, 95%). (Found: C, 56.18; H, 8.55; N, 12.98. C₂₀H₃₆N₄O₆ requires C, 56.06; H, 8.47; N, 13.07%). $[\alpha]_D^{21} = -44.6$ (c 0.5, CHCl₃); δ_H (400 MHz, CDCl₃) 7.50 (br, 1 H, NH), 6.63 (br, 1 H, NH), 6.45 (d, J = 8.4 Hz, 1 H, NH), 4.53-4.43 (m, 2 H), 3.92 (dd, J = 15.6, 5.6 Hz, 1 H), 3.88-3.79 (m, 2 H), 3.73 (s, 3 H, OCH₃), 3.63 (t, J = 12.0 Hz, 1 H), 3.45 (m, 1 H), 3.17 (d, J = 8.0 Hz, 1 H), 2.97 (t, J = 12.0 Hz, 1 H), 2.1 (m, 1 H, D-Val H- β), 1.83 (br, 1 H, H-4), 1.55 (m, 2 H, D-Leu H- β), 1.53 (t, J = 8.0 Hz, 1 H, D-Leu H- γ); δ_C (60 MHz, CDCl₃) 172.2 (s, CO), 172.1 (s, CO), 171.9 (s, CO), 168.7 (s, <u>CO</u>₂Me), 74.8, (d), 67.3 (t), 65.4 (d, C-2), 57.2 (d), 52.1 (d), 51.9 (q, OCH₃), 44.2 (t), 42.6 (t), 41.2 (t), 31.1 (d), 24.6 (d), 22.8 (q, CH₃), 22.0 (q, CH₃), 18.9 (q, CH₃), 18.3 (q, CH₃), 17.9 (q, CH₃). ESI-MSMS *m/z* 429.47 (M⁺+1, 16), 397.19 (M⁺-OMe, 28), 298.11 [M⁺-(D-Val₂OMe), 100].

H-[(6S)-methoxy]-Mor-Gly-D-Leu-D-Val-OMe (9b). Tripeptide H-Gly-D-Leu-D-Val-OMe (120 mg, 0.29 mmol) was suspended in CH₂Cl₂ (3 mL) and DIPEA (181 µL, 1.06 mmol) was added. The mixture was stirred until a clear solution was obtained, then 4 (105 mg, 0.26 mmol) and TBTU (93 mg, 0.29 mmol) were sequentially added. The reaction mixture was stirred 4 hours at room temperature, then CH₂Cl₂ was evaporated. The resultant oil was dissolved in EtOAc, washed with 1M HCl, 5% Na₂CO₃, brine and dried over anhydrous Na₂SO₄. The solution was filtered and concentrated to dryness to yield a solid that was treated with 30% Et₂NH in CH₃CN (3 mL). The Fmoc deprotection was monitored by TLC, and after complete conversion was obtained, volatiles were removed under reduced pressure and the residue was eluted over silica gel (Et₂O/MeOH 30:1 to pure MeOH) to yield amine **9b** as a white solid (114 mg, 96%). (Found: C, 55.12; H, 8.42; N, 12.13. C₂₁H₃₈N₄O₇ requires C, 55.00; H, 8.35; N, = 8.4 Hz, 1 H, NH), 6.44 (d, J = 8.8 Hz, 1 H, NH), 4.55 (s, 1 H, H-6), 4.50 (dd, J = 8.8, 4.0 Hz, 1 H), 4.46-4.41 (m, 1 H), 3.98 (dd, J = 16.0, 6.0 Hz, 1 H), 3.91 (m, 1 H), 3.84 (dd, J = 16.0, 6.0 Hz, 1 H), 3.73 (s, 3 H, CO₂CH₃), 3.39 (s, 3 H, OCH₃), 3.13 (d, *J* = 9.6 Hz, 1 H), 2.96 (dd, *J* = 13.2, 3.6 Hz, 1 H), 2.89 $(d, J = 13.2 \text{ Hz}, 1 \text{ H}), 2.10 \text{ (m 1 H, D-Val H-}\beta), 1.71 \text{ (br, 1 H, H-}4), 1.69-1.61 \text{ (m, 2 H, D-Leu H-}\beta),$ 1.55-1.50 (m, 1 H, D-Leu H- γ), 1.25 (d, J = 6.4 Hz, 3 H, CH₃-C-2), 0.94-0.88 (m, 12 H, D-Leu H- δ and D-Val H-γ); δ_C (60 MHz, CDCl₃) 172.0 (s, CO), 171.8 (s, CO), 171.4 (s, CO), 168.5 (s, <u>CO</u>₂Me), 95.9 (d, C-6), 65.7 (t), 65.7 (d), 64.3 (d), 57.2 (d), 54.5 (q, OCH₃), 52.1 (d), 51.9 (d), 47.2 (t), 42.8 (t), 41.3

(t), 31.1 (d), 24.7 (d), 22.8 (q), 22.2 (q), 19.0 (q), 18.5 (q), 17.9 (q). ESI-MSMS *m*/*z* 459.46 (M⁺+1, 67), 427.00 (M⁺-OMe, 100), 322.23 [M⁺-(OMe)Mor+Na, 100].

H-[(6R)-methoxy]-Mor-Gly-D-Leu-D-Val-OMe (9c). Tripeptide H-Gly-D-Leu-D-Val-OMe (120 mg, 0.29 mmol) was suspended in CH₂Cl₂ (3 mL) and DIPEA (181 μ L, 1.06 mmol) was added. The mixture was stirred until a clear solution was obtained and Fmoc-amino acid 5 (105 mg, 0.26 mmol) and TBTU (93 mg, 0.29 mmol) were sequentially added. The reaction mixture was stirred 4 hours at room temperature and then CH₂Cl₂ was evaporated. The resultant oil was dissolved in EtOAc, washed with 1M HCl, 5% Na₂CO₃, brine and dried over anhydrous Na₂SO₄. The solution was filtered and concentrated to dryness to yield a solid that was treated with 30% Et₂NH in CH₃CN (3 mL). The Fmoc deprotection was monitored by TLC. When complete conversion was obtained, volatiles were removed under reduced pressure and the residue was eluted over silica gel (Et₂O/MeOH 30:1 to pure MeOH) to yield amine **9c** as a white solid (90 mg, 75%). (Found: C, 55.07; H, 8.39; N, 12.17. C₂₁H₃₈N₄O₇ requires C, 55.00; H, 8.35; N, 12.22%). $[\alpha]_D^{20} = -36.5$ (c 0.84, CH₂Cl₂); δ_H (400 MHz, CDCl₃) 7.34 (t, J = 7.2Hz, 1 H, Gly NH), 6.54 (d, J = 12.4, 1 H, D-Leu NH), 6.39 (d, J = 12.4, 1 H, D-Val NH), 4.51 (dd, J = 8.7, 4.8 Hz, 1 H, D-Val H- α), 4.46-4.43 (m, 2 H, D-Leu H- α + H-6), 4.01 (dd, J = 15.9, 6.1, 1 H, Gly H- α), 3.81 (dd, J = 15.9, 5.5 Hz, 1, Gly H- α), 3.72 (s, 3 H, CO₂CH₃), 3.61 (dq, J = 8.8, 6.2 Hz, 1 H, H-2), 3.50 (s, 3 H, OCH₃), 3.08 (d, J = 8.8 Hz, 1 H, H-3), 3.03 (dd, J = 11.7, 2.4 Hz, 1 H, H-5), 2.61 (dd, J = 11.7, 2.4 Hz, 1 H, H-5), 2.411.6, 8.5, Hz, 1 H, H-5), 2.15 (m, 1 H, D-Val H- β), 1.66 (m, 3 H, D-Leu H- β/γ), 1.29 (d, J = 6.3 Hz, 3 H, CH₃-C-2), 0.95-0-88 (m, 12 H, D-Leu H- δ and D-Val H- γ). δ_{C} (50 MHz, CDCl₃) 172.2 (s, CO), 172.0 (s, CO), 171.4 (s, CO), 168.4 (s, CO₂Me), 100.4 (d, C-6), 74.8, (d), 73.8 (d), 64.1 (d), 57.1 (d), 56.1 (q, OCH₃), 52.2 (d), 51.8 (d), 48.0 (t), 42.6 (t), 41.5 (t), 31.2 (d), 24.7 (d), 22.8 (q, CH₃), 22.2 (q, CH₃), 19.0 (q, CH₃), 18.1 (q, CH₃), 18.0 (q, CH₃). ESI-MSMS m/z 481.85 (M⁺+Na, 14), 449.33 (M⁺-OMe+Na, 93), 322.23 [M⁺-(OMe)Mor+Na, 100].

