Free-Energy Relationships for the Interactions of Tryptophan with Phosphocholines

Georg Blaser,^a John M. Sanderson*^a and Mark R. Wilson^a

Supplementary Information

Contents (click to jump to the corresponding section)

1.	Equations used in curve fitting	S3
2.	Competitive binding data	S7
3.	Chemical shift changes for the indole NH	S8
4.	Correlations with Resonance and Inductive Components of Hammett Parameter	S9
5.	Dynamics trajectories	S10
6.	Torsional distributions	S11
7.	Radial distribution functions	S15
8.	Clustered structures	S16
9.	1:2 Lipid:Tryptophan Simulation Data	S17
10.	1:2 Lipid:Tryptophan Simulation - Clustering	S19

1. Equations Used for Curve Fitting

1.1 Equilibrium Constants

$$\mathcal{K}_{m} = \frac{[L_{m}]}{[L]^{n}} (S1) \qquad \mathcal{K}_{1wl} = \frac{[WL]}{[W][L]} (S2) \qquad \mathcal{K}_{2wl} = \frac{[W_{2}L]}{[WL][W]} (S3) \qquad \mathcal{K}_{1} = \frac{[LT]}{[L][T]} (S4) \qquad \mathcal{K}_{2} = \frac{[LT_{2}]}{[LT][T]} (S5)$$

$$\mathcal{K}_{1w} = \frac{[WLT]}{[W][LT]} (S6) \qquad \mathcal{K}_{1} = \frac{[WLT]}{[WL][T]} (S7)$$

where:

 $[L_m]$ is the concentration of lipid in micellar form (NOT the concentration of micelles)

[L] is the concentration of free lipid

[*WL*] is the concentration of 1:1 water:lipid complex

[W] is the concentration of free water

 $[W_2L]$ is the concentration of 2:1 water:lipid complex

[*LT*] is the concentration of 1:1 lipid:tryptophan complex

[7] is the concentration of free tryptophan

 $[LT_2]$ is the concentration of 1:2 lipid:tryptophan complex

[WLT] is the concentration of 1:1:1 water:lipid:tryptophan complex

 $K_{\rm m}$ is the equilibrium constant for micelle formation

 K_{1wl} is the equilibrium constant for formation of the 1:1 water:lipid complex

 K_{2wl} is the equilibrium constant for formation of the 2:1 water:lipid complex

 K_1 is the equilibrium constant for formation of the 1:1 lipid:tryptophan complex

 K_2 is the equilibrium constant for formation of the 1:2 lipid:tryptophan complex

*K*_{1w} is the equilibrium constant for formation of the 1:1:1 water:lipid:tryptophan complex from the 1:1 lipid:tryptophan complex and water

 K_1 is the equilibrium constant for formation of the 1:1:1 water:lipid:tryptophan complex from the 1:1 water:lipid complex and tryptophan

1.2 Equations for Water/Lipid (DMPC) Titrations

1.2.1 Binding Isotherms

$$\begin{split} \delta_{w} &= \frac{[WL](\delta_{1wl} - \delta_{fw})}{[W]_{t}} + \frac{2[W_{2}L](\delta_{2wl} - \delta_{fw})}{[W]_{t}} + \delta_{fw} \\ & (S8) \\ \delta_{l} &= \frac{[WL](\delta_{1wl'} - \delta_{fl})}{[L]_{t}} + \frac{[W_{2}L](\delta_{2wl'} - \delta_{fl})}{[L]_{t}} + \frac{[L_{m}](\delta_{lm} - \delta_{fl})}{[L]_{t}} + \delta_{fw} \\ & (S9) \end{split}$$

where:

$$\begin{split} &[L]_{t} \text{ is the total concentration of lipid} \\ &[W]_{t} \text{ is the concentration of water} \\ &\delta_{w} \text{ is the calculated water chemical shift} \\ &\delta_{fw} \text{ is the chemical shift of free water} \\ &\delta_{1wl} \text{ is the water chemical shift in the 1:1 water:lipid complex} \\ &\delta_{2wl} \text{ is the water chemical shift in the 2:1 water:lipid complex} \\ &\delta_{l} \text{ is the calculated lipid chemical shift} \\ &\delta_{fl} \text{ is the chemical shift of free DMPC} \\ &\delta_{1wl'} \text{ is the DMPC chemical shift in the 1:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift in the 2:1 water:lipid complex} \\ &\delta_{2wl'} \text{ is the DMPC chemical shift$$