H-D-Val-Mor-Gly-D-Leu-D-Val-OMe (10a). 2,6-Lutidine (112 μ L, 0.96 mmol) was added to a solution of peptide 9a (135 mg, 0.32 mmol) in CH₂Cl₂ (3 mL). Solid Fmoc-D-Val-Cl (114 mg, 0.32 mmol) was added in small portions. The reaction mixture was stirred at room temperature for 3 hours and dichloromethane was then removed under reduced pressure. The resultant oil was dissolved in EtOAc, washed with 1M HCl, 5% Na₂CO₃, brine and dried over anhydrous Na₂SO₄. The solution was filtered and concentrated to dryness to yield a solid that was treated with 30% Et₂NH in CH₃CN (3 mL). The Fmoc deprotection was monitored by TLC, until complete conversion was obtained, then volatiles were removed under reduced pressure and the residue was eluted over silica gel (Et₂O/MeOH 30:1 to

pure MeOH) to yield amine **10a** as a white solid (140 mg, 83%). (Found: C, 56.99; H, 8.56; N, 13.21. $C_{25}H_{45}N_5O_7$ requires C, 56.91; H, 8.60; N, 13.27%). $[\alpha]_D^{21} = +10.5$ (c 1.00, CHCl₃); δ_H (400 MHz, CDCl₃) 7.15 (d, J = 7.6 Hz, 1H, NH), 7.06 (br, 1 H, NH), 6.55 (d, J = 8.4 Hz, 1 H, NH), 4.85 (m, 2 H), 4.34 (m, 1 H), 4.28 (d, J = 5.6 Hz, 1 H), 3.97 (d, J = 6.0 Hz, 2 H), 4.0-3.82 (m, 1 H), 3.80-3.62 (m, 2 H), 3.73 (s, 3H, CO₂CH₃), 3.63-3.57 (m, 1 H), 3.50 (d, J = 6.4 Hz, 1 H), 2.17-2.04 (m, 1 H), 1.97-1.82 (m, 4 H), 1.68-1.65 (m, 2 H), 1.32 (d, J = 6.4 Hz, 3 H), 1.02-0.88 (m, 18 H, D-Leu H- δ and D-Val H- γ). δ_C (60 MHz, CDCl₃) δ 176.3 (s, CO), 171.9 (s, CO), 171.8 (s, CO), 169.6 (s, CO), 169.1 (s, <u>CO₂Me)</u>, 69.3 (d), 61.1 (d), 59.9 (d), 57.3 (d), 56.6 (q, OCH₃), 20.0 (q, CH₃), 19.0 (q, CH₃), 17.9 (q, CH₃), 17.1 (q, CH₃). ESI-MSMS *m*/*z* 527.52 (M⁺, 18), 496 (18, M⁺-OMe), 397.07 (M⁺-D-Val₂OMe, 78), 269.25 [M⁺-(D-Val₂OMe)-(C=O), 35], 284.15 [M⁺-(D-Leu-D-Val₂OMe), 4], 227.04 [M⁺-(Gly-D-Leu-D-Val₂OMe), 100].

H-D-Val-[(6S)-methoxy]-Mor-Gly-D-Leu-D-Val-OMe (10b). 2,6-Lutidine (85 µL, 0.73 mmol) was added to a solution of peptide 9b (118 mg, 0.24 mmol) in CH₂Cl₂ (3 mL). Solid Fmoc-D-Val-Cl (86 mg, 0.24 mmol) was added in small portions. The reaction mixture was stirred at room temperature for 4 hours and dichloromethane was then removed under reduced pressure. The resultant oil was dissolved in EtOAc, washed with 1M HCl, 5% Na₂CO₃, brine and dried over anhydrous Na₂SO₄. The solution was filtered and concentrated to dryness to yield a solid that was treated with 30% Et₂NH in CH₃CN (3 mL). The Fmoc deprotection was monitored by TLC. When complete conversion was obtained, volatiles were removed under reduced pressure and the residue was eluted over silica gel (Et₂O/MeOH 30:1 to pure MeOH) to yield amine 10b as a white solid (114 mg, 85%). (Found: C, 56.21; H, 8.61; N, 12.45. $C_{26}H_{47}N_5O_8$ requires C, 56.00; H, 8.49; N, 12.56%). $[\alpha]_D^{21} = +7.5$ (c 5.50, CH₃CN); δ_H (400 MHz, CDCl₃) 7.11 (d, J = 7.6 Hz, 2 H, NH), 6.56 (d, J = 8.8 Hz, 1 H, NH), 4.81 (dd, J = 7.6, 5.6 Hz, 1 H, H-6), 4.42 (m, 2 H), 4.31 (dt, J = 16.0, 6.4 Hz, 1 H), 4.05 (dd, J = 18.0, 9.6 Hz, 2 H), 3.98 (dd, J = 14.0, 5.6 Hz, 1 H), 3.85 (dd, J = 17.2, 6.0 Hz, 1 H), 3.71 (s, 3 H, CO₂CH₃), 3.53 (d, J = 5.6 Hz, 1 H), 3.42 (dd, J = 17.2, 6.0 Hz, 1 14.4, 8.4 Hz, 1 H), 3.41 (s, 3 H, CO_2CH_3), 2.07 (septet, J = 6.8 Hz, 1 H), 1.98 (br, 2 H, NH_2), 1.89 (septet, J = 6.4 Hz, 1 H), 1.67 (d, J = 6.4, 2 H, D-Leu H- β), 1.35 (d, J = 6.4 Hz, 3 H, CH₃-C-2), 0.99-0.86 (m, 18 H, D-Leu H- δ and D-Val H- γ). δ_{C} (60 MHz, CDCl₃) 175.3 (s, CO), 171.8 (s, CO), 171.7 (s, CO), 169.4 (s, CO), 169.0 (s, CO₂Me), 97.2 (d, C-6), 63.9 (d), 63.0 (d), 57.3 (d), 56.4 (d), 55.0 (q, OCH₃), 52.0 (d), 51.7 (d), 44.1 (t), 42.9 (t), 40.0 (t), 31.8 (q, CH₃), 30.9 (d), 24.6 (d), 23.0 (q, CH₃), 22.0

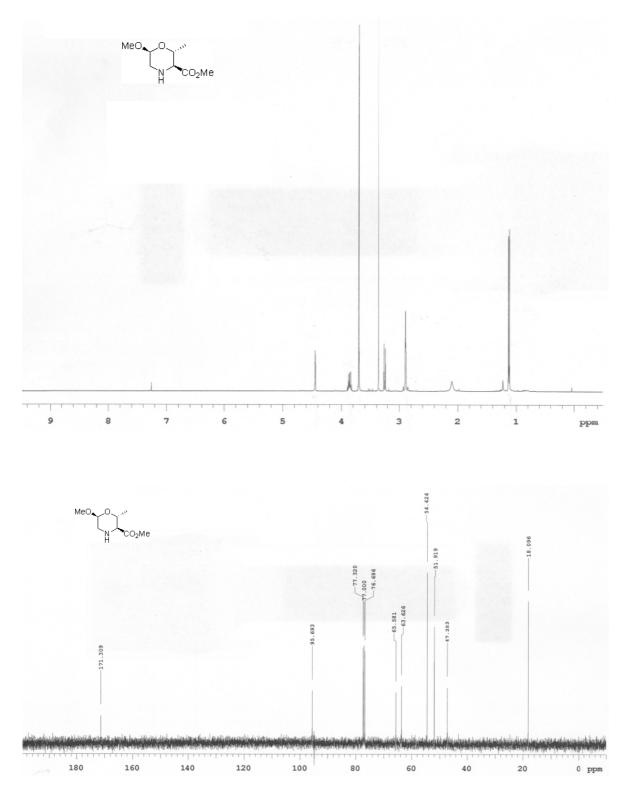
(q, CH₃), 19.9 (q, CH₃), 19.0 (q, CH₃), 17.8 (q, CH₃), 17.0 (q, CH₃). ESI-MSMS *m*/*z* 557.92 (M⁺+1, 10), 526.23 (M⁺-OMe+1, 100).

H-D-Val-[(6R)-methoxy]-Mor-Gly-D-Leu-D-Val-OMe (10c). 2,6-Lutidine (85 µL, 0.57 mmol) was added to a solution of peptide 9c (80 mg, 0.16 mmol) in CH₂Cl₂ (3 mL). Solid Fmoc-D-Val-Cl (57 mg, 0.16 mmol) was added in small portions. The reaction mixture was stirred at room temperature for 4 hours and dichloromethane was then removed under reduced pressure. The resultant oil was dissolved in EtOAc, washed with 1M HCl, 5% Na₂CO₃, brine and dried over anhydrous Na₂SO₄. The solution was filtered and concentrated to dryness to yield a solid that was treated with 30% Et₂NH in CH₃CN (3 mL). The Fmoc deprotection was monitored by TLC. When complete conversion was obtained, volatiles were removed under reduced pressure and the residue was eluted over silica gel (Et₂O/MeOH 30:1 to pure MeOH) to yield amine 10c as a white solid (87 mg, 98%). (Found: C, 56.13; H, 8.53; N, 12.51. $C_{26}H_{47}N_5O_8$ requires C, 56.00; H, 8.49; N, 12.56%). $[\alpha]_D^{21} = +2.3$ (c 1.0, CH₃CN); ¹H-NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.2 Hz, 1 H, NH), 6.71 (br, 1 H, NH), 4.80 (t, *J* = 2.8 Hz, 1 H, H-6), 4.45-4.39 (m, 2 H), 4.2 (q, J = 6.4 Hz, 1 H), 4.12 (d, J = 8.4 Hz, 1 H), 4.08 (d, J = 7.2 Hz, 1 H), 3.80 (dd, J = 17.2, 5.2Hz, 1 H), 3.75-3.67 (m, 2 H), 3.71 (s, 3 H, CO₂CH₃), 3.42 (s, 3 H, CO₂CH₃), 3.37 (d, J = 6.4 Hz, 1 H), 2.14 (septet, J = 6.8 Hz, 1 H), 2.04 (septet, J = 6.0 Hz, 1 H), 1.71 (br, 2 H, NH₂), 1.32 (d, J = 6.0 Hz, 3 H, CH₃-C-2), 0.96-0.80 (m, 18 H, D-Leu H- δ and D-Val H- γ). δ_{Γ} (60 MHz, CDCl₃) 176.5 (s, CO), 171.8 (s, CO), 171.7 (s, CO), 169.7 (s, CO), 169.2 (s, CO₂Me), 97.1 (d, C-6), 68.1 (d), 61.9 (d), 57.2 (d), 56.7 (d), 55.2 (q, OCH₃), 52.0 (d), 51.8 (t), 45.2 (t), 43.0 (t), 39.7 (q, CH₃), 31.0 (d), 24.6 (d), 23.0 (q, CH₃), 21.9 (q, CH₃), 20.1 (q, CH₃), 19.3 (q, CH₃), 19.0 (q, CH₃), 17.8 (q, CH₃), 16.7 (q, CH₃). ESI-MSMS *m/z*. 558.40 (M⁺+1, 15), 526.10 (M⁺-OMe+1, 100).

		I		i for peptides I – IV in C II		III		IV	
	CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN	
Boc	1.48	1.42	1.48	1.42	1.46	1.42	1.49	1.43	
D-Ala NH	5.32	5.71	5.29	5.63	5.32	5.67	5.27	5.73	
D-Ala H-α	4.24	4.13	4.30	4.16	4.26	4.13	4.12	4.15	
D-Ala H-β	1.32	1.23	1.31	1.20	1.32	1.20	1.32	1.22	
D-Val ₁ NH	7.65	7.37	7.79	7.60	7.68	7.55	7.50	7.23	
$D-Val_1$ H- α	4.48	4.56	4.49	4.58	4.56	4.55	4.38	4.62	
$D-Val_1 H-\beta$	2.16	2.06	2.16	2.07	2.19	2.14	2.15	2.12	
$D-Val_1 H-\gamma$	1.03	0.96	0.97	0.87	0.98	0.88	0.97	0.97	
H-2	4.42	3.87-3.66	4.35-4.14	4.15-4.01	4.27	4.18-4.13	5.13-4.49	5.00-4.97	
CH ₃ -2	1.33	1.25	1.35	1.30	1.33	1.27	1.32	1.23	
H-3	4.35	3.86-3.67	4.31	4.18	4.15	4.18-4.13	4.87	4.63	
H-5	3.78-3.75	3.62-3.59	4.16-3.37	4.20-3.24	3.96-3.76	3.84-3.76	5.96	5.94	
H-6	3.90-3.74	3.60	4.85	4.86	4.83	4.84	6.44	6.46	
OCH ₃ -6	-	-	3.43	3.36	3.45	3.40	-	-	
Gly NH	7.08	7.35	6.79	7.30	6.72	7.25	7.50	7.47	
Gly H-α	3.99-3.91	3.76	4.15-3.72	3.85,3.55	4.07-3.78	3.80,3.64	3.72	3.78	
D-Leu NH	7.11	7.13	7.16	7.28	7.40	7.40	6.53	6.61	
D-Leu H-α	4.43	4.44	4.42	4.46	4.44	4.48	4.39	4.36	
D-Leu H-β	1.69	1.68-1.53	1.70	1.73-1.60	1.72	1.72-1.59	1.70-1.59	1.55	
D-Leu H-γ	1.69	1.68-1.53	1.70	1.73-1.58	1.72	1.71	1.59	1.41	
D-Leu H-δ	0.98	0.92	0.95	0.92	0.96	0.90	0.94	0.91	
D-Val ₂ NH	6.69	7.01	6.71	7.02	6.62	7.03	6.74	6.92	
$D-Val_2$ H- α	4.49	4.27	4.49	4.25	4.49	4.25	4.49	4.27	
$D-Val_2 H-\beta$	2.18	2.10	2.18	2.07	2.31	2.09	2.19	2.10	
$D-Val_2$ H- γ	0.94	0.90	0.94	0.90	0.94	0.90	0.94	0.91	
CO ₂ CH ₃	3.76	3.67	3.76	3.67	3.76	3.68	3.76	3.67	

Table S1. ¹H chemical shift data for peptides I - IV in CDCl₃ and CD₃CN

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2009


Table S2.	¹³ C chei	mical shi	ft data f	or peptid	es I – IV i	in CDCl ₃	and CD ₃ C	CN
		Ι		II	II	I	IV	7
	CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN
Boc	28.2	27.5	27.8	27.5	27.8	27.6	28.5	27.5
D-Ala NH	-	-	-	-	-	-	-	-
D-Ala C-α	50.1	49.8	50.1	49.7	49.8	49.8	49.4	49.8
D-Ala C-β	17.9	16.9	19.2	17.5	18.5	17.6	16.5	16.6
D-Val ₁ NH	-	-	-	-	-	-	-	-
$D-Val_1 C-\alpha$	55.1	54.1	54.7	53.7	54.4	54.1	55.1	54.7
$D-Val_1 C-\beta$	30.8	30.1	30.8	30.1	30.2	29.8	29.5	29.8
$D-Val_1 C-\gamma$	18.2	18.5	18.6	18.7	22.5	17.9	21.5	22.2
C-2	68.7	60.4	62.7	63.0	67.3	67.3	57.7	69.7
CH ₃ -2	17.8	17.0	18.9	17.8	19.2	18.4	16.8	16.7
C-3	60.1	42.5	64.0	63.7	61.7	62.0	56.4	56.4
C-5	42.5	51.5	44.1	43.8	45.1	42.5	102.5	103.9
C-6	60.1	42.4	97.2	97.2	97.2	97.2	129.4	130.5
OCH ₃	-	-	55.1	54.1	54.7	54.4		-
Gly NH	-	-	-	-	-	-	-	-
Gly C-α	43.1	42.5	43.1	42.1	42.8	42.5	42.7	42.8
D-Leu NH	-	-	-	-	-	-	-	-
D-Leu C-α	51.8	51.1	51.7	50.7	51.7	50.8	51.7	51.1
D-Leu C-β	39.8	24.2	39.8	40.1	39.4	40.1	39.8	40.5
D-Leu C-y	24.5	17.5	24.5	24.2	24.2	24.2	24.2	27.5
D-Leu C-δ	19.2	17.3	19.5	22.2	17.9,17.5	20.5	18.5,17.5	17.9
D-Val ₂ NH	-	-	-	-	-	-	-	-
$D-Val_2 C-\alpha$	57.4	57.7	57.7	57.7	56.7	57.7	56.7	57.4
$D-Val_2 C-\beta$	30.8	29.8	30.8	30.1	30.2	29.8	30.5	29.8
$D-Val_2 C-\gamma$	22.8	20.9	22.8	20.9	21.5	20.6	21.5	20.5
CO ₂ CH ₃	52.1	51.4	52.1	51.1	51.7	51.4	52.1	51.4

Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2009

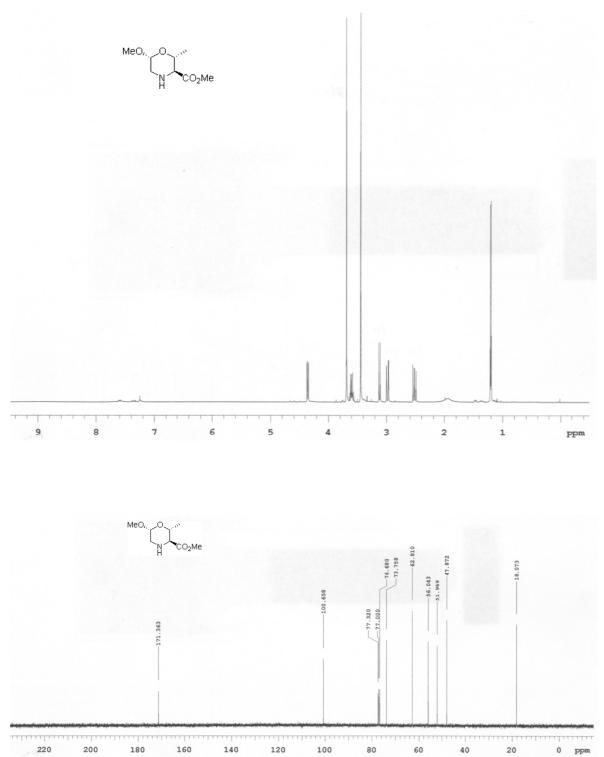
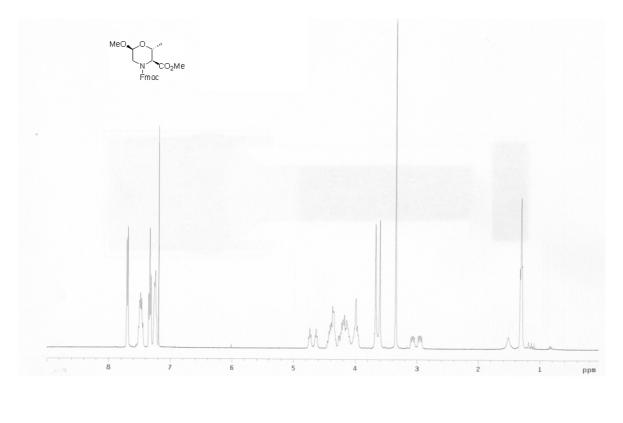
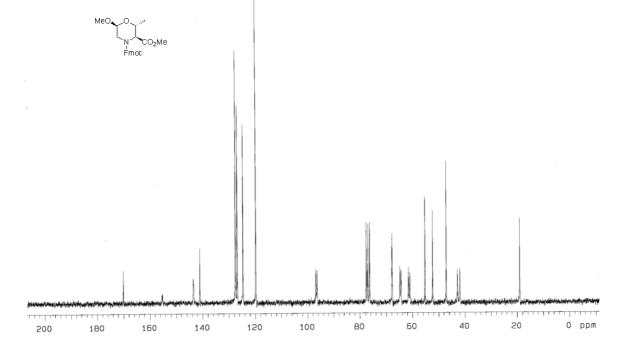
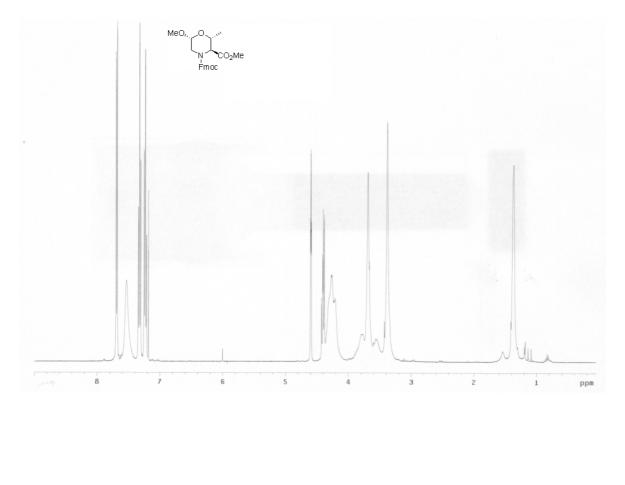
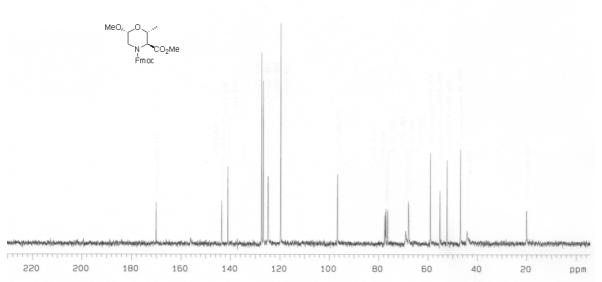