 $\delta_{
m Im}$ is the DMPC chemical shift in micellar aggregates

1.2.2 Mass Balances

$[L]_{t} = [L] + [WL] + [W_{2}L] + [L_{m}]$	(S10)	{used to calculate [L _m]}
$[W]_{t} = [W] + [WL] + 2[W_{2}L]$	(S11)	{used to calculate [<i>W</i>]}

1.2.3 Speciation

[<u>L]</u>

$$[L] = \frac{-b_{L} - \sqrt{b_{L}^{2} - 4K_{m}^{2}([L]_{t} - [WL] - [W_{L}])^{2}}}{2K_{m}^{2}([L]_{t} - [WL] - [W_{L}])}$$
(S12)

where:

$$-b_{L'} = 1 + 2K_{m} \{ [L]_{t} - [WL] - [W_{2}L] \}$$
(S13)

[WL]

$$[WL] = \frac{-b_{WL} - \sqrt{b_{WL}^2 - 4y^2 K_{1Wl}^2 ([W]_t - 2[W_2 L])([L]_t - [W_2 L])}}{2yK_{1Wl}}$$
(S14)

where:

$$-b_{WL'} = 1 + yK_{1W} \{ [L]_t - 3[W_2L] + [W]_t \}$$
(S15)

$$y = 1 + K_m^2 [L]^2 - 2K_m [L]$$
(S16)

[*W₂L*]

$$[WL] = \frac{-b_{W_2L} - \sqrt{b_{W_2L}^2 - 16K_{2wl}^2 ([W]_t - [W])([W]_t - [WL])}}{8K_{2wl}}$$
(S17)

where:

 $-b_{W,L'} = 1 + 2K_{2Wl} \{2[W]_t - [W] - [WL]\}$

1.3 Equations for Tryptophan/Lipid (DMPC) Titrations

1.3.1 Tryptophan Binding Isotherm

$$\delta = \frac{K_1[L](\delta_1 - \delta_f) + K_1[WL](\delta_1 - \delta_f) + 2K_2[LT](\delta_2 - \delta_f)}{1 + K_1[L] + K_1[WL] + 2K_2[LT]} + \delta_f$$
(S19)

where:

 δ is the calculated chemical shift

 $\delta_{
m f}$ is the chemical shift of free tryptophan

 δ_{1} is the tryptophan chemical shift in the 1:1 lipid:tryptophan complex

 δ_2 is the tryptophan chemical shift in the 1:2 lipid:tryptophan complex

 $\delta_{1'}$ is the tryptophan chemical shift in the 1:1:1 water:lipid:tryptophan complex

1.3.2 Water Binding Isotherm

$$\delta_{w} = \frac{[WLT](\delta_{1w} - \delta_{fw})}{[W]_{t}} + \frac{[WL](\delta_{1wl} - \delta_{fw})}{[W]_{t}} + \frac{2[W_{2}L](\delta_{2wl} - \delta_{fw})}{[W]_{t}} + \delta_{fw}$$
(S20)

where:

(S18)

 δ_{1w} is the water chemical shift in the 1:1:1 water:lipid:tryptophan complex

1.3.3 Mass Balances

$[L]_{t} = [L] + [WL] + [W_{2}L] + [L_{m}] + [WLT] + [LT] + [LT_{2}]$	(S21)	{used to calculate [L _m]}