ROESY cross-peaks	Ι	II	III	IV
$D-Val_1 H-\alpha / H-5$	4.56 / 3.62-3.59	4.58 / 4.20	4.55 / 3.84	-
$D-Val_1 NH / D-Ala H-\alpha$	7.37 / 4.13	7.60 / 4.16	7.55 / 4.13	7.23 / 4.15
D -Val ₁ NH / D-Ala H- β	-	7.60 / 1.20	7.55 / 1.20	-
H-2 / H-6	-	-	4.16 / 4.84	-
Gly NH / H-2	7.35 / 3.87	7.30 / 4.07	7.25 / 4.15	7.47 / 4.98
Gly NH / D Leu H- α	-	7.30 / 4.44	-	-
Gly H-a / H-3	-	-	3.81 / 4.18	-
Gly NH / CH ₃ -2	7.35 / 1.25	-	7.25 / 1.27	-
D-Leu NH / Gly H-α	-	7.28 / 3.57	7.40 / 3.80-3.65	6.61 / 3.78
D-Leu NH / Gly NH	-	-	7.40 / 7.25	6.61 / 7.47
D -Val ₂ NH / D-Leu H- α	7.01 / 4.44	7.02 / 4.46	7.03 / 4.48	6.92 / 4.36

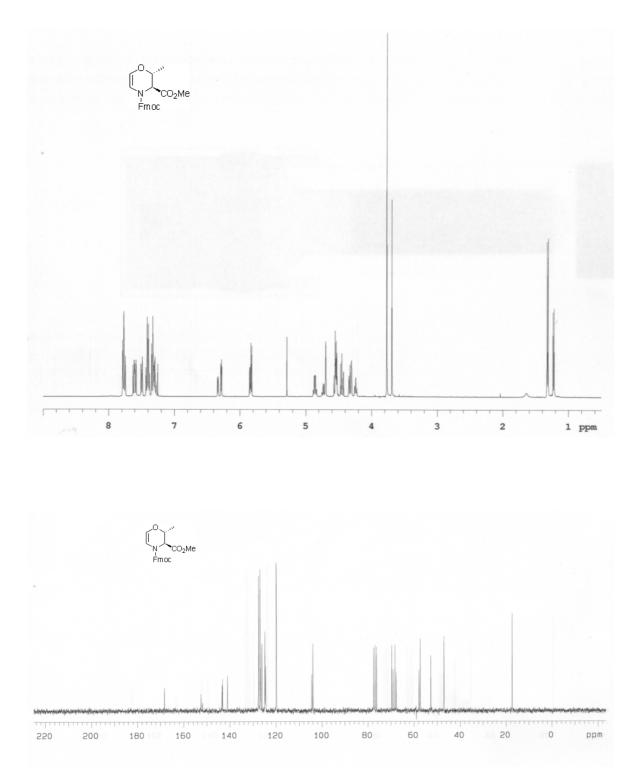
Table S3. ROESY data in CD₃CN for compounds I-IV.

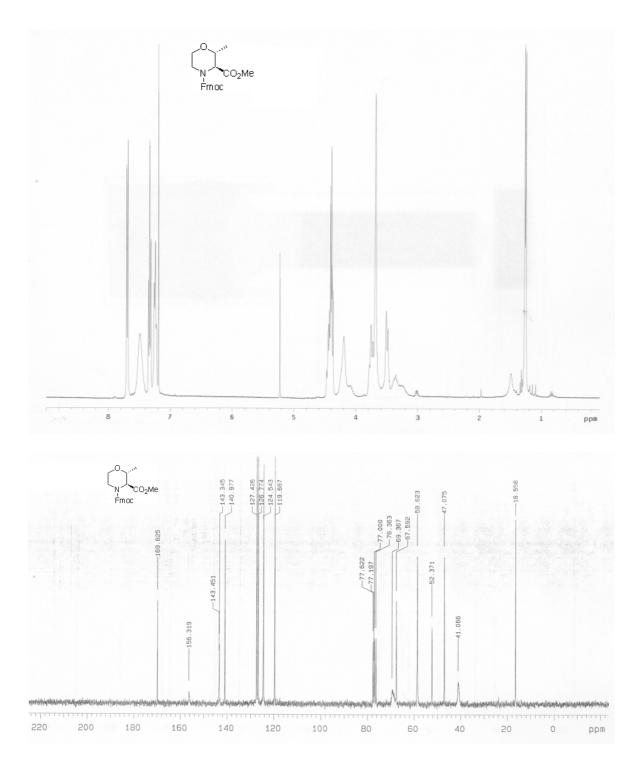

Compound 1a

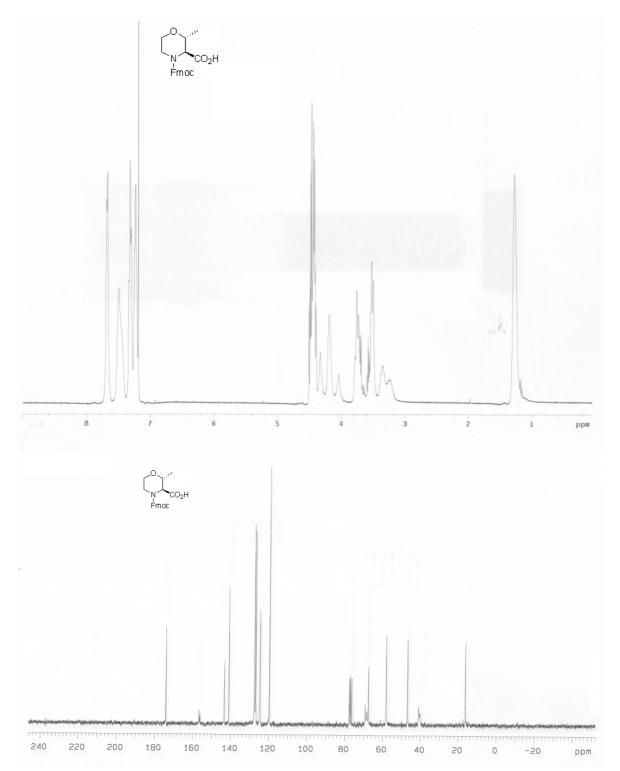


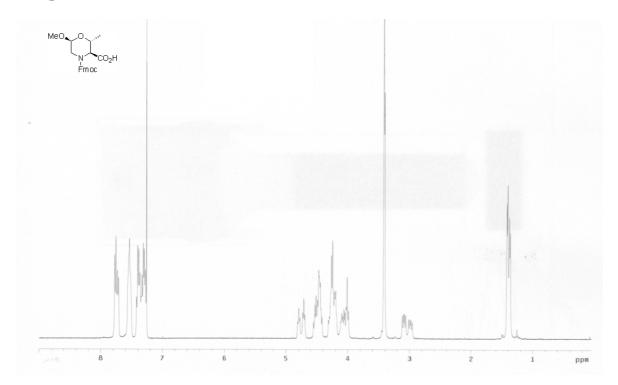

Compound 1b

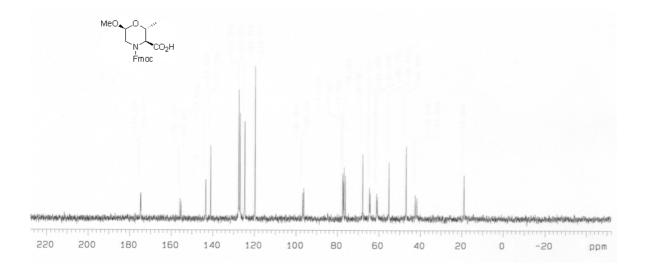


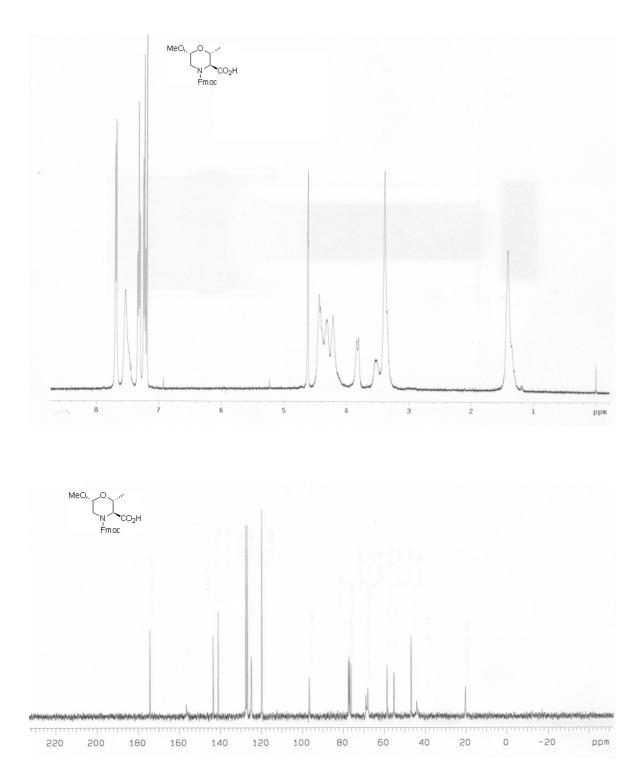

S11

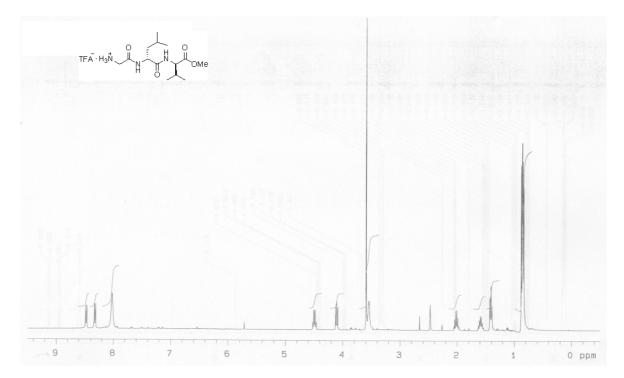


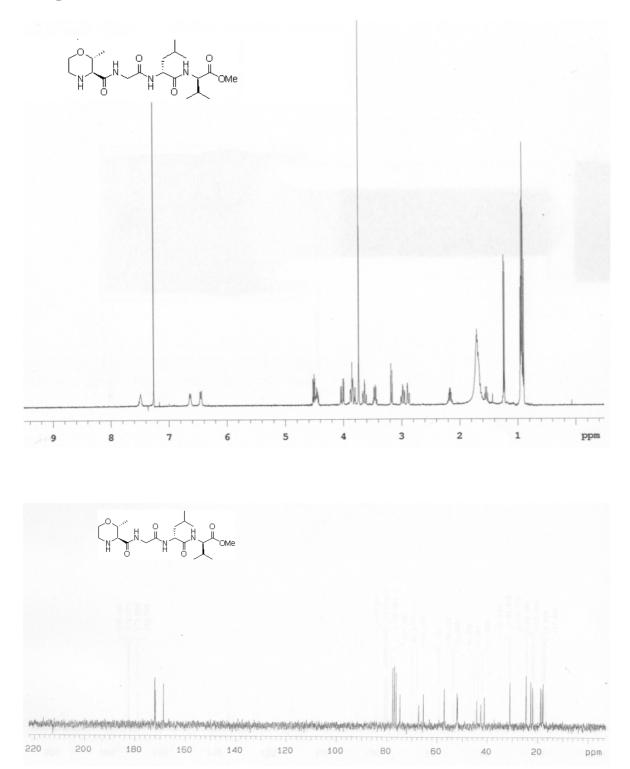


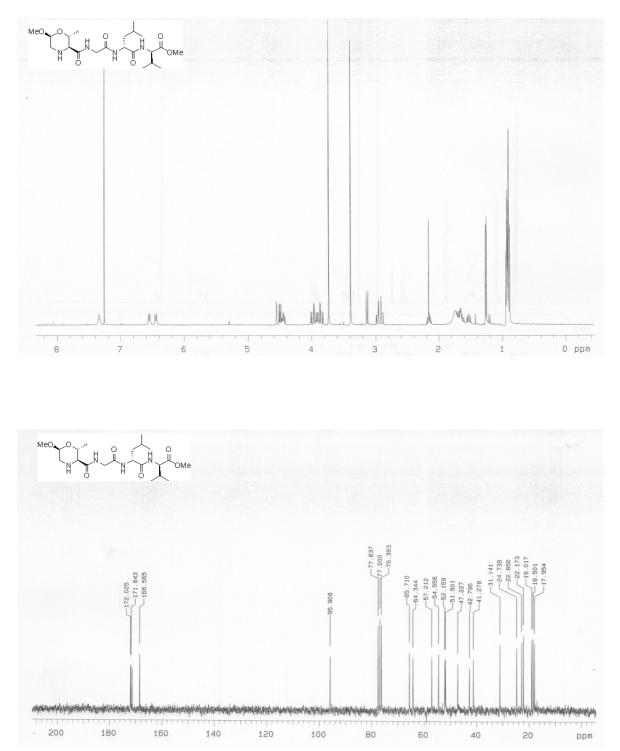


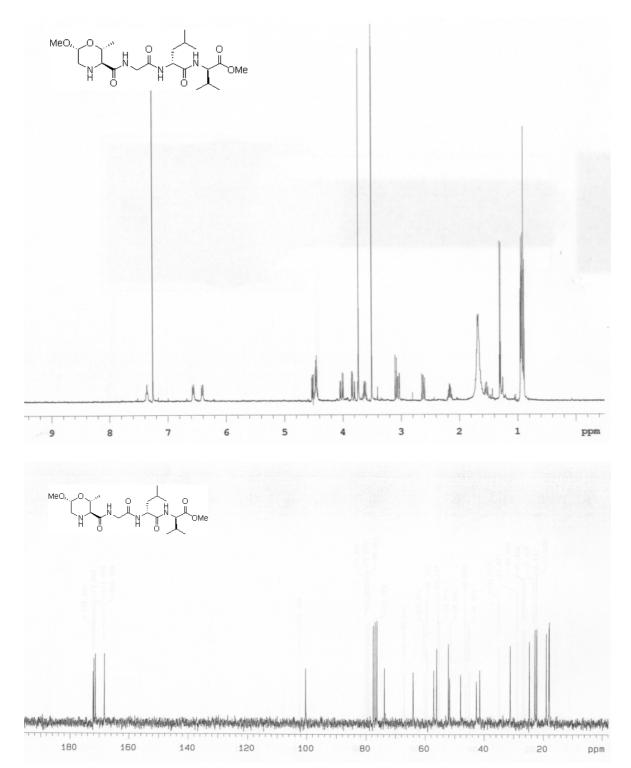


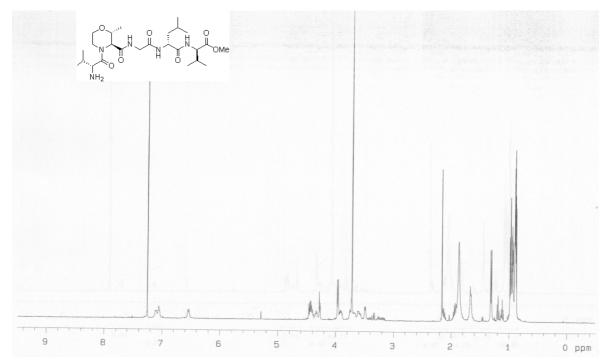


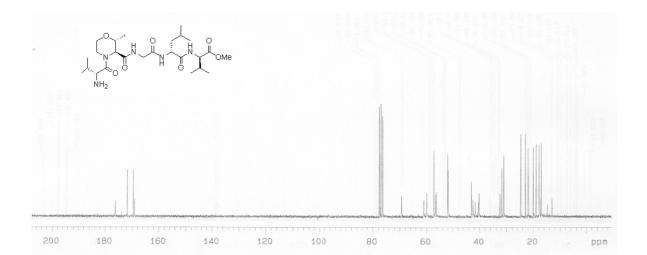