$[W]_{t} = [W] + [WL] + 2[W_{2}L] + [WLT]$	(S22)	{used to calculate [<i>W</i>]}
$[T]_{t} = [T] + [WLT] + [LT] + 2[LT_{2}]$	(S23)	{used to calculate [7]}

where:

 $[\mathcal{T}]_t$ is the total tryptophan concentration

1.3.4 Speciation

[<u>L]</u>

$$[L] = \frac{-b_{L} - \sqrt{b_{L}^{2} - 4K_{m}^{2}([L]_{t} - [WL] - [WLT] - [W_{2}L] - [LT] - [LT_{2}])^{2}}}{2K_{m}^{2}([L]_{t} - [WL] - [WLT] - [W_{2}L] - [LT] - [LT_{2}])}$$
(S24)

where:

$$-b_{L} = 1 + 2K_{m} \{ [L]_{t} - [WL] - [WLT] - [W_{2}L] - [LT] - [LT_{2}] \}$$
(S25)

[*LT*]

$$[LT] = \frac{-b_{LT} - \sqrt{b_{LT}^2 - 4K_1^2([T]_t - 2[LT_2] - [WLT])([L]_t - [WL] - [WLT] - [LT_2] - [W_2L] - x)}}{2K_1}$$
(S26)
where:

$$-b_{LT} = 1 + K_1 \{ [T]_t - 3[LT_2] + [L]_t - [WL] - 2[WLT] - [W_2L] - x \}$$
(S27)

$$x = [L]/(1 - K_{m}[L])^{2} - [L]$$
(S28)

[*LT*₂]

$$[LT_{2}] = \frac{-b_{LT_{2}} - \sqrt{b_{LT_{2}}^{2} - 16K_{2}^{2}([T]_{t} - [WLT] - [T])([T]_{t} - [LT] - [WLT])}}{8K_{2}}$$
(S29)

where:

$$-b_{LT_2} = 1 + 4K_2\{[T]_t - [WLT] - 0.5[T] - 0.5[LT]\}$$
(S30)

[WLT]

$$[LT_2] = \frac{-b_{WLT} - \sqrt{b_{WLT}^2 - 4K_{1w}^2([T]_t - 2[LT_2] - [T])([W]_t - [WL] - 2[W_2L])}}{2K_{1w}}$$
(S31)

where:

$$-b_{WLT} = 1 + K_{1w} \{ [T]_t - 2[LT_2] - [T] + [W]_t - [WL] - 2[W_2L] \}$$
(S32)

[WL]

$$[WL] = \frac{-b_{WL} - \sqrt{b_{WL}^2 - 4K_{1Wl}^2([W]_t - 2[W_2L] - [WLT])([L]_t - 2[W_2L] - x - [WLT] - [LT] - [LT_2])}}{2K_{1Wl}}$$
(S33)

where:

$$-b_{WL} = 1 + K_{1WI} \{ [W]_{t} - 3[W_{2}L] - 2[WLT] + [L]_{t} - x - [LT] - [LT_{2}] \}$$
(S34)

$$x = [L]/(1-K_{m}[L])^{2}-[L]$$

[*W₂L*]

$$[W_{2}L] = \frac{-b_{W_{2}L} - \sqrt{b_{W_{2}L}^{2} - 16K_{2Wl}^{2}([W]_{t} - [W] - [WLT])([W]_{t} - [WL] - [WLT])}}{8K_{2Wl}}$$
(S35)

where:

$$-b_{W_{2L}} = 1 + 4K_{2wl} \{ [W]_{t} - 0.5[W] - [WLT] - 0.5[WL] \}$$
(S36)

(S28)

2. Competitive Binding Data

Table S1 Association constants and limiting complexation-induced chemical shift changes for the competitive association of 5-substituted tryptophan derivatives (1a-h) with DMPC $(2)^a$