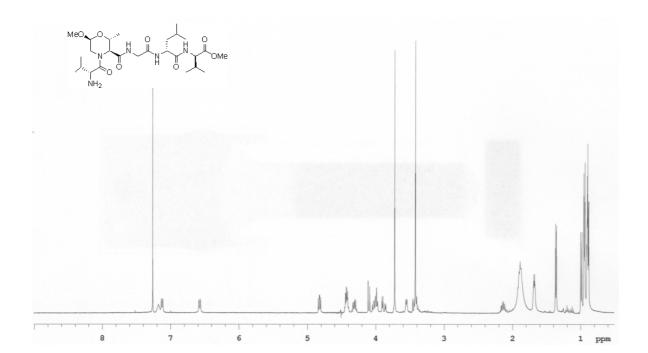

Peptide Gly-D-Leu-D-Val-OMe

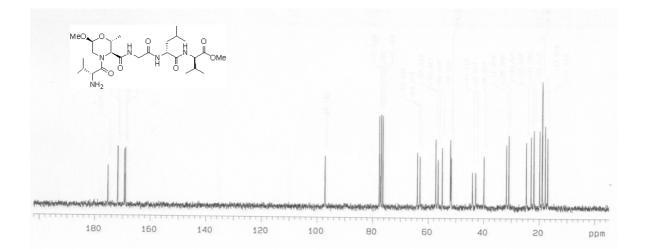

Compound 9a

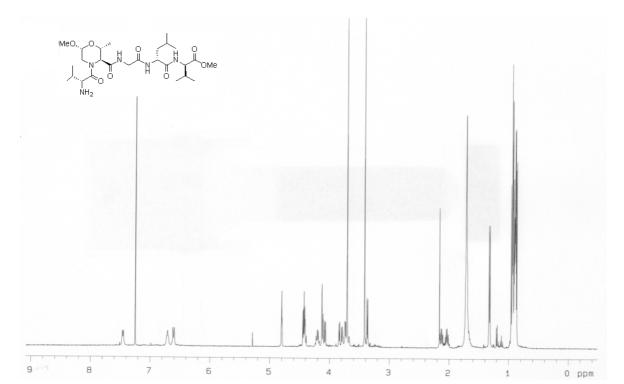

Compound 9b

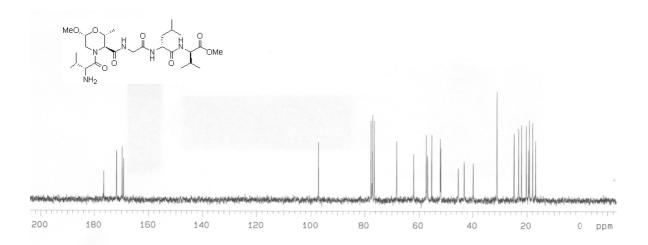


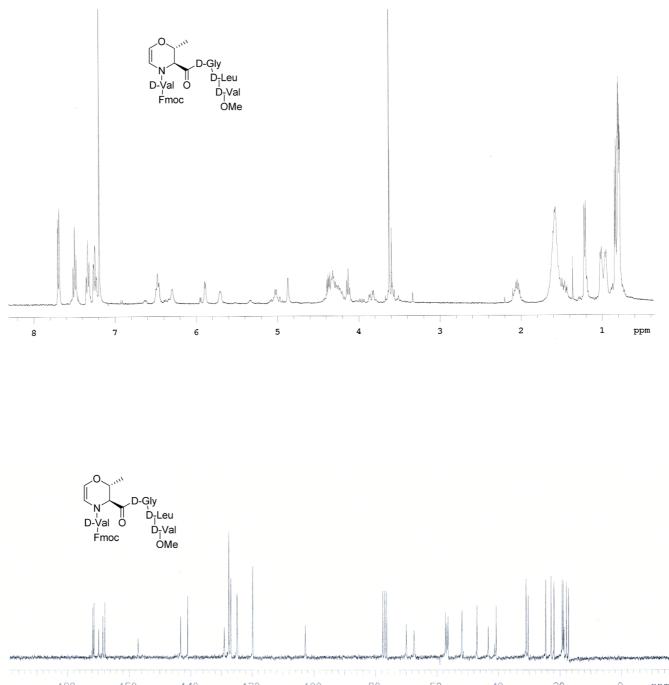
Compound 9c



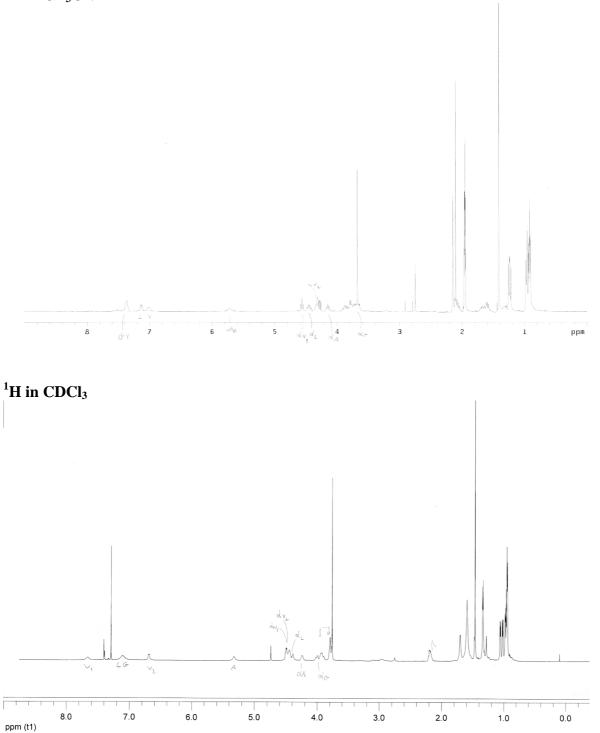

Compound 10a

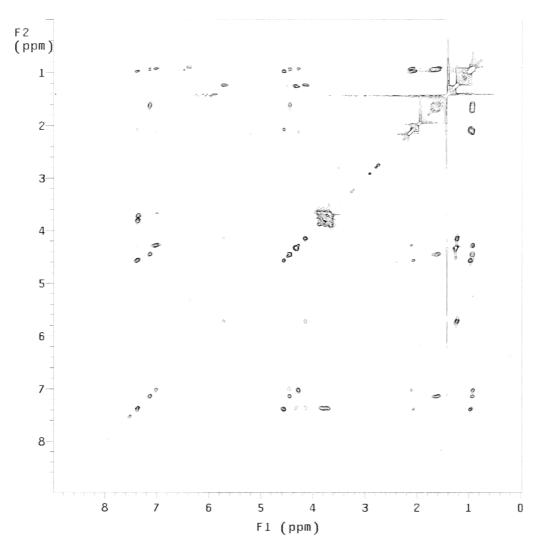



Compound 10b

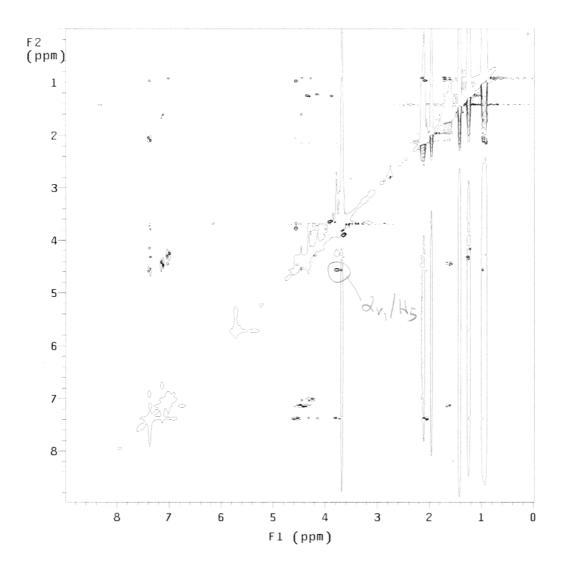


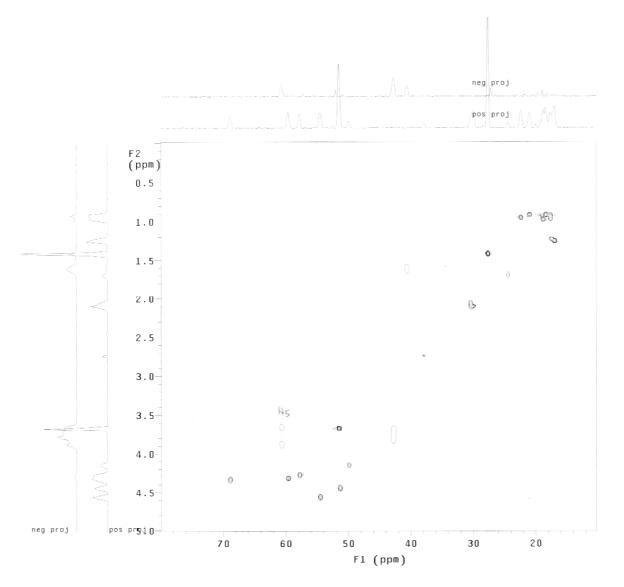
Compound 10c



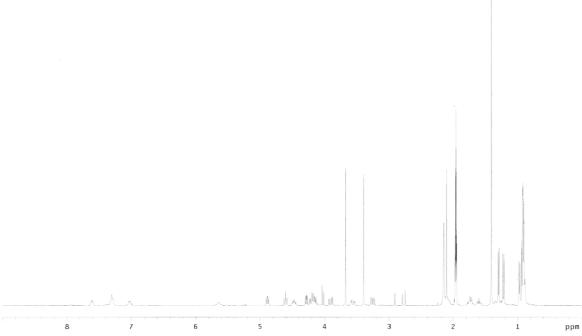

180 160 140 120 100 80 60 40 2**0** 0 ppm

Compound I

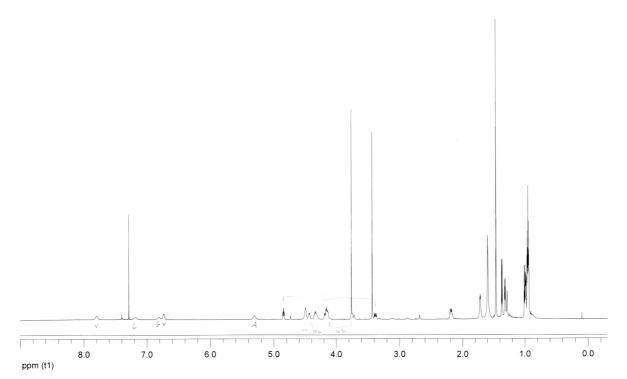



TOCSY

ROESY



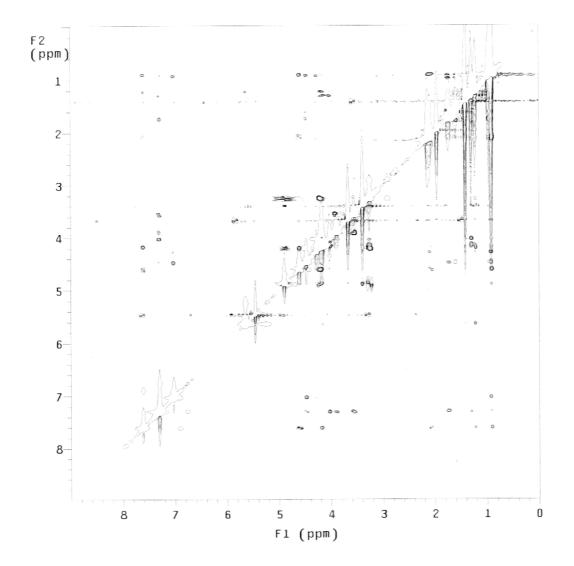
gHSQC



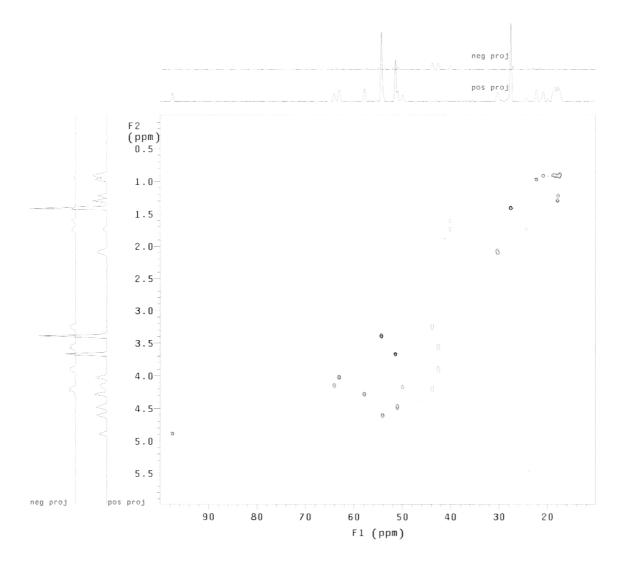
Compound II



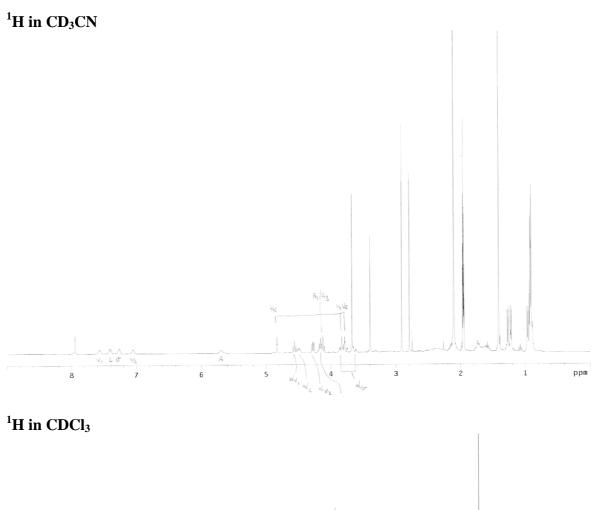
¹H in CDCl₃

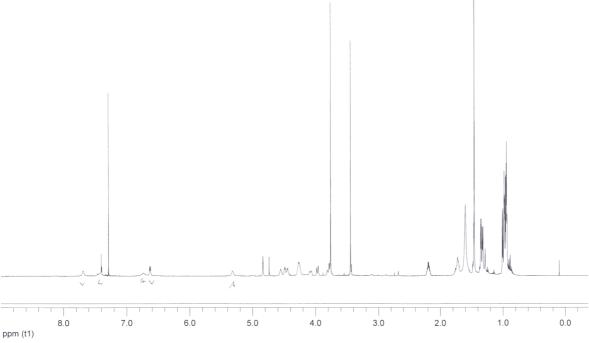


TOCSY

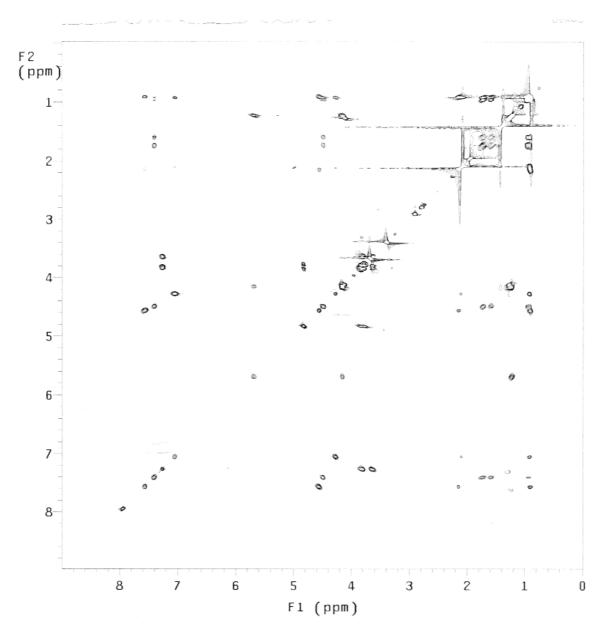


Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is The Royal Society of Chemistry 2009