R	K_1 / M^{-1}	$\Delta\delta_{ m 1}$ / ppm	$K_{1'} / M^{-1}$	$\Delta\delta_{ extsf{1'}}$ / ppm	<i>K</i> ₂ / M ⁻¹	$\Delta\delta_2$ / ppm	<i>K</i> _{1w} / M ⁻¹
OMe (1a)	73 ± 7	5.37	86 ± 8	5.67	232 ± 23	-0.11	35 ± 3
Me (1b)	66 ± 7	5.27	71 ± 7	5.25	123 ± 12	0.07	32 ± 3
H (1c)	60 ± 6	4.23	76 ± 8	4.80	48 ± 5	0.76	38 ± 4
F (1d)	99 ± 10	5.37	107 ± 11	5.02	64 ± 6	0.49	32 ± 4
Cl (1e)	188 ± 19	4.61	175 ± 17	4.58	85 ± 8	2.26	28 ± 3
Br (1f)	182 ± 18	4.53	162 ± 16	4.55	90 ± 9	0.96	27 ± 3
l (1g)	196 ± 20	4.83	204 ± 20	4.54	84 ± 8	1.36	31 ± 3
$NO_2 \left(\boldsymbol{1h} \right)$	306 ± 43	4.66	248 ± 40	5.18	475 ± 47	3.66	25 ± 2

^a Experiments were conducted in CDCl₃ at 20 °C. Association constants and limiting complexation-induced chemical shift changes $(\Delta \delta_1 = \delta_1 - \delta_f; \Delta \delta_2 = \delta_2 - \delta_f; \Delta \delta_{1'} = \delta_{1'} - \delta_f)$ were calculated using non-linear least squares fitting of eqs S19-S36 to the experimental data assuming a competitive binding model (*i.e.* $K_{1w} \neq K_{1w}$ and $K_1 \neq K_{1'}$ was permitted). Each value is the mean of duplicate experiments. Standard errors in $\Delta \delta$ are ± 10%. Errors in K are ± 10% or the value calculated by curve fitting if the latter was greater than the former.

Figure S1 Free energy trends for the association of 5-substituted tryptophan derivatives (**1a-h**) with DMPC (**2**) in CDCl₃ at 20 °C as a function of the *p*-Hammett parameter (σ_P) of the 5-substituent. (A) ΔG_1 (\bullet) and ΔG_{1w} (O). (B) ΔG_1 (\bullet) and ΔG_1 (Δ). (C) ΔG_2 (\blacktriangle) and $\Delta G_1 + \Delta G_2$ (\diamond). The points are calculated from the data presented in Table S1.

Figure S2 Correlations between values for ΔG_1 (A) and ΔG_2 (B) obtained from competitive and non-competitive binding models to fit the experimental data.

3. Chemical Shift Changes for the Indole NH

Figure S3 Complexation-induced chemical shift changes for the indole-NH using a non-competitive binding model ($K_{1w} = K_{1wl}$ and $K_1 = K_{1'}$ enforced). (A) $\Delta \delta_1$. (B) $\Delta \delta_1$. (C) $\Delta \delta_2$. Errors in $\Delta \delta_1$ and $\Delta \delta_1$ are ± 10%. Errors in $\Delta \delta_2$ are estimated at ± 0.5.

Figure S4 Complexation-induced chemical shift changes for the indole-NH using a competitive binding model ($K_{1w} \neq K_{1wl}$ and $K_1 \neq K_{1'}$ permitted). (A) $\Delta \delta_1$. (B) $\Delta \delta_1$. (C) $\Delta \delta_2$. Errors in $\Delta \delta_1$ and $\Delta \delta_1$ are ± 10%. Errors in $\Delta \delta_2$ are estimated at ± 0.5.

4. Correlations with Resonance and Inductive Components of Hammett Parameter

Figure S5 Free energy trends for the association of 5-substituted *L*-tryptophan derivatives (**1a-h**) with DMPC (**2**) in CDCl₃ at 20 °C as a function of the resonance (σ_R) and inductive (σ_I) components of the *p*-Hammett substituent parameter (σ_P) of the 5-substituent. The points are calculated from the data presented in Table 1 of the main paper, which assume non-competitive binding of **1a-h** and water to **2**, with ΔG_1 represented as red points (\bullet) and ΔG_2 as open blue triangles (Δ).

5. Dynamics Trajectories

Figure S6 Molecular dynamics trajectories for simulation of tryptophan 1c and DMPC 2 in CHCl₃. (A)-(F) correspond to six different starting configurations for NpT simulations at 300 K; (G) shows the first 200 ns of a 600 ns NVT simulation at 600 K; (H) shows the full trajectory corresponding to (G).

Figure S7 Torsional distributions for selected dihedrals of tryptophan 1c. (A) Phi (ϕ) from an *NVT* simulation of 1c in CHCl₃ at 600 K; (B) ϕ from an *NVT* simulation of 1c and DMPC 2 in CHCl₃ at 600 K; (C) ϕ from an *NpT* simulation of 1c in CHCl₃ at 300 K; (D) ϕ from an *NpT* simulation of 1c and DMPC 2 in CHCl₃ at 300 K; (E)-(H) are the corresponding distributions for Psi (ψ).

Figure S8 Torsional distributions for selected dihedrals of tryptophan 1c. (A) Chi₁ (χ_1) from an *NVT* simulation of **1c** in CHCl₃ at 600 K; (B) χ_1 from an *NVT* simulation of **1c** and DMPC **2** in CHCl₃ at 600 K; (C) χ_1 from an *NpT* simulation of **1c** in CHCl₃ at 300 K; (D) χ_1 from an *NpT* simulation of **1c** and DMPC **2** in CHCl₃ at 300 K; (E)-(H) are the corresponding distributions for Chi₂ (χ_2).

Figure S9 Torsional distributions for selected dihedrals of DMPC 2. (A) α_2 from an *NVT* simulation of 2 in CHCl₃ at 600 K; (B) α_2 from an *NVT* simulation of 1c and DMPC 2 in CHCl₃ at 600 K; (C) α_2 from an *NpT* simulation of 2 in CHCl₃ at 300 K; (D) α_2 from an *NpT* simulation of 1c and DMPC 2 in CHCl₃ at 600 K; (C) α_2 from an *NpT* simulation of 1c and DMPC 2 in CHCl₃ at 300 K; (E)-(H) are the corresponding distributions for α_3 . { α_2 and α_3 are defined as in Marsh, D, *Protein Sci.*, 2003, *12*, 2109; α_2 = atoms 12-11-8-7, α_3 = atoms 11-8-7-6, Fig. 1}.

Figure S10 Torsional distributions for selected dihedrals of DMPC 2. (A) α_5 from an *NVT* simulation of 2 in CHCl₃ at 600 K; (B) α_5 from an *NVT* simulation of 1c and DMPC 2 in CHCl₃ at 600 K; (C) α_5 from an *NpT* simulation of 2 in CHCl₃ at 300 K; (D) α_5 from an *NpT* simulation of 1c and DMPC 2 in CHCl₃ at 300 K; (E)-(H) are the corresponding distributions for θ_4 . { α_5 and θ_4 are defined as in Marsh, D, *Protein Sci.*, 2003, 12, 2109; α_5 = atoms 7-6-5-4, θ_4 = atoms 18-17-13-14, Fig. 1}.

Figure S11 Radial distribution functions for groups of atoms from simulations in CHCl₃. (A) 78-52; (B) 54-(59,60,61,62,63); (C) 78-(59,60,61,62,63); (D) 16-(1,2,3,5). (A)-(D) are from NpT simulations at 300 K and correspond to Fig. 6 (A)-(D) in the main paper. Data from simulations of **1c** and **2** together are shown in red; data from corresponding simulations of individual molecules of **1c** are shown in blue. (E)-(H) are the corresponding plots for *NVT* simulations at 600 K.