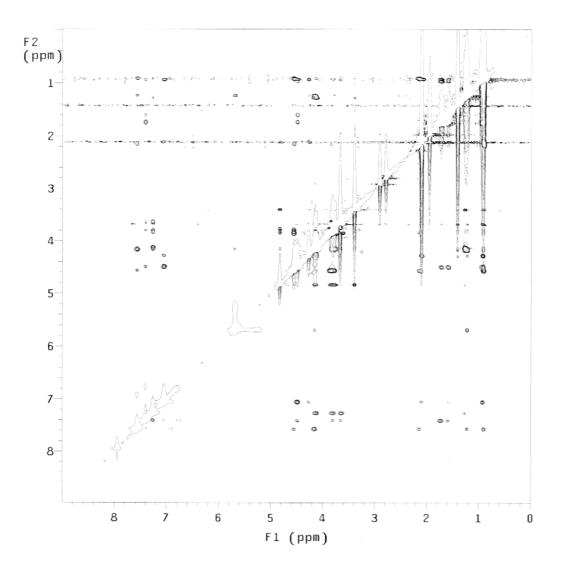

ROESY

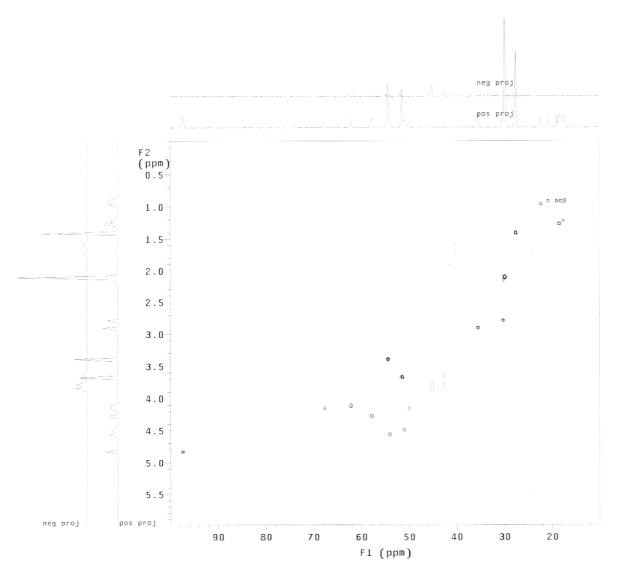


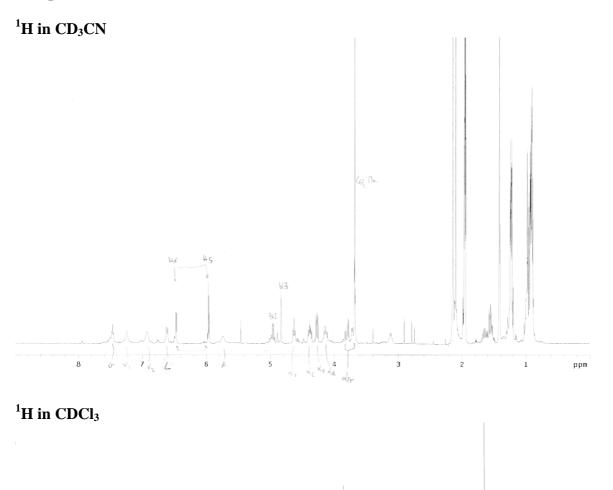
gHSQC

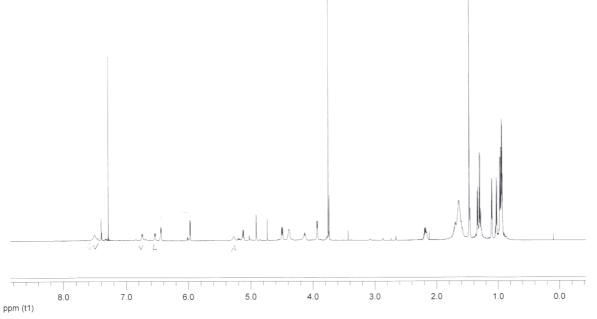


Compound III

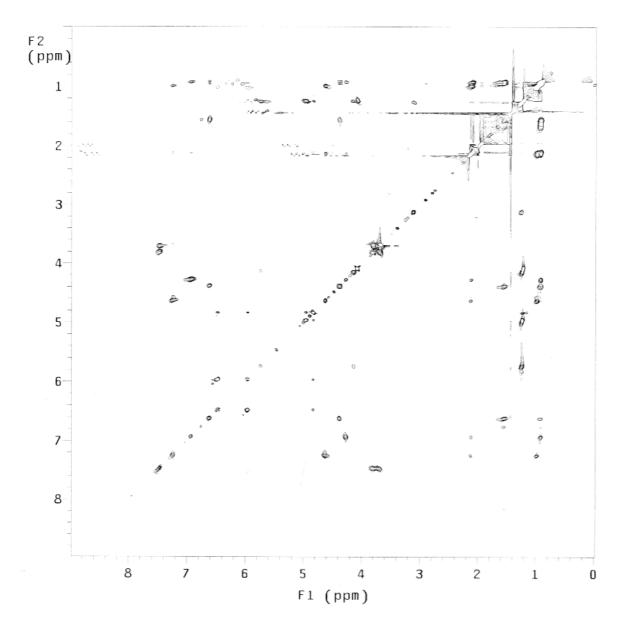



TOCSY

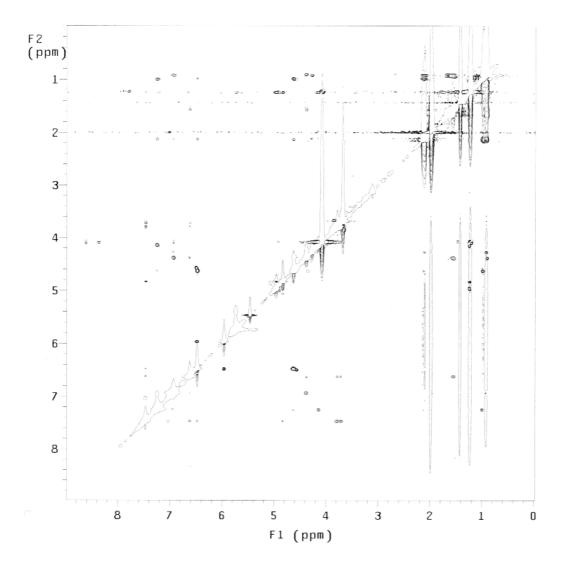

ROESY

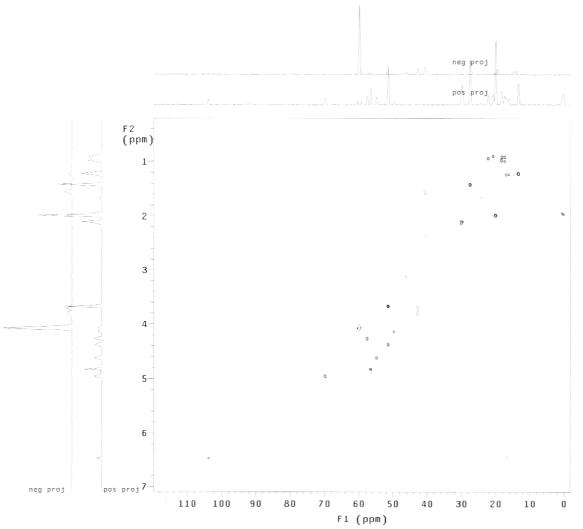


gHSQC

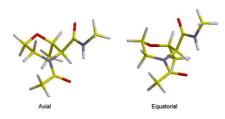


Compound IV




TOCSY

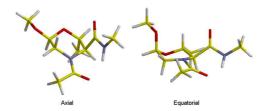
ROESY


gHSQC

Computational data

Ab initio single point calculations of the electronic properties of the most abundant minimum energy conformer at the $6-31G^*/HF$ level of quantum chemical theory. The axial structure is referred to the conformation having the substituents at C-2 and C-3 in axial orientation (1 a.u. = 627.5 kcal/mol).

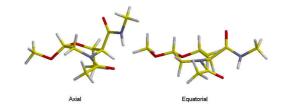
4-Acetyl-2-Me-Mor-3-methylamide (scaffold I)



Axial

Run type: Single point energy Model: RHF/3-21G(*) Number of shells: 74 46 S shells 28 SP shells Number of basis functions: 158 Number of electrons: 108 Number of heavy atoms: 14 Number of hydrogens: 16 Use of molecular symmetry disabled Molecular charge: 0 Spin multiplicity: 1 Memory model: direct 9.8 Mb Point Group = C1 Order = 1 Nsymop = 1This system has 84 degrees of freedom E(HF) = -679.8130698 a.u.

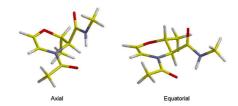
Equatorial Run type: Single point energy Model: RHF/3-21G(*) Number of shells: 74 46 S shells 28 SP shells Number of basis functions: 158 Number of electrons: 108 Number of heavy atoms: 14 Number of hydrogens: 16 Use of molecular symmetry disabled Molecular charge: 0 Spin multiplicity: 1 Memory model: direct 9.8 Mb Point Group = C1 Order = 1 Nsymop = 1This system has 84 degrees of freedom E(HF) = -679.8147176 a.u.


4-Acetyl-2-Me-(6S)-OMe-Mor-3-methylamide (scaffold II)

Axial Run type: Single point energy Model: RHF/3-21G(*) Number of shells: 84 52 S shells 32 SP shells Number of basis functions: 180 Number of electrons: 124 Number of heavy atoms: 16 Number of hydrogens: 18 Use of molecular symmetry disabled Molecular charge: 0 Spin multiplicity: 1 Memory model: direct 11.8 Mb Point Group = C1 Order = 1 Nsymop = 1This system has 96 degrees of freedom E(HF) = -793.0866731 a.u.

Equatorial Run type: Single point energy Model: RHF/3-21G(*) Number of shells: 84 52 S shells 32 SP shells Number of basis functions: 180 Number of electrons: 124 Number of heavy atoms: 16 Number of hydrogens: 18 Use of molecular symmetry disabled Molecular charge: 0 Spin multiplicity: 1 Memory model: direct 11.8 Mb Point Group = C1 Order = 1 Nsymop = 1This system has 96 degrees of freedom E(HF) = -793.0767991 a.u.

4-Acetyl-2-Me-(6R)-OMe-Mor-3-methylamide (scaffold III)



Axial

Run type: Single point energy Model: RHF/3-21G(*) Number of shells: 84 52 S shells 32 SP shells Number of basis functions: 180 Number of electrons: 124 Number of heavy atoms: 16 Number of hydrogens: 18 Use of molecular symmetry disabled Molecular charge: 0 Spin multiplicity: 1 Memory model: direct 11.8 Mb Point Group = C1 Order = 1 Nsymop = 1This system has 96 degrees of freedom E(HF) = -793.0667033 a.u.

Equatorial Run type: Single point energy Model: RHF/3-21G(*) Number of shells: 84 52 S shells 32 SP shells Number of basis functions: 180 Number of electrons: 124 Number of heavy atoms: 16 Number of hydrogens: 18 Use of molecular symmetry disabled Molecular charge: 0 Spin multiplicity: 1 Memory model: direct 11.8 Mb Point Group = C1 Order = 1 Nsymop = 1This system has 96 degrees of freedom E(HF) = -793.0771600 a.u.

4-Acetyl-2-Me-3,4-dihydro-2*H*-[1,4]oxazine-3-methylamide (scaffold IV)

Axial Run type: Single point energy Model: RHF/3-21G(*) Number of shells: 70 42 S shells 28 SP shells Number of basis functions: 154 Number of electrons: 106 Number of heavy atoms: 14 Number of hydrogens: 14 Use of molecular symmetry disabled Molecular charge: 0 Spin multiplicity: 1 Memory model: direct 9.5 Mb Point Group = C1 Order = 1 Nsymop = 1This system has 78 degrees of freedom E(HF) = -678.6528640 a.u.

Equatorial Run type: Single point energy Model: RHF/3-21G(*) Number of shells: 70 42 S shells 28 SP shells Number of basis functions: 154 Number of electrons: 106 Number of heavy atoms: 14 Number of hydrogens: 14 Use of molecular symmetry disabled Molecular charge: 0 Spin multiplicity: 1 Memory model: direct 9.5 Mb Point Group = C1 Order = 1 Nsymop = 1This system has 78 degrees of freedom E(HF) = -678.6417848 a.u.