8. Clustered Structures

Figure S12 The most abundant conformations of N-acetyl tryptophan N-ethyl amide (1c) and DMPC (2) from constant-*NpT* simulations of single molecules of each in a chloroform box at 300 K. A, tryptophan derivative **1c** (153 structures); B, **1c** (107); C, **1c** (89 structures); D, DMPC (2, 308 structures). Some atoms of the acyl chains have been omitted for clarity.

Figure S13 The four most abundant binding interactions from cluster analysis of all of the structures from a 600 ns *NVT* simulaton of tryptophan derivative 1c and DMPC (2) in a chloroform box at 600 K.

9. 1:2 Lipid:Tryptophan Simulation Data

Entry	Interacting Pair ^a	Cutoff / nm ^b	% time ≤ cut- off	% time as sole interaction ^c
1	20-19	0.35	2 ± 1	-
2	20-16	0.35	2 ± 2	-
3	20-(7,9,10,11)	0.435	16 ± 6	4
4	22-19	0.35	2 ± 2	-
5	22-16	0.35	5 ± 2	-
6	22-(7,9,10,11)	0.495	36 ± 8	4
7	24-19	0.35	5 ± 3	6
8	24-16	0.35	9 ± 4	8
9	24-(7,9,10,11)	0.385	14 ± 3	22
10	4-(Ar)	0.737	34 ± 7	1
11	4-(Py)	0.665	35 ± 8	<1
12	21-(1,2,3,5)	0.613	38 ± 11	10
13	23-(1,2,3,5)	0.539	18 ± 6	11

Table S2. Analysis of binding interactions during *NVT* simulations of 2 molecules of tryptophan derivative **1c** and DMPC (**2**) in chloroform at 600 K: tryptophan 1

^a atom numbers correspond to those in Figure 1. The centre of mass of the atoms grouped in parentheses was used for calculations.

^b cutoff set to 0.35 nm for hydrogen bonding interactions, or determined from point of zero gradient in the radial distribution function of the corresponding interaction.

 $^{\circ}$ the proportion of the time spent at a distance less than the cut-off during which this was the only intermolecular interaction.

Entry	Interacting Pair ^a	Cutoff / nm⁵	% time ≤ cut- off	% time as sole interaction ^c
1	20-19	0.35	2 ± 2	-
2	20-16	0.35	2 ± 2	-
3	20-(7,9,10,11)	0.413	14 ± 6	2
4	22-19	0.35	2 ± 1	-
5	22-16	0.35	5 ± 3	-
6	22-(7,9,10,11)	0.503	38 ± 11	5
7	24-19	0.35	5 ± 3	4
8	24-16	0.35	9 ± 4	9
9	24-(7,9,10,11)	0.387	14 ± 4	20
10	4-(Ar)	0.765	37 ± 8	1
11	4-(Py)	0.693	39 ± 10	<0.1
12	21-(1,2,3,5)	0.585	39 ± 8	7
13	23-(1,2,3,5)	0.581	19 ± 7	10

Table S3. Analysis of binding interactions during *NVT* simulations of 2 molecules of tryptophan derivative **1c** and DMPC (**2**) in chloroform at 600 K: tryptophan_2

^a atom numbers correspond to those in Figure 1. The centre of mass of the atoms grouped in parentheses was used for calculations.

^b cutoff set to 0.35 nm for hydrogen bonding interactions, or determined from point of zero gradient in the radial distribution function of the corresponding interaction.

^c the proportion of the time spent at a distance less than the cut-off during which this was the only intermolecular interaction.

Figure S14 The four most abundant binding interactions from cluster analysis of all of the structures from a 600 ns *NVT* simulaton of 2 molecules of tryptophan derivative **1c** and DMPC (**2**) in a chloroform box at 600 K. The median structure is shown in each case. The numbers of structures per cluster are 9, 8, 7 and 6 for a), b), c) and d) respectively